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Abstract. The Singular Cardinal Hypothesis (SCH) is one of the most clas-

sical combinatorial principles in set theory. It says that if κ is singular strong
limit, then 2κ = κ+. We prove that given a singular cardinal κ of cofinality

η in the ground model, which is a limit of suitable large cardinals, there is
a forcing extension such that κ becomes ℵη , and SCH fails at κ. Our large

cardinal assumption is below the existence of a superstrong cardinal. In our

model we also obtain a very good scale.

1. introduction

The Singular Cardinal Hypothesis (SCH) says, roughly speaking, that if θ is a
singular cardinal then 2θ has the smallest value consistent with the restrictions
provable in ZFC: in particular SCH implies that if θ is a singular strong limit
cardinal, then 2θ = θ+. Failure of SCH is known to require some large cardinal
hypotheses.

The first models for the failure of SCH were built by starting with a large cardinal
κ, forcing that GCH fails at κ while preserving some large cardinal property of κ,
and then making κ singular via Prikry-type forcing. Gitik and Magidor [1] gave
a construction which starts with a large cardinal and simultaneously adds many
cofinal ω-sequences in κ, while keeping it strong limit.

In subsequent work, Gitik and Magidor [2] gave a construction which starts with
a cardinal κ that is the limit of ω many strong cardinals, and adds many cofinal
subsets of κ while keeping κ strong limit. Recently Gitik [3] showed how to achieve
a similar result when κ is a limit of large cardinals and has uncountable cofinality.
In the resulting extension κ is quite large, for example it is a cardinal fixed point.

We prove the following theorem:

Theorem 1. Assume GCH holds, and there is an increasing sequence of cardinals
〈κα : α < η〉 and an integer n ≥ 2 such that, letting λ = (supα<η κα)+n:

(1) 0 < η < κ0 and η is limit.
(2) There is a sequence of (κα, λ)-extenders 〈Eα : α < η〉 such that:

(a) If Mα = Ult(V,Eα), then Mα computes cardinals correctly up to and
including λ, and καMα ⊆Mα.

(b) If jEα : V → Mα is the ultrapower map, then jEβ (Eα) � λ = Eα for
α < β < η.

(c) There is a function sα : κα → κα with jEα(sα)(κα) = supα<η κα.

Then there is a λ-c.c. forcing poset such that in the generic extension, for each
limit ordinal β < η, 2ℵβ ≥ ℵ+nβ , and 2ℵη = ℵ+nη .
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The condition “jEβ (Eα) � λ = Eα for α < β < η” is a form of coherence for
the sequence of extenders: it implies that the sequence is Mitchell increasing in the
sense that Eα ∈ Ult(V,Eβ) for α < β < η. Gitik has conjectured that the existence
of an uncountable Mitchell increasing sequence as above (with n = 2) is optimal
to obtain failure of SCH at a singular cardinal of uncountable cofinality which is
singular in the core model.

Our forcing construction is inspired by Gitik’s construction [3] which blows up
the powerset of a singular cardinal with any cofinality, and his recent work on
collpasing generators [4].

We assume the reader is familiar with large cardinals and forcing. Our presen-
tation of extender-based forcing follows the same lines as some work of Merimovich
[5].

Our notation is mostly standard. For each sequence of ordinal length X = 〈xi :
i < α〉 and β < α, we write X � β = 〈xi : i < β〉, and X \ β = 〈xi : β ≤ i < α〉.

The organization of this paper is as follows:

• In Section 2, we describe the assumptions we use to build the forcing. We
then introduce the notions of domains and objects, explain the connection
between objects and extenders, and do some extender analysis.
• In Section 3, we decsribe the forcing construction and explain how the

extension works. After that, we describe the chain condition and closure
of the forcing, and prove an integration lemma, which plays a vital role in
proving the Prikry property.
• In Section 4, we prove the Prikry property and the strong Prikry property.
• In Section 5, we describe which cardinals are preserved.
• In Section 6, we analyze some scales. We use scales to show cardinal arith-

metic, and also show that one of the scales derived from the forcing is very
good.
• In Section 7, we show that the existence of a superstrong cardinal is suffi-

cient to yield our initial assumptions for building the forcing.

2. preliminaries

We start with a ground model V in which GCH holds. Our assumptions are
slightly more general than those of Theorem 1, because we will establish some of
the properties of the main forcing (notably the Prikry property) by induction on η.
In our assumptions λ is still of the form ρ+n, but in our induction argument for the
Prikry property, the proof requires extenders of longer lengths, hence we permit ρ
to be larger than (supα<η κα)+n. Throughout the paper, we treat the case n = 2.
One can modify our analysis to generalize for any larger n.

Fix an ordinal η > 0 (η can be finite), and a sequence of cardinals 〈κα : α < η〉
with η < κ0. For each α with 0 < α ≤ η, let κα = supβ<α κβ , and let κ0 be regular
such that max{ω, η} = κ0 < κ0. Let ρ ≥ κη, where ρ is either an inaccessible
cardinal or a limit of inaccessible cardinals, and let λ = ρ++.

Assume that :

(1) For each α, κα carries a (κα, λ)-extender Eα.
(2) Let jEα : V →Mα be derived from the extender Eα. Then Mα is closed un-

der κα-sequences, and Mα computes cardinals correctly up to and including
λ.
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(3) There is a function sα : κα → κα with jEα(sα)(κα) = ρ, and sα(ν) >
max{ν, κα} for all ν.

(4) The sequence of extenders 〈Eα : α < η〉 is pairwise coherent in the sense of
[6], that is for α < β < η, jEβ (Eα) � λ = Eα.

As we noted already, the coherence of the extender sequence implies the Mitchell
increasing property, namely, for α < β < η, Eα ∈Mβ .

Observe that the sequence 〈κα : α < η〉 is not continuous. In general, for α with
α + 1 ≤ η, κα+1 = κα. In addition, for each α < η, κα < κα, hence requirement 3
is sensible.

We believe that the coherence requirement can be dropped. The reason we
include it in the assumptions is that it simplifies the definition of the forcing
poset. Without this condition we have to fix functions fα,β which represent Eα
in Ult(V,Eβ), which reduces readability. We note that using conditions 3 and 4, we
have that jEβ (ζ 7→ Eα � sβ(ζ)++)(κβ) = Eα, so that Eα is represented in a very
simple way.

The following representation of the extenders is due to Merimovich [5]. For each
α < η, we let an α-domain be a set d ∈ [λ]κα such that κα + 1 ⊆ d. In the
original Merimovich context κα = min(d), but it our case, it is more convenient
to have d ⊇ κα + 1. Define mcα(d) as (jEα � d)−1. We represent Eα = 〈Eα(d) :
d is an α-domain〉, where X ∈ Eα(d) iff mcα(d) ∈ jEα(X). From this point, if there
is no ambiguity about the value of α, we may drop α from the notation (refer to
an α-domain as a domain, Eα as E, mcα(d) as mc(d) and so on). We define a set
on which Eα(d) concentrates.

Definition 2. Let d be an α-domain. OBα(d) is the collection of d-α-objects, which
are the functions µ such that

(1) dom(µ) ⊆ d, ran(µ) ⊆ κα, and κα ∈ dom(µ),
(2) |dom(µ)| = µ(κα) (which is below κα), and µ(κα) is inaccessible.
(3) dom(µ) ∩ κα = µ(κα).
(4) µ is order-preserving, and
(5) for β ∈ dom(µ) ∩ κα, µ(β) = β.

As mentioned earlier, it is straightforward to check that Eα(d) concentrates on
d-α-objects. It is easy to see that for each domain d, there is a unique α < η such
that d is an α-domain. Hence we use the term “d-object” to refer to a d-α-object for
the unique α such that d is an α-domain. The collection 〈Eα(d) : d is an α-domain〉
comes with natural projections. For each pair of α-domains d ⊆ d′ define πd′,d :
OBα(d′) → OBα(d) by πd′,d(µ) = µ � d: it is routine to check that πd′,d projects
Eα(d′) to Eα(d). We do some analysis of extenders in Lemma 1 and Lemma 2.

Lemma 1. Suppose 0 ≤ αi0 < · · · < αik−1
< η, for each j < k, dj is an αij -

domain, Aj ∈ Eαij (dj), and F :
∏
j<k Aj → 2. Then there are Bj ⊆ Aj, Bj ∈

Eαij (di) such that F � (
∏
j<k Bj) is constant.

Proof. Induct on k. The case k = 1 is trivial. Suppose k > 1. For each µ ∈
Aαk−1

, let Fµ :
∏
j<k−1Aj → 2 be defined by Fµ(~x) = F (~x_〈µ〉). Since καk−1

is

inaccessible, by completeness of Eαk−1
(dk−1), there exist Bk−1 and F ′ such that

Fµ = F ′ for all µ ∈ Bk−1. Now apply the induction hypothesis to find Bj ⊆ Aj ,
Bj ∈ Eαij (dj) for j < k − 1 with F ′ � (

∏
j<k−1Bj) constant. It is easy to see that

F � (
∏
j<k Bj) is constant. �
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Lemma 2. For each α < η and each α-domain d, there is a set Aα(d) such that
Aα(d) ∈ Eα(d), and for each ν < κα, the size of {µ ∈ Aα(d) : µ(κα) = ν} is at
most sα(ν)++.

Proof. We drop the subscript α for this proof and fix a domain d. Let d∗ =
d \ κ. For each µ ∈ OB(d), set µ∗ = µ � (dom(µ) \ κ), and let mc∗(d) = mc(d) �
(dom(mc(d)) \ κ). Enumerate d∗ as 〈δi : i < κ〉. Let Bd be the set of µ ∈ OB(d)
such that dom(µ∗) = {δi : i < µ(κ)}. We claim that Bd ∈ E(d). The point is that
dom(mc∗(d)) = j[d∗] = {j(δ)i : i < κ}, mc∗(d)(j(κ)) = κ, and j(〈δi : i < κ〉) � κ =
〈j(δi) : i < κ〉.

Let ~t = 〈tδ : δ < κ〉 be an enumeration of [κ]<κ such that whenever δ < κ is
a closure point of the map γ 7→ s(γ)++, 〈tβ : β ∈ [δ, s(δ)++)〉 enumerates the set

of t ∈ [s(δ)++]≤δ with min(t) = δ. Let j(~t) = ~T . Since κ is a closure point for
j(γ 7→ s(γ)++), and j(s)(κ)++ = λ, we have that 〈Tδ t κ : κ ≤ δ < λ〉 enumerates
all domains. Choose δ so that Tδ = d∗. For each β ∈ d∗, let i = ot(d∗ ∩ β) < κ+,
and let πβ be the function which takes ν < κ to the fi(min(tν))th element of tν
where fi is the ith canonical function. Then j(πβ)(δ) is the j(fi)(κ)th element of
Tδ, which is β.

Define

Ad = {µ ∈ Bd : ∃ξ < s(µ(κ))++ ∀β ∈ dom(µ∗), µ∗(β) = πβ(ξ)}
We claim that Ad ∈ E(d). Note that δ < λ = (j(s)(mc(d)(j(κ))))++ and for

each β ∈ d∗, mc∗(d)(j(β)) = β = j(πβ)(δ).
The conclusion of the proof follows from the fact that given τ ∈ Ad with τ(κ) = ν,

dom(τ) = ν ∪ {δi : i < ν}, τ(β) = β for all β < ν, and there is ξ < s(ν)++ such
that for β ∈ dom(µ) \ κ , µ(β) = πβ(ξ).

Hence ν and ξ completely determine τ . For every ν there are only s(ν)++ possible
values for ξ. Hence Ad works as required. �

In the sequel we define Aα(d) to be the measure one set from the conclusion of
Lemma 2.

3. The forcing

The forcing is constructed using ideas from Gitik’s recent preprints [3] and [4].
To apply induction hypothesis, in this section, we assume max{ω, η} ≤ κ0 < κ0.
Recall that ρ ≥ κη and λ = ρ++. We introduce some notation here. For each pair
of cardinals κ and θ, let A(κ, θ) be the set of partial functions from θ to κ with
domains which have size κ and contain κ + 1, ordered by extension. Also define
Eα(κα) by X ∈ Eα(κα) iff κα ∈ jEα(X). This is just a normal measure on κα. If
d is an α-domain and A ∈ Eα(d) then we define A(κα) = {µ(κα) : µ ∈ A}, and
note that easily A(κα) ∈ Eα(κα). Assume all the hypotheses from the beginning
of Section 2.

Definition 3. The forcing P〈Eα:α<η〉 consists of sequences p = 〈pα : α < η〉 such
that for a finite subset supp(p) of η (the support of p):

pα =

{
〈fα, λα, h0α, h1α, h2α〉 if α ∈ supp(p),

〈fα, Aα, H0
α, H

1
α, H

2
α〉 otherwise,

where:

(1) κα < λα < κα for all α ∈ supp(p).
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(2) fα ∈ A(κα, λα∗) where α∗ = min(supp(p) \ (α + 1)) if it exists, otherwise
λα∗ = λ. We denote dom(fα) by dα, and note that dα is an α-domain.

(3) {dα : α < η} is ⊆-increasing.
(4) If α ∈ supp(p) then:

• fα(κα) is inaccessible and fα(κα) > κα.
• λα = ρ++

α where ρα = sα(fα(κα)), so that in particular κα < κ+α <
fα(κα) < ρα < ρ+α < λα < λ+α < κα.

(5) If α 6∈ supp(p), then Aα ∈ Eα(dα), and Aα ⊆ Aα(dα).
(6) If α ∈ supp(p), then h0α ∈ Col(κ+α , < fα(κα)), h1α ∈ Col(fα(κα), ρ+α ), and

h2α ∈ Col(λ+α , < κα).
(7) If α 6∈ supp(p), then

(a) dom(H0
α) = dom(H1

α) = Aα.
(b) For τ ∈ dom(H0

α) let ν = τ(κα), then H0
α(τ) ∈ Col(κ+α , < ν), and

H1
α(τ) ∈ Col(ν, sα(ν)+).

(c) dom(H2
α) = Aα(κα).

(d) For each ordinal ν ∈ dom(H2
α), H2

α(ν) ∈ Col(sα(ν)+3, < κα).

Readers of Gitik’s preprint [4] will notice a few differences in the collapsing
parts, in particular H0

α and H1
α are defined with domains in Eα(dα) rather than a

projected measure. This is not necessary here because the pattern of collapses is a
bit different, the projection in [4] is needed for the chain condition but this is not
necessary here and hence permits our conditions to be simpler.

There are two main reasons why our situation is simpler than that in [4]. The
first one is that as in [3] the “impure” part of a condition is rather small. The other
is that we are defining the forcing using Merimovich’s machinery of objects, which
simplifies the ultrapower analysis. Both of these factors play a role in the chain
condition analysis in Theorem 3 below.

To clarify that all the requirements are reasonable, fix an α < η. If α∗ exists
as in 2, then κα ≤ κα∗ < λα∗ < κα∗ . The forcing A(κα, λα∗) is equivalent to the
forcing adding λα∗ -subsets of κ+α .

The fact that for α ∈ supp(p), fα(κα) is inaccessible will eventually guarantee
that the forcing preserves some cardinals at each coordinate, see Lemma 8.

When we discuss multiple conditions, we usually put a superscript on every
component with the name of the condition. Also a condition is officially a sequence
of sequences, but we sometimes drop the angle brackets if it is clear from the
context. For example, when η = 1, we may write p = 〈fp0 , A

p
0, (H

0
0 )p, (H1

0 )p, (H2
0 )p〉

instead of having two pairs of brackets. As one might expect, objects in Aα are
used to extend a condition in a meaningful way. We will restrict our attention to
the valid objects (which we call addable) in Definition 5.

We give some conventions here. The pure part of p is the pα’s for α 6∈ supp(p).
The rest is called the impure part of p. We refer the first coordinate fα of each pα
as the Cohen part, and the last three coordinates of each pα as the collapse parts.
A condition p is pure if supp(p) = ∅. For each α-object µ, let ρα(µ) = sα(µ(κα)),
λα(µ) = ρα(µ)++. For each ν < κα, let ρα(ν) = sα(ν), and λα(ν) = ρα(ν)++.

As usual, we drop the subscript α if it is clear from the context. Similarly we
sometimes drop the subscript 〈Eα : α < η〉 from P〈Eα:α<η〉. We define P � α to be
{p � α : p ∈ P}, and P \α to be {p \α : p ∈ P}. The notions in Definition 3 refer to
the corresponding components. For instance, fp0 is the Cohen part of p0, the first
entry of p, and dp0 is just dom(fp0 ).
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We now define the concept of direct extension.

Definition 4. Let p, q ∈ P. p is a direct extension of q, denote p ≤∗ q, if and
only if:

(1) supp(p) = supp(q).
(2) For each α, fpα ≤ fqα.
(3) If α ∈ supp(p), then λpα = λqα.
(4) If α ∈ supp(p), then (hlα)p ≤ (hlα)q for l < 3.
(5) If α 6∈ supp(p), then

(a) πdpα,dqα [Apα] ⊆ Aqα. As a consequence πdpα,dqα [dom(H l
α)p] ⊆ dom(H l

α)q

for l < 2 and dom(H2
α)p ⊆ dom(H2

α)q.
(b) For l < 2, (H l

α)p(τ) ≤ (H l
α)q(πdpα,dqα(τ)) for all relevant τ .

(c) For all relevant ν, (H2
α)p(ν) ≤ (H2

α)q(ν).

We often express property 5a as “Apα projects down to Aqα”. To see what the
extensions of a given condition look like in general, we first restrict the kind of
objects which are allowed to be used to extend a condition.

The following definition and other definitions later on involves composition of
functions. We note here that compositions are done partially, meaning for functions
f and g, f ◦g has the domain {x ∈ dom(g) : g(x) ∈ dom(f)} and f ◦g(x) = f(g(x)).

Definition 5. Let p ∈ P, α 6∈ supp(p), and µ ∈ Apα. µ is addable to p if:

(1) κα < µ(κα), and µ(κα) is inaccessible.
(2)

⋃
β<α

dβ ⊆ dom(µ) and µ � (κα + 1) is an identity function.

(3) For each β ∈ (max(supp(p) ∩ α), α),
(a) µ[dβ ] ⊆ λα(µ).
(b) {ψ ◦ µ−1 : ψ ∈ Aβ} ∈ Eβ(µ[dβ ]).
(c) µ(κβ) = κβ .

We denote the set in condition 3b as Aβ ◦µ−1. It is important that almost every
µ ∈ Aα is addable, and the proof illustrates the role of coherence, so we sketch it.
We write mcα for mcα(dα).

• jEα(κα) = κα < κα = mcα(jEα(κα)), and κα is inaccessible in Mα.
• If D =

⋃
β<α dβ then |D| ≤ κα and D ⊆ dα, so jEα(D) = jEα [D] ⊆

dom(mcα).
• By the previous item jEα(dβ) ⊆ dom(mcα), and easily rge(mcα) ⊆ λ. By

the choice of sα, jEα(sα)(mcα(jEα(κα))) = ρ. Now λ = ρ++ and so easily
jEα(λα)(mcα(jEα(κα))) = λ.
• Note that for each ψ ∈ Aβ , dom(ψ) ⊆ dβ ⊆ dom(µ), so that dom(ψ◦µ−1) =
µ[dom(ψ)]. By a routine calculation, mcα[jEα(dom(ψ))] = dom(ψ), and
jEα(ψ)◦mc−1α maps γ ∈ dom(ψ) to ψ(γ), that is jEα(ψ)◦mc−1α = ψ. Since
|Aβ | = 2κβ < κα, jEα(Aβ) = jEα [Aβ ] and so {Ψ ◦mc−1α : Ψ ∈ jEα(Aβ)} =
Aβ . Now Aβ ∈ Eβ(dβ) = jEα(Eβ)(dβ) by Remark 4.

It will become clearer why we restrict ourselves to the addable objects, once
we define the notion of one-step extension in Definition 6. To define a non-direct
extension, we introduce more notation. If f ∈ A(κα, λ) with domain d, and µ is an
α-d-object, we define f ⊕ µ to be the function g ∈ A(κα, λ) such that dom(g) =
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dom(f), and

g(γ) =

{
µ(γ) if γ ∈ dom(µ),

f(γ) otherwise.

Note that we obtain the function g by simply overwrite previous values by µ.
For each condition p, β < α, and µ ∈ Eα(dpα), we define (fpβ)µ as fpβ ◦ µ−1. For

l < 2 we define (H l
β)pµ with domain Apβ ◦ µ−1, and (H l

β)pµ(ξ′) = (H l
β)p(ξ′ ◦ µ).

Definition 6. (one-step extension) Fix a condition p ∈ P, α 6∈ supp(p), and an
addable object µ ∈ Apα. The one-step extension of p by µ, denoted by p + µ is
the condition q, where

(1) supp(q) = supp(p) ∪ {α}.
(2) q � [0,max(supp(p) ∩ α)) = p � [0,max(supp(p) ∩ α)), and q \ α = p \ α.
(3) At the α-th coordinate, we have

(a) fqα = fpα ⊕ µ.
(b) λqα = λα(µ).
(c) for l < 2, (hlα)q = (H l

α)p(µ).
(d) (h2α)q = (H2

α)p(µ(κα)).
(4) fix β ∈ [max(supp(p) ∩ α), α). Then

(a) fqβ = (fpβ)µ.

(b) Aqβ = Apβ ◦ µ−1.

(c) For l < 2, (H l
β)q = (H l

β)pµ.

(d) (H2
β)q = (H2

β)p.

Let’s warm up and get familiar with our notations by showing that if p is pure
and µ ∈ Apα is addable, then q := p+ µ is indeed a condition, as in Definition 3

• (1) supp(q) = {α}. λqα = λα(µ) = sα(µ(κα))++ < κα. By our assumption
of sα, sα(µ(κα))++ > sα(µ(κα)) > κα.
• (2),(3) It is easy to see that for β ≥ α, λβ∗ = λ. The part above α is not

affected, and dom(fpα ⊕ µ) = dom(fpα). Hence dom(fqβ) = dom(fpβ). For

β < α, β∗ = α, and dom(fqβ) = dom(fpβ ◦µ−1) = µ[dpβ ] ⊆ λα(µ) = λqα. Since

µ fixes ordinals below κβ + 1, dqβ is a β-domain. Also λα(µ) < κα + 1 ⊆
dom(fqα). Hence the domains in q are ⊆-increasing.
• (4) fqα(κα) = µ(κα) > κα, and µ(κα) is inaccessible. The rest follows by

our definitions.

The rest of the proof is trivial for β > α, and we assume β < α.

• (5) Follows from addability of µ.
• (6) Follows from (7) in Definition 3.
• (7) For l = 0, 1, dom(H l

β)q = dom(H l
β)pµ = Apβ ◦ µ−1 = Aqβ . Since dpβ ⊆

dom(µ), for ψ ∈ Apβ , and l = 0, 1, dom(ψ) ⊆ dpβ ⊆ dom(µ), so (H l
β)q(ψ ◦

µ−1) = (H l
β)p(ψ ◦ µ−1 ◦ µ) = (H l

β)p(ψ). dom(H2
β)p = Apβ(κβ) = Apβ ◦

µ−1(κβ) since µ fixes κβ . Also all the collapses fall into the right types,
since µ fixes κβ as well.

For each β < α, we sometimes write qβ as (pβ)µ. When we perform a one-step
extension of p by µ from the α-th coordinate, we call the part of the resulting
condition before α “p � α squished by µ”. Occasionally, it is possible that we squish
p � α by some τ ∈ Eα(d′) for some d′ ⊇ d, where d = dom(fpα). In this case
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(pβ)τ is just (pβ)τ�d. For each sequence of objects ~µ = 〈µ0, µ1, . . . , µk−1〉, we define
p+ ~µ recursively as (p+µ0) + 〈µ1, . . . , µk−1〉 when µ0 is addable to p and for every
0 < i < k, µi is addable to p+ 〈µ0, . . . , µi−1〉.

We define p ≤ q if p ≤∗ q+~µ for some sequence of objects ~µ. We refer the readers
to Lemma 2.4 in [6] for some straightforward technical lemmas on transitivity and
commutativity of the choices of the orders of the objects we add to a condition.
Briefly, we can commute the order of the extensions.

For each condition p ∈ P〈Eα:α<η〉 with α ∈ supp(p), we can see P/p ∼= (P/p) �
α×(P/p)\α, where the first factor can be regarded as (P/p)〈Eβ�λα:β<α〉. The second
factor can be regarded as (P/p \ α)〈Eβ :α≤β<η〉. These two factors are independent
of each other, despite the connection between dα’s on different levels in clause 3
of Definition 3. The point is that dpα ⊇ κα + 1 and λα < κα. Hence any kinds of
extensions in the first factor do not harm property 3 in Definition 3.

We begin our analysis of the poset by computing its chain condition.

Lemma 3. If η is a limit ordinal, then P〈Eα:α<η〉 has the λ-chain condition.

Proof. Suppose the conditions 〈pi : i < λ〉 are given. The first step is to show that
without loss of generality, we can assume pi is pure for all i. Since |[η]<ω| < λ, we
assume every condition has the same support s. Suppose s 6= ∅, and let α = max(s).

Each condition breaks into two pieces, with the first piece in P〈Eβ�λα:β<α〉 for
some λα < κα. Since the number of the conditions in the first factor is at most
λα < λ, we assume that every condition’s first factor is the same, and also every

condition has the same λα. Now for each i < λ, dom(fp
i

α ) ∈ [λ]κα . We thin out the

collection {pi : i < λ} so that {dom(fp
i

α ) : i < λ} form a ∆-system. Then thin out
the collection again so that the α-th Cohen parts are all compatible. Since all the
α-th collapse parts are small, by the Pigeonhole Principle we can also thin out the
collection so that every condition has the same collapses at the α-th coordinate.
Hence the initial segments up to and including α are compatible.

Since we can shrink the collection {pi : i < λ} so that the impure parts are com-

patible, we now may assume all the conditions pi are pure. Since |
⋃
i<η dom(fp

i

α )| ≤
κη ≤ ρ, by a similar ∆-system argument, we can thin out so that the Cohen condi-

tions fp
i

α are pairwise compatible in A(κα, λ) for each α < η. Measure one sets are
always compatible. It remains to find a sub-collection of {pi : i < λ} so that all the

collapse parts (H l
α)p

i

are compatible. Note that the collapses are no longer small.

For l = 0 and l = 1, (H l
α)p

i

represents jEα((H l
α)p

i

)(mcα(dα)), which is a condi-
tion in Col(κ+α , < κα) when l = 0, and a condition in Col(κα, ρ

+) for l = 1. Recall
that λ = ρ++. These two collapse forcings both have size ρ+ in V . The situation

is slightly different for (H2
α)p

i

, a function whose domain is in Eα(κα): if we let
iα : V → Nα = Ult(V,Eα(κα)), then we can view this function as representing

iα((H2
α)p

i

)(κα), a condition in Col(iα(sα)(κα)+++, < iα(κα))Nα . This poset has
size 2κα in V .

Recalling that η < κ0, it follows that there are at most ρ+ possibilities for the se-

quence of conditions 〈jEα((H0
α)p

i

)(mcα(dα)), jEα((H1
α)p

i

)(mcα(dα)), iα((H2
α)p

i

)(κα) :
α < η〉. Hence we can thin out the collection of the conditions so that for all α < η,

i < λ, and l < 3, the functions (H l
α)p

i

represent the same function in Mα or
Nα. It is now easy to show that the resulting collection of conditions is pairwise
compatible. �
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The following lemma is straightforward:

Lemma 4. ((P/p) \ α,≤∗) is κ+α -closed.

The proof of the Prikry property here requires some “integration” of the condi-
tions. The following lemmas (Lemma 5 and Lemma 6) shows that we can assemble
the conditions properly. We state the lemmas for a pure condition. In general, a
condition may not be pure, and each impure coordinate divides the condition into
blocks. The lemmas can be stated in each separate block individually.

Lemma 5. Let p = 〈pα : α < η〉 be a pure condition and α 6∈ supp(p). Let
d = dom(fpα). Set q = jEα(p) + mcα(d). Then q � α = p � α.

Proof. Without loss of generality, we may assume p is pure, otherwise the part
p � max(supp(p) ∩ α) is not affected by α-objects.

Fix β < α. Since |dpβ | < κα, jEα(dpβ) = jEα [dpβ ]. Hence dqβ = mcβ(d)[jEα(dpβ)] =

dpβ . Furthermore, for γ ∈ dqβ , f
q
β(γ) = jEα(fpβ)◦(mcβ(d))−1(γ) = jEα(fpβ)(jEα(γ)) =

jEα(fpβ(γ)) = fpβ(γ). This shows that fqβ = fpβ . Similar calculation shows that other
components in qβ are the same as the corresponding components in pβ . �

Further calculations show

Lemma 6. Assume 〈pα : α < η〉 is pure. Fix α < η. d = dom(fpα). Let f ≤ fpα
with dom(f) = d′. Let A ∈ Eα(d′), and A projects down to Apα. For τ ∈ A, denote
(p � α)τ = (p � α)τ�d = (p + (τ � d)) � α. Suppose for each τ ∈ A, there is a
condition t(τ) ≤∗ (p � α)τ , h0(τ) ≤ (H0

α)p(τ � d), and h1(τ) ≤ (H1
α)p(τ � d). Then

there is a condition q ≤∗ p such that if ψ ∈ Aqα, τ = ψ � d′, and ν = τ(κα) = ψ(κα),
we have:

(1) If β < α and g is the Cohen part of (q + ψ)β, then g = f
t(τ)
β .

(2) (q + ψ) � α ≤∗ t(τ).
(3) For l = 0, 1, (H l

α)q(ψ) = hl(τ).
(4) (H2

α)q(ν) = (H2
α)p(ν) .

(5) fqα ≤ f .

Proof. Set r = jEα(t)(mcα(d′)), where t is considered as a function τ 7→ t(τ). Note
that r is a condition in the forcing up to α by a routine calculation and coherence
of the extenders. We recall that r = 〈rβ : β < α〉, where for each β < α,

rβ = 〈frβ , Arβ , (H0
β)r, (H1

β)r, (H2
β)r〉.

Fix β < α. Here are some properties of rβ :

(A1) (a) Let xβ = drβ ∩ κα. Then xβ is a bounded subset of κα.

(b) Let γβ = ot(drβ \ κα). Then γβ < κ+β < κα.

(c) Arβ ∈ Eβ(drβ).

(A1)a and (A1)b follow from the fact that dom(f
t(τ)
β ) has size κβ for all

τ . Fix an increasing enumeration of drβ \ κα as {ξrβ,i : i < γβ}. For each
τ ∈ Apα, let

t(τ) = 〈〈fτβ , Aτβ , (H0
β)τ , (H1

β)τ , (H2
β)τ 〉 : β < α〉

and let dτβ = dom(fτβ ).
We record a few equations for each β < α:
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(i) If l = 0, 1, then by coherence (see Lemma 2.4 in [6]), we have

jEβ ((H l
β)r)(mcβ(drβ)) = jEβ (jEα(τ 7→ (H l

β)τ ))(jEα(τ 7→ mcβ(dτβ)))

= jEα(τ 7→ jEβ (H l
β)τ (mcβ(dτβ))).

(ii)

jEβ ((H2
β)r)(κβ) = jEβ (jEα(τ 7→ (H2

β)τ ))(jEα(τ 7→ κβ))

= jEα(τ 7→ jEβ (H2
β)τ (κβ)).

Note that by Lemma 5, Arβ = jEα(Aβrmcα(drβ)
. We shrink A to A∗ so

that for every τ ∈ A∗, and every β < α, the following statements hold:
(A2) (a) dτβ ∩ κα = xβ .

(b) ot(dτβ \ κα) = γβ .

(c) For ξ ∈ dτβ ∩ κα, fτβ (ξ) = frβ(ξ).

(d) Let {ξτβ,i : i < γβ} be the increasing enumeration of dτβ \ κα, then for

all i < γβ , fτβ (ξτβ,i) = frβ(ξrβ,i).

(e) Aτβ = Arβ ◦ τ−1.

(f) For l = 0, 1, jEβ ((H l
β)τ )(mcβ(dτβ)) = jEβ ((H l

β)r)(mcβ(drβ)).

(g) jEβ ((H2
β)τ )(κβ) = jEβ ((H2

β)r)(κβ).
It is tempting to think we will set qβ to be rβ for all β < α, but we

need to make a tiny cosmetic modification. The property of τ in (A2)f and
(A2)g makes sure that for each τ ∈ A∗, β < α, and l = 0, 1,

Cβ,l := {ψ ∈ Eβ(dτβ) : (H l
β)τ (ψ) = (H l

β)r(ψ ◦ τ)} ∈ Eβ(dτβ),

and

Cβ,2 := {ψ ∈ Eβ(dτβ) : (H2
β)τ (ψ(κβ)) = (H2

β)r(ψ(κβ))} ∈ Eβ(dτβ).

Shrink all measure one sets appearing in t(τ) so that every β-object
belongs to Cβ,0 ∩ Cβ,1 ∩ Cβ,2. Restrict the collapsing functions in the
natural way, and call the result t∗(τ). Instead of integrating the function t
to obtain r, we will integrate the function t∗ in the same manner to obtain
〈qβ : β < α〉.

Since we just shrank the measure one sets and restricted the collapses,
all the properties in the (A2)-list hold, except that the property (A2)e is
weakened to: (Aτβ)∗ ⊆ Arβ ◦ τ−1, where (Aτβ)∗ is the measure one set of the

βth-coordinate of t∗(µ)
Now for β < α, let qβ = jEα(t∗)(mcα(d′)). Note that qβ is almost

identical to rβ , except the measure one sets: Aqβ ⊆ Arβ . We now define qα.

Set qα = 〈fqα, Aqα, (H0
α)q, (H1

α)q, (H2
α)q〉 as follows:

(A3) (a) fqα has domain d′∪
⋃
β<α

(xβ ∪{ξrβ,i : i < γβ}). This is just d′∪
⋃
β<α d

r
β .

(b) For each ξ ∈ dom(fqα), if ξ ∈ d′, fqα(ξ) = f(ξ), otherwise fqα(ξ) = 0.
(c) Aqα ∈ Eα(dom(fqα)), where ψ ∈ Aqα iff

(i) τ = ψ � d′ ∈ A∗,
(ii)

⋃
β<α

(xβ ∪ {ξrβ,i : i < γβ}) ⊆ dom(ψ),

(iii) for each β < α and each ξ ∈ xβ , ψ(ξ) = ξ,
(iv) for each β and i, ψ(ξrβ,i) = ξτβ,i, where τ is defined as in (A3)(c)i.
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(d) For l = 0, 1, set (H l
α)q(ψ) = hl(τ).

(e) (H2
α)q = (H2

α)p � Aqα(κα).
For β > α, extend pβ to qβ = 〈fqβ , A

q
β , (H

0)qβ , (H
1)qβ , (H

2)qβ〉 in the obvi-
ous way, meaning:

(A4) (a) Extend the fpβ to fqβ with domain dqβ := dom(fqα) ∪ d′, fqβ(γ) = fpβ(γ)

if γ ∈ dpβ , otherwise fqβ(γ) = 0.

(b) The measure one set in qβ projects down the measure one set in pβ ,
i.e. Aqβ � dpβ ⊆ A

p
β . Also Aqβ ⊆ Aβ(dqβ).

(c) Restrict the collapses based on the measure one set we just defined, i.e.
for l = 0, 1, (H l)qβ(τ) = (H0)pβ(τ � dpβ), and (H2)qβ = (H2)pβ � Aqβ(κβ).

Let q = 〈qβ : β < η〉. We claim q satisfies the conclusion of Lemma 6.
It is easy to see that q \ α is ≤∗-below p \ α. For τ ∈ A∗, t∗(τ) ≤∗ t(τ) ≤∗
(p + τ � d) � α, and so q � α ≤∗ (jEα(p) + mcα(d)) � α. By Lemma 5, the
last term belongs to jEα(P〈Eβ :β<α〉) � λ = P〈Eα:β<α〉, and is equal to p � α.
Hence q ≤∗ p.

Now we check that q satisfies all the properties listed in Lemma 6. Fix
ψ ∈ Aqα, τ = ψ � d′, µ = ψ � d, and ν = µ(κα) = τ(κα) = ψ(κα).

Requirement 1: Fix β < α. The Cohen part of (q + τ)β is fqβ ◦ ψ−1 =

frβ ◦ ψ−1. By (A3)(c)ii and (A3)(c)iii, and (A3)(c)iv, dom(frβ ◦ ψ−1) =

ψ[drβ ] = ψ[xβ ∪{ξrβ,i : i < γβ}] = xβ ∪{ξτβ,i : i < γβ}. The last term is equal

to dom(fτβ ) by (A2)a and (A2)b. From (A3)(c)iv and (A2)c, if ξ ∈ xβ ,

frβ ◦ ψ−1(ξ) = frβ(ξ) = fτβ (ξ). From (A2)d, for i < γβ , frβ ◦ ψ−1(ξτβ,i) =

frβ(ξrβ,i) = fτβ (ξµβ,i). The proof for requirement 1 is done.

Requirement 2: Fix β < α. From (A2)e, we have Aqβ ◦ψ−1 ⊆ Arβ ◦ψ−1 =

Arβ ◦ τ−1 = Aτβ . By (A3)(c)i, τ ∈ A∗. For σ ∈ Aqβ ◦ ψ−1, σ ∈ (Aτβ)∗, so

l = 0, 1, (H l
β)q+ψ(σ) = (H l

β)q(σ ◦ ψ) = (H l
β)r(σ ◦ τ) = (H l

β)τ (σ). Similarly

(H l
β)q+ψ(σ(κβ)) = (H2

β)τ (σ(κβ)).

Requirement 3: From (A3)d, for l = 0, 1, (H l
α)q(ψ) = hl(τ).

Requirement 4: Straightforward from (A3)e.
Requirement 5: Follows from (A3)b.
This completes the proof.

�

4. prikry property

Theorem 7. (P,≤,≤∗) has the Prikry property, that is to say for any boolean value
b and any condition p ∈ P, there is a condition p′ ≤∗ p such that p′ decides b.

Our proof of the Prikry property follows the same lines as the proof in [3], but
the collapse parts introduce additional challenges which we briefly explain. For each
component pα, the collapse parts involve three collapsing forcings, where the chain
condition of the first two collapse forcings is very close to the closure of the last
collapse forcing. For α > 0, the collapse parts at α are only κ+α -closed, while the
Cohen part is κ+α -closed. This all makes it natural to group together components of
a forcing condition which live on different levels, which explains why our inductive
hypothesis concerns a product P×A: the intuition is that the factor A anticipates
some collapsing at the top level when we add another level to P.

Proof. We consider 3 cases:
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(1) η = 1.
(2) η > 1 is a successor ordinal.
(3) η is limit.

Throughout these 3 cases, we assume for simplicity that the condition p is pure.
We prove a stronger statement by induction on η: Suppose P has length η, and
(A,≤) is a κ+η -closed forcing poset. Define (p, a) ≤∗ (p′, a′) in P×A iff p ≤∗ p′ and
a ≤ a′. Then (P× A,≤,≤∗) also has the Prikry property.

CASE 1: η = 1

We drop the subscript 0 for simplicity, that is κ = κ0, E = E0, mc = mc0,
s = s0 and so on. Note here that A is κ+-closed. Let b be a boolean value. Let
p = 〈f,A,H0, H1, H2〉 ∈ P, and a ∈ A. Let θ be a sufficiently large regular cardinal,
N ≺ Hθ such that <κN ⊆ N , |N | = κ and p, a,P,A, b ∈ N . Enumerate the dense
open subsets of (A(κ, λ) × A) ∩ N as {Di : i < κ}. Build a decreasing sequence
{(f ′i , ai) : i < κ} in (A(κ, λ)× A) ∩N , where f ′0 = f , a0 = a and (f ′i+1, ai+1) ∈ Di

for all i. Let f ′ =
⋃
i<κ

f ′i , and a′ be a lower bound of {ai : i < κ}. Set d′ = dom(f ′).

By a simple density argument, we have d′ = N ∩ λ. We see that [d′]<κ ⊆ N . Let
A′ ∈ E(d′) be such that A′ ⊆ A(d′) and A′ projects down to a subset of A. Recall
the property of A(d′) : {µ ∈ A(d′) : µ(κ) = ν} has size at most s(ν)++. For each
µ ∈ A′, dom(µ) ⊆ d′ ⊆ N and |dom(µ)| ≤ µ(κ) < κ, hence µ ∈ N .

Let ν ∈ A′(κ). By Lemma 2, let {µj , h0j , h1j}j<λ(ν) be an enumeration in N of the

triples µ, h0, h1 where µ ∈ A′, µ(κ) = ν, h0 ∈ Col(ω1, < ν), and h1 ∈ Col(ν, ρ(ν)+),
respectively.

Define Dν as the collection of (g, x) ∈ A(κ, λ) × A such that there is an h ∈
Col(λ(ν)+, < κ) with h ≤ H2(ν) meeting the following requirements:

(1) For all j < λ(ν), dom(µj) ⊂ dom(g).
(2) For all j < λ(ν),

• EITHER (〈g ⊕ µj , λ(ν), h0j , h
1
j , h〉, x) decides b,

• OR there are no g′ ≤ g, h′ ≤ h, and x′ ≤ x such that
(〈g′ ⊕ µj , λ(ν), h0j , h

1
j , h
′〉, x′) decides b.

Claim 7.1. Dν is a dense open subset of A(κ, λ)× A and Dν ∈ N .

Proof: Since Dν is defined using parameters in N , Dν ∈ N . It is easy to check
that Dν is open. Now we check the density for Dν . Let g ∈ A(κ, λ) and x ∈ A.
Because A(κ, λ) is κ+-closed, we may assume g meets the first requirement. Build

sequences ~g = {gj}j≤λ(ν), ~h = {hj}j≤λ(ν), and ~x = {xj}j≤λ(ν) such that

• ~g is a decreasing sequence in A(κ, λ).

• ~h is a decreasing sequence in Col(λ(ν)+, < κ).
• ~x is a decreasing sequence in A.
• g0 = g, h0 = H2(ν) and x0 = x.
• At each limit j ≤ λ(ν), we take gj =

⋃
j′<j

gj′ , and hj =
⋃
j′<j

hj′ .

• At each limit j ≤ λ(ν), take xj as a lower bound of {xj′ : j′ < j}.
Note that the construction proceeds to the end since A(κ, λ) and A are κ+-

closed, Col(λ(ν)+, < κ) is λ(ν)+-closed, and λ(ν) < κ. Now suppose fj , hj , and
xj are constructed and j < λ(ν). Ask if there is a triple g′,h′,x′ below gj ,hj , and
xj , respectively, such that (〈g′ ⊕ µj , λ(ν), h0j , h

1
j , h
′〉, x′) decides b. If the answer

is no, take gj+1 = gj ,hj+1 = hj , and xj+1 = xj . Otherwise, there are such g′,h′,



BLOWING UP THE POWER OF A SINGULAR CARDINAL WITH COLLAPSES 13

and x′. Take gj+1 = g′, hj+1 = h′, and xj+1 = x′. From the construction, we see
(gλ(ν), xλ(ν)) ≤ (g, x) is in Dν , as witnessed by hλ(ν). �

By the construction of f ′ and a′ we have (f ′, a′) ∈ Dν with a witness h ∈
Col(ρ(ν)+3, < κ). Define (H2)′(ν) = h.

We record the properties of f ′, a′, and (H2)′ here:
(?) For each µ ∈ A′ with ν = µ(κ), we have that for all h0 ∈ Col(ω1, < ν) and
h1 ∈ Col(ν, ρ(ν)+),

• EITHER (〈f ′ ⊕ µ, λ(ν), h0, h1, (H2)′(ν)〉, a′) decides b,
• OR there are no g ≤ f ′, h ≤ (H2)′(ν), and x ≤ a′ such that (〈g ⊕
µ, λ(ν), h0, h1, h〉, x) decides b.

Now for each µ ∈ A′, find g(µ) ≤ f ′, h0(µ) ≤ H0(µ � dom(f)), h1(µ) ≤ H1(µ �
dom(f)), h2(µ) ≤ (H2)′(µ(κ)), and x(µ) ≤ a′ such that

(〈g(µ)⊕ µ, λ(µ), h0(µ), h1(µ), h2(µ)〉, x(µ)) decides b.

By property (?), we have

(〈f ′ ⊕ µ, λ(ν), h0(µ), h1(µ), (H2)′(µ(κ))〉, a′) decides b.

Set

B0 = {µ ∈ A′ : (〈f ′ ⊕ µ, λ(µ), h0(µ), h1(µ), (H2)′(µ(κ))〉, a′) 
 b}.
B1 = {µ ∈ A′ : (〈f ′ ⊕ µ, λ(µ), h0(µ), h1(µ), (H2)′(µ(κ))〉, a′) 
 ¬b}.

We see that A′ = B0 t B1. Choose i0 ∈ {0, 1} such that Bi0 ∈ E(d′). Define
p′′ = 〈f ′′, A′′, (H0)′′, (H1)′′, (H2)′′〉 (note that f ′, A′, and (H2)′ are already defined)
as follows:

• f ′′ = f ′.
• A′′ = Bi0 .
• For l = 0, 1, dom((H l)′′) = A′′ and H l(µ) = hl(µ).
• (H2)′′ = (H2)′ � A′′(κ).

Claim 7.2. (p′′, a′) ≤∗ (p, a) and (p′′, a′) decides b.

Proof: It is easy to see that (p′′, a′) ≤∗ (p, a). Let q ≤ p′′, x ≤ a′ such that
(q, x) decides b. Without loss of generality, (q, x) 
 b, and q is not pure. Hence
q ≤∗ p′′ + µ for some µ ∈ A′′. Observe that fq ≤ g ⊕ µ for some g ≤ f ′, and
(h2)q ≤ (H2)′′(µ(κ)) = (H2)′(µ(κ)). From the properties (?), we have

(〈f ′ ⊕ µ, λ(µ), (h0)q, (h1)q, (H2)′(µ(κ))〉, a′) 
 b.

Since for l = 0, 1, (hl)q ≤ (H l)′′(µ) = hl(µ), µ can’t be in B1. Hence i0 = 0, and
A′′ = B0.

By a similar argument, every extension of (p′′, a′) by µ′ ∈ A′′ forces b. Since
every extension of p′′ has a further extension which is not pure, and that forces b,
by a density argument, (p′′, a′) 
 b. �

CASE 2: η > 1 is a successor ordinal

The proofs for all successor ordinals η > 1 are essentially the same. For simplicity,
assume η = 2. Hence A is κ+1 -closed. Suppose for simplicity that p = 〈p0, p1〉 is
pure. Write p0 = 〈f0, A0, H

0
0 , H

1
0 , H

2
0 〉, and p1 = 〈f1, A1, H

0
1 , H

1
1 , H

1
2 〉. Also let

a ∈ A.
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Let θ be a sufficiently large regular cardinal. Let N1 ≺ Hθ, |N1| = κ1,
<κ1N1 ⊆

N1, and p, a,P, b ∈ N1. Enumerate the dense open subsets of A(κ1, λ)×A ∩N1 as
{Di : i < κ}. Build a decreasing sequence {(f ′1,i, ai) : i < κ1} in (A(κ1, λ)×A)∩N1

such that f ′1,0 = f1, a0 = a, and (f ′1,i+1, ai+1) ∈ Di for all i. Let f ′1 =
⋃
i<κ1

f ′1,i

and a′ = a lower bound of {ai : i < κ1}. Set d′1 = dom(f ′1), which is N1 ∩ λ. Let
A′1 ∈ E1(d′1) be such that A′1 ⊆ A1(d′1) and A′1 projects down to a subset of A1.
Similar to the one extender case, A′1 ⊆ N1.

Let ν ∈ A′1(κ1). By Lemma 2, let {tj , h0j , h1j , µj}j<λ1(ν) be an enumeration in

N1 of the quadruples t, µ, h0, h1 where t ∈ PE0�λ1(ν), µ ∈ A′ with µ(κ1) = ν,

h0 ∈ Col(κ+0 , < ν), and h1 ∈ Col(ν, ρ1(ν)+), respectively.
Define Dν as the collection of (g, x) ∈ A(κ1, λ) × A such that there is an h ∈

Col(λ1(ν)+, < κ1) with h ≤ H2
1 (ν) meeting the following requirements:

(1) For all j < λ1(ν), dom(µj) ⊂ dom(g).
(2) For all j < λ1(ν),

• EITHER (t_j 〈g ⊕ µj , λ1(ν), h0j , h
1
j , h〉, x) decides b,

• OR there is no g′ ≤ g, h′ ≤ h and x′ ≤ x such that (t_j 〈g′ ⊕
µj , λ1(ν), h0j , h

1
j , h〉, x′) decides b.

Similar to the one extender case, Dν is a dense open subset of A(κ1, λ)×A and
Dν ∈ N1. We have (f ′1, a

′) ∈ Dν with a witness h ∈ Col(ρ1(ν)+3, < κ1). Define
(H2

1 )′(ν) = h.

We record some properties of (H2
1 )′:

(?) For each µ ∈ A′1 with ν = µ(κ1), we have that for all h0 ∈ Col(κ+0 , < ν),
h1 ∈ Col(ν, ρ1(ν)+), and t ∈ PE0�λ1(ν):

• EITHER (t_〈f ′1 ⊕ µ, λ1(ν), h0, h1, (H2
1 )′(ν)〉, a′) decides b,

• OR there is no g ≤ f ′1, h ≤ (H2
1 )′(ν), and x ≤ a′ such that (t_〈g ⊕

µ, λ1(ν), h0, h1, h〉, x) decides b.

Fix µ ∈ A′1. Let Ġ be a canonical name for a generic object for PE0�λ1(µ) ×
Col(κ+0 , < µ(κ1))×Col(µ(κ1), ρ1(µ)+). Since the product of the collapses Col(κ+0 , <
µ(κ1))×Col(µ(κ1), ρ(µ)+) is κ+0 -closed, we apply the induction hypothesis for the
one extender case to the condition

((p0)µ, (H
0
1 )(µ � dom(f1)), (H1

1 )(µ � dom(f1)).

Let t(µ) ≤∗ (p0)µ, h0(µ) ≤ (H0
1 )(µ � dom(f1)), and h1(µ) ≤ (H1

1 )(µ � dom(f1))
such that

(t(µ), h0(µ), h1(µ)) decides if ∃(t, (h∗)0, (h∗)1) ∈ Ġ,
(t_〈f ′1, λ1(µ), (h∗)0, (h∗)1, (H2

1 )′(µ(κ1))〉, a′) ‖ b.

By strengthening t(µ) (under ≤∗), h0(µ) and h1(µ) further, we can assume that
for each µ ∈ A′1, (t(µ), h0(µ), h1(µ)) satisfies exactly one out of the following three
mutually exclusive properties:

(P1) (t(µ), h0(µ), h1(µ)) 
 ∃(t, (h0)∗), (h1)∗) ∈ Ġ,
(t_〈f ′1 ⊕ µ, λ1(µ), (h0)∗, (h1)∗, (H2

1 )′(µ(κ1))〉, a′) 
 b.

(P2) (t(µ), h0(µ), h1(µ)) 
 ∃(t, (h0)∗), (h1)∗) ∈ Ġ,
(t_〈f ′1 ⊕ µ, λ1(µ), (h0)∗, (h1)∗, (H2

1 )′(µ(κ1))〉, a′) 
 ¬b.
(P3) (t(µ), h0(µ), h1(µ)) 
 @(t, (h0)∗), (h1)∗) ∈ Ġ,

(t_〈f ′1 ⊕ µ, λ1(µ), (h0)∗, (h1)∗, (H2
1 )′(µ(κ1))〉, a′) ‖ b.
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Shrink A′1 so that every µ ∈ A′1 falls into the same case above. Use Lemma 6
to find q ≤∗ p_0 〈f ′1, A′1, H0

1 , H
1
1 , (H

2
1 )′〉 such that for each τ ∈ Aq1 with µ = τ � d′1,

we have fq+τ0 = f
t(µ)
0 , (q + τ) � 1 ≤∗ t(µ), (H0

1 )q(τ) = h0(µ), (H1
1 )q(τ) = h1(µ),

(H2
1 )q(µ(κ1)) = (H2

1 )′(µ(κ1)), and fq1 ≤ f ′1.

Claim 7.3. (q, a′) decides b

Proof: Let (r, x) ≤ (q, a′) be such that (r, x) ‖ b. Without loss of generality (r, x) 

b. Assume also 1 ∈ supp(r). Then r is an extension of a 1-step extension of q by
µ′ ∈ Aq1 for some µ′.

Recall d′1 = dom(f ′1). Set µ = µ′ � d′1. We see that fr1 � d′1 ≤ f ′1 ⊕ µ, (h21)r ≤
(H2

1 )′(µ(κ1)), and x ≤ a′. By (?), we have (r_0 〈f ′1⊕µ, λ1(µ), (h01)r, (h11)r, (H2
1 )′(µ(κ1))〉, a′) 


b.
Since r is an extension of a one-step extension of q by µ′, r0 ≤ t(µ), (h01)r ≤

h0(µ), and (h11)r ≤ h1(µ). By construction µ must fall into exactly one of the
cases (P1), (P2), (P3) listed above: we claim that cases (P2) and (P3) are im-
possible. Suppose for contradiction that we are in case (P2), and force below
(r0, (h

0
1)r, (h11)r) to obtain a generic object G. Then (r0, (h

0
1)r, (h11)r) ∈ G and

r_0 〈f ′1⊕µ, λ1(µ), (h01)r, (h11)r, (H2
1 )′(µ(κ1))〉, a′) 
 b, but (r0, (h

0
1)r, (h11)r) ≤ (t(µ), h0(µ), h1(µ))

and we are in case (P2) so that also G contains a triple (t, (h0)∗, (h1)∗) with
(t_〈f ′1 ⊕ µ, λ1(µ), (h0)∗, (h1)∗, (H2

1 )′(µ(κ1))〉, a′) 
 ¬b: this gives comparable con-
ditions forcing b and ¬b, an immediate contradiction. Similarly we are not in case
(P3), so (t(µ), h0(µ), h1(µ)) must have the property (P1).

We claim already rµ := (t(µ)_〈f ′1 ⊕ µ, λ1(µ), h0(µ), h1(µ), (H2
1 )′(µ(κ1))〉, a′)

forces b. Suppose not, find (r′, x′) ≤ rµ such that (r′, x′) 
 ¬b. Strengthen further,

we assume fr
′

1 � d′1 ≤ f ′1 ⊕ µ, (h21)r
′ ≤ (H2

1 )′(µ(κ1)), and x′ ≤ a′. By (?), we have

(†) (r′0
_〈f ′1⊕, µ, λ1(µ), (h01)r

′
, (h11)r

′
(H2

1 )′(µ(κ1))〉, a′) 
 ¬b.

Let G be a generic object for PE0�λ1(µ) ×Col(κ+0 , < µ(κ1))×Col(µ(κ1), ρ1(µ)+)

containing (r′0, (h
0
1)r
′
, (h11)r

′
). Since (r′0, (h

0
1)r
′
, (h11)r

′
) ≤ (t(µ), h0(µ), h1(µ)), we

have (t(µ), h0(µ), h1(µ)) ∈ G. Then find (t, (h0)∗, (h1)∗) ∈ G according to the
property (P1), i.e.

(††) (t_〈f ′1 ⊕ µ, λ1(µ), (h0)∗, (h1)∗, (H2)′(µ(κ1))〉, a′) 
 b.

By the directedness of G, we may assume t ≤ r′0, (h0)∗ ≤ (h01)r
′
, and (h1)∗ ≤ (h11)r

′
.

Thus, from (†), we have

(t_〈f ′1 ⊕ µ, λ1(µ), (h0)∗, (h1)∗, (H2
1 )′(µ(κ1))〉, a′) 
 ¬b,

which is a contradiction when comparing to (††).
With the way we shrank the measure one set A′1, we have that for every µ̃ ∈

Aq1,(t(µ̃ � d′1), h0(µ̃ � d′1), h1(µ̃ � d′1)) has the property (P1). By the same proof,
(q + µ̃, a′) 
 b. Finally, we are going to show that (q, a′) 
 b. If not, let (q′, x′) ≤
(q, a′) such that (q′, x′) 
 ¬b, but we can extend further so that 1 ∈ supp(q′).
Hence (q′, x′) ≤ (q + µ̃, a′) for some µ̃ ∈ Aq1, but (q + µ̃, a′) 
 b, a contradiction.

Hence, we have finished the proof for η a successor ordinal.
�

CASE 3: η is limit
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The proofs for the limit cases are essentially the same, we may assume η = ω.
Suppose for simplicity that p = 〈pn : n < ω〉 is pure. Write

pn = 〈fpn, Apn, (H0
n)p, (H1

n)p, (H2
n)p〉 for each n.

Recall A is κ+ω -closed. Let a ∈ A. We will build inductively a ≤∗-sequence
{(qm, am) : m < ω} where q0 ≤∗ p, a0 ≤ a. We will show that (q, a′), the ≤∗-
lower bound of the sequence {(qm, am) : m < ω}, will decide b. We divide our
constructions into two parts: q0, a0, and qm, am for positive m.

Construction of q0: Define

Q0 = {(f, ~r) ∈ (A(κ0, λ)/fp0 ,≤)×((P/p)\1,≤∗) : dom(f) is a subset of dom(fr1 ) }.

Here note that fr1 is the first Cohen part of ~r. Observe that Q0 is κ+0 -closed.
Let θ be a sufficiently large regular cardinal. Let N0 ≺ Hθ be such that |N0| = κ0,
<κ0N0 ⊆ N0, p, a,Q0,P,A ∈ N0. Enumerate dense open sets in (Q0 × A) ∩N0 as
{Di : i < κ0}. Build a Q0 ×A-decreasing sequence {(f ′0,i, ~r0,i, ai) : i < κ0}, each in

N0, where f ′0,0 = fp0 , ~r0,0 = p \ 1, a0 = a, and for all i, (f ′0,i+1, ~r0,i+1, ai+1) ∈ Di.

Let (f ′0, ~r0, a
0) be a lower bound of the sequence {(f ′0,i, ~ri, ai) : i < κ0}. Set

d′0 = dom(f ′0), which is just N0 ∩ λ. Let A′0 ∈ E0(d′0) be such that A′0 ⊆ A0(d′0)
and A′0 projects down to a subset of Ap0. As usual, A′0 ⊆ N0.

Let ν ∈ A′0(κ0). By Lemma 2, let {µj , h0j , h1j}j<λ0(ν) be an enumeration in

N0 of the triples µ, h0, h1 where µ ∈ A′0, µ(κ0) = ν, h0 ∈ Col(ω1, < ν), and
h1 ∈ Col(ν, ρ0(ν)+), respectively.

Define Dν as the collection of (g, ~r, x) ∈ Q0 × A such that there is an h ∈
Col(λ0(ν)+, < κ0) with h ≤ (H2

0 )p(ν) meeting the following requirements:

(1) For all j < λ0(ν), dom(µj) ⊂ dom(g).
(2) For all j < λ0(ν),

• EITHER (〈g ⊕ µj , λ0(ν), h0j , h
1
j , h〉_~r, x) decides b,

• OR there is no g′ ≤ g, h′ ≤ h, ~r′ ≤∗ ~r, and x′ ≤ x such that
dom(g′) is a subset of the Cohen part of ~r′, and the condition (〈g′ ⊕
µj , λ0(ν), h0j , h

1
j , h
′〉_~r′, x′) decides b.

Similar to the one-extender case, the set Dν is a dense, open subset of Q0×A, and
Dν ∈ N0. Hence we have (f ′0, ~r0, a

0) ∈ Dν with a witness h ∈ Col(λ0(ν)+, < κ0).
Define (H2

0 )′(ν) = h.
We record some properties of (H2

0 )′:

(?0): For each µ ∈ A′0 with ν = µ(κ0), we have that for all h0 ∈ Col(ω1, < ν) and
h1 ∈ Col(ν, ρ0(ν)+),

• EITHER (〈f ′0 ⊕ µ, λ0(ν), h0, h1, (H2
0 )′(ν)〉_~r0, a0〉 decides b,

• OR there is no g ≤ f ′0, h ≤ (H2
0 )′(ν), ~r ≤∗ ~r0 such that dom(g) is a subset

of the Cohen part of ~r, and x ≤ a0 such that (〈g⊕µ, λ0(ν), h0, h1, h〉_~r, x)
decides b.

Now for each µ ∈ A′0, find h0(µ) ≤ H0(µ � dp0), h1(µ) ≤ H1(µ � dp0), (if they
exist), such that

(〈f ′0 ⊕ µ, λ0(µ), h0(µ), h1(µ), (H2
0 )′(µ(κ0))〉_~r0, a0) decides b,

otherwise, h0(µ) = H0
0 (µ � dp0), h1(µ) = H1

0 (µ � dp0).
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Now set

B0 = {µ ∈ A′0 : (〈f ′0 ⊕ µ, λ0(µ), h0(µ), h1(µ), (H2
0 )′(µ(κ0))〉_~r0, a0) 
 b}

B1 = {µ ∈ A′0 : (〈f ′0 ⊕ µ, λ0(µ), h0(µ), h1(µ), (H2
0 )′(µ(κ0))〉_~r0, a0) 
 ¬b}

B2 = {µ ∈ A′0 : (〈f ′0 ⊕ µ, λ0(µ), h0(µ), h1(µ), (H2
0 )′(µ(κ0))〉_~r0, a0) ∦ b}

We see that A′0 = B0 t B1 t B2. As in the case of one extender, choose i0 ∈
{0, 1, 2} such that Bi0 ∈ E0(d′0). Define f ′′0 = f ′0. Let A′′0 = Bi0 . For l = 0, 1, set
dom(H l

0)′′ = A′′0 , and (H l
0)′′(µ) = hl(µ). Let (H2)′′ = (H2)′ � A′′0(κ0).

Finally, extend ~r0 to ~r0
′ in a natural way: make sure dom(f ′′) is a subset of the

Cohen part in ~r′0, f
~r′0
m (ξ) = f~r0m (ξ) if ξ is in dom(f~r0m ), otherwise f

~r′0
m (ξ) = 0. All

measure one sets project down to the corresponding measure one sets in ~r0, meaning

A
~r′0
m � dom(f~r0m ) ⊆ A~r0m . If µ belongs to A

~r′0
m , define (H0

m)~r
′
0(µ) = (H0

m)~r0(µ �
dom(f~r0m )) (H1

m)~r
′
0(µ) = (H1

m)~r0(µ � dom(f~r0m )), and H2
m(

nu) = (H2
m)~r

′
0(ν) = (H2

m)~r0(ν), see more details at (A4) of Lemma 6. Set q0 =
〈f ′′, A′′0 , (H0

0 )′′, (H1
0 )′′, (H2

0 )′′〉_~r′0. This finishes the construction of q0 and a0.
Construction of qm+1: Suppose qm and am are constructed. Define

Qm+1 = {(f, ~r) ∈ (A(κm+1, λ)/fq
m

m+1),≤)× (P/qm \ (m+ 2),≤∗) :
dom(f) is a subset of dom(frm+2)}.

Here note that frm+2 is the first Cohen part of ~r. Qm+1 is κ+m+1-closed. Let θ be
a sufficiently large regular cardinal. Let Nm+1 ≺ Hθ be such that |Nm+1| = κm+1,
<κm+1Nm+1 ⊆ Nm+1, qm, am,P,A ∈ Nm+1 (so Qm+1 ∈ Nm+1).

Enumerate the dense open sets in (Qm+1 × A) ∩ Nm+1 as {Di : i < κm+1}.
Build a Qm+1 × A-decreasing sequence {(f ′m+1,i, ~rm+1,i, a

m
i ) : i < κm+1}, each

in Nm+1, where f ′m+1,0 = fq
m

m+1, ~rm+1,0 = qm \ (m + 2), am0 = am, and for all

i, (f ′m+1,i+1, ~rm+1,i+1, a
m
i+1) ∈ Di. Let (f ′m+1, ~rm+1, a

m+1) be the greatest lower
bound of the sequence {(f ′m+1,i, ~rm+1,i, a

m
i ) : i < κm+1}. d′m+1 = dom(f ′m+1),

which is Nm+1 ∩ λ. Let A′m+1 ∈ Em+1(d′m+1) be such that A′m+1 ⊆ Am+1(d′m+1),

and A′m+1 projects down to a subset of Aq
m

m+1. As usual, A′m+1 ⊆ Nm+1.

Let ν ∈ A′m+1(κm+1). By Lemma 2, let {tj , µj , h0j , h1j}j<λm+1(ν) be an enumera-

tion in Nm+1 of the quadruples t, µ, h0, h1 where t ∈ P〈En�λm+1(ν):n≤m〉, µ ∈ A′m+1

with µ(κm+1) = ν, h0 ∈ Col(κ+m, < ν), and h1 ∈ Col(ν, ρm+1(ν)+), respectively.
Define Dν as the collection of (g, ~r, x) ∈ Qm+1 × A such that there is an

h ∈ Col(λm+1(ν)+, < κm+1) with h ≤ (H2
m+1)q

m

(ν) meeting the following re-
quirements:

(1) For all j < λm+1(ν), dom(µj) ⊂ dom(g).
(2) For all j < λm+1(ν),

• EITHER (t_〈g ⊕ µj , λm+1(ν), h0j , h
1
j , h〉_~r, x) decides b,

• OR there is no g′ ≤ g, h′ ≤ h, ~r′ ≤∗ ~r, and x′ ≤ x such that dom(g′)
is a subset of the Cohen part of ~r′, and the condition
(t_〈g′ ⊕ µj , λm+1(ν), h0j , h

1
j , h
′〉_~r′, x′) decides b.

Similar to the other cases, the set Dν is a dense, open subset of Qm+1 × A,
and Dν ∈ Nm+1. Hence we have (f ′m+1, ~rm+1, a

m+1) ∈ Dν with a witness h ∈
Col(λm+1(ν)+, < κm+1). Define (H2

m+1)′(ν) = h.
We record some properties of (H2

m+1)′:
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(?m+1) For each µ ∈ A′m+1 with ν = µ(κm+1), we have that for all t ∈
P〈En�λm+1(ν):n≤m〉, h

0 ∈ Col(κ+m, < ν), and h1 ∈ Col(ν, ρm+1(ν)+),

• EITHER (t_〈f ′m+1⊕µ, λm+1(ν), h0, h1, (H2
m+1)′(µ)〉_~rm+1, a

m+1) decides
b,
• OR there is no g ≤ f ′m+1, h ≤ (H2

m+1)′(ν), ~r ≤∗ ~rm+1, and x ≤ am+1 such
that (t_〈g ⊕ µ, λm+1(ν), h0, h1, h〉_~r, x) decides b.

Fix µ ∈ A′1. Let Ġ be a canonical name for a generic object for P〈En�λm+1(µ):n≤m〉×
Col(κ+m, < µ(κm+1))×Col(µ(κm+1), ρm+1(µ)+). Let (~qm≤m)µ = 〈((qm)n)µ : n ≤ m),
which is just the first m + 1 coordinates of qm squished by µ. Since the product
of collapses Col(κ+m, < µ(κm+1))×Col(µ(κm+1), ρm+1(µ)+) is κ+m-closed, we apply
the induction hypothesis for the Prikry property for the m-extender case to the
condition

((~qm≤m)µ, (H
0
m+1)q

m

(µ � dom(fq
m

m+1)), (H1
m+1)q

m

(µ � dom(fq
m

m+1))).

Let t(µ) ≤∗ (~qm≤m)µ, h0(µ) ≤ (H0
m+1)q

m

(µ � dom(fq
m

m+1)), and

h1(µ) ≤ (H1
m+1)q

m

(µ � dom(fq
m

m+1)) be such that

(t(µ), h0(µ), h1(µ)) decides if ∃(t, (h0)∗, (h1)∗) ∈ Ġ,
(t_〈f ′m+1, λm+1(µ), (h0)∗, (h1)∗, (H2

m+1)′(µ(κm+1))〉_~rm+1, a
m+1) ‖ b.

By strengthening t(µ) (under ≤∗), h0(µ), and h1(µ) further, we can assume that
for each µ ∈ A′m+1, (t(µ), h0(µ), h1(µ)) satisfies exactly one out of the following
three mutually exclusive properties:

(Q1) (t(µ), h0(µ), h1(µ)) 
 ∃(t, (h0)∗, (h1)∗) ∈ Ġ,
(t_〈f ′m+1⊕µ, λm+1(µ), (h0)∗, (h1)∗, (H2

m+1)′(µ(κm+1))〉_~rm+1, a
m+1) 
 b.

(Q2) (t(µ), h0(µ), h1(µ)) 
 ∃(t, (h0)∗, (h1)∗) ∈ Ġ,
(t_〈f ′m+1⊕µ, λm+1(µ), (h0)∗, (h1)∗, (H2

m+1)′(µ(κm+1))〉_~rm+1, a
m+1) 
 ¬b.

(Q3) (t(µ), h0(µ), h1(µ)) 
 @(t, (h0)∗, (h1)∗) ∈ Ġ,
(t_〈f ′m+1⊕µ, λm+1(µ), (h0)∗, (h1)∗, (H2

m+1)′(µ(κm+1))〉_~rm+1, a
m+1) ‖ b.

Shrink A′m+1 so that every µ ∈ A′m+1 falls into the same case above.
Use Lemma 6 to find a condition qm+1 such that

qm+1 ≤∗ 〈qmn : n ≤ m〉_〈f ′m+1, A
′
m+1, (H

0
m+1)q

m

(H1
m+1)q

m

, (H2
m+1)′〉_~rm+1

satisfying all properties stated in Lemma 6, where t(µ), h0(µ), h1(µ) are as de-
scribed right before introducing the properties (Q1),(Q2), and (Q3), which means

that if τ ∈ Aq
m+1

m+1 and µ = τ � d′m+1, and ν = µ(κm+1), then for k ≤ m,

fq
m+1+τ
k = f

t(µ)
k , (qm+1+τ) � (m+1) ≤∗ t(µ), for l = 0, 1, (H l

m+1)q
m+1

(τ) = h0(µ),

(H2
m+1)q

m+1

(ν) = (H2
m+1)′(ν), and fq

m+1

m+1 ≤ f ′m+1. We have finished the construc-

tion of qm+1, and am+1.
Recall we take (q, a′) as a lower bound of the sequence {(qm, am) : m < ω}.

Claim 7.4. There is a direct extension of (q, a′) which decides b.

If we can find a direct extension of (q, a′) deciding b, then the proof is done.
Suppose this is not the case. Let (r, x) ≤ (q, a′) be such that (r, x) 
 b and r is not
pure. Suppose r is not pure, which has the least possible value of max(supp(r)).
Our proof is divided into 2 cases: max(supp(r)) = 0, and max(supp(r)) > 0.
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CASE A max(supp(r)) = 0.
This means supp(r) = 1. Hence r ≤∗ q + µ′ for some µ′ ∈ Aq0.
We refer to all the notations in the construction of q0. Set µ = µ′ � d′0, and

ν = µ(κ0). We have r \ 1 ≤∗ q \ 1 ≤∗ ~r′0 ≤∗ ~r0. Similarly, we can trace back to see
that fr ≤ f ′0 ⊕ µ. Also (h20)r ≤ (H0

2 )′(ν) and x ≤ a′ ≤ a0. By the property (?0),
(〈f ′0 ⊕ µ, λ0(ν), (h0)r, (h1)r, (H2

0 )′(ν)〉_~r0, a0) 
 b. This means Bi0 = B0. Thus for
every µ̃ ∈ Aq0, we have

(†) (f ′0 ⊕ (µ̃ � d′0), λ0(µ̃), h00(µ̃), h10(µ̃, (H2
0 )′(µ̃(κ0))_~r0, a

0) 
 b.

One can check that (q + µ̃, a′) is stronger than the condition in (†). Therefore
(q + µ̃, a′) 
 b. Since every extension of (q, a′) is compatible with (q + µ̃, a′) for
some µ̃, (q, a′) 
 b.

CASE B max(supp(r)) = m+ 1 for some m < ω.
We will refer to all the notations in the construction of qm+1. Suppose part of

the extension used some µ′ ∈ Aqm+1. Set µ = µ′ � d′m+1 and ν = µ(κm+1). By
tracing back, and lemma 5, the following properties hold for r and x:

(1) r � (m+ 1) ≤ t(µ).
(2) frm+1 ≤ f ′m+1 ⊕ µ.

(3) For l = 0, 1, (hlm+1)r ≤ hl(µ).
(4) (h2m+1)r ≤ (H2

m+1)′(ν).
(5) r \ (m+ 2) ≤∗ ~rm+1.
(6) x ≤ am+1.

By (2),(4),(5), and (6), and by (?m+1), we have

(r � (m+1)_〈f ′m+1⊕µ, λm+1(µ), (h0m+1)r, (h1m+1)r, (H2
m+1)′(ν)〉_~rm+1, a

m+1) 
 b.

By (1) and (3), (t(µ), h0(µ), h1(µ)) has the property (Q1). Set

rµ := t(µ)_〈f ′m+1 ⊕ µ, λm+1(ν), h0(µ), h1(µ), (H2
m+1)′(µ(κm+1))〉_~rm+1

We claim that already (rµ, am+1) 
 b. Suppose not. Find r′ ≤ r, x′ ≤ am+1 such
that (r′, x′) 
 ¬b. let G be a generic extension of P〈En�λm+1(ν):n≤m〉 containing (r′ �

(m+1), (h0m+1)r
′
, (h1m+1)r

′
), hence containing (t(µ), h0(µ), h1(µ)). By the property

(Q1), we can find (t, (h0)∗, (h1)∗) ∈ G below (r′ � (m+ 1), (h0m+1)r
′
, (h1m+1)r

′
) such

that

(††) (t_〈f ′m+1 ⊕ µ, λm+1(µ), (h0)∗, (h1)∗, (H2
m+1)′(µ(κm+1))〉_~rm+1, a

m+1) 
 b.

Since

(1) t ≤ r′ � (m+ 1).

(2) fr
′

m+1 ≤ f ′m+1 ⊕ µ.

(3) for l = 0, 1, (h∗)l ≤ (hlm+1)r
′
,

(4) (h2m+1)r
′ ≤ (H2

m+1)′(µ(κm+1)).
(5) r′ \ (m+ 2) ≤ ~rm+1, and
(6) x′ ≤ am+1.

combining the fact that (r′, x′) 
 ¬b, and (††), we have

(t_〈fr
′

m+1, λm+1(ν), (h0)∗, (h1)∗, (h2m+1)r
′
〉_r′ \ (m+ 2), x′) 
 b,¬b.



20 SITTINON JIRATTIKANSAKUL

which is a contradiction.
To show that (q, a′) forces b, note that every extension of (q, a′) is compatible

with (q+µ̃, a′) for some µ̃′ ∈ Aq
m

m+1. Hence it is enough to show that every extension

of (q, a′) by µ̃′ ∈ Aq
m

m+1 forces b.

Let µ̃′ ∈ Aq
m

m+1. Let µ̃ = µ̃′ � d′m+1 and ν̃ = µ̃(κm+1). By the way we shrank

A′m+1, (t(µ̃), h0(µ̃), h1(µ̃)) has the property (Q1). Similar proof as above shows

(t(µ̃)_〈f ′m+1 ⊕ µ̃, λm+1(ν̃), h0(µ̃), h1(µ̃), (H2
m+1)′(ν̃)〉_~rm+1, a

m+1) 
 b.

Hence already (q + µ̃′, a′) 
 b. This completes the proof of the Prikry property.
�

A similar proof shows the following statement, which is known as the “strong
Prikry property”.

Lemma 7. Let p ∈ P, and D be a dense open subset of P. Then there is p′ ≤∗ p,
and a finite set I ⊆ η (can be empty) such that I ∩ supp(p′) = ∅, and for each

~µ ∈
∏
α∈I A

p′

α , each µi addable, p′ + ~µ ∈ D.

Proof. (Sketch) As the proof of the Prikry property, we induct on the a stronger
statement: by induction on η, if A is κ+η - closed, then for each (p, a) ∈ P× A, and
a dense open set D ⊆ P × A, there is a condition (p′, a′) ≤∗ (p, a) and a finite set

I ⊆ η (can be empty) such that I ∩ supp(p) = ∅, and for each ~µ ∈
∏
α∈I A

p′

α , each
µi is addable, and (p′ + ~µ, a′) ∈ D. We assume for simplicity that p is pure. The
elements of the proof for the case η = ω contain all the elements from the other
cases. We will show only the case η = ω. The proof has the same style as the
proof of the Prikry property, we assume A is trivial, and remove A from the proof
to make the proof more readable.

We only emphasise the key different ingredients from the proof of the Prikry
property. For more details, look at the proof of the Prikry property.

Assume p = 〈〈fpn, Apn, (H0
n)p, (H1

n)p, (H2
n)p〉〉 is a pure condition. We will build a

≤∗-decreasing sequence 〈qm : m < ω〉, it will then be routine to check that a lower
bound of the sequence 〈qm : m < ω〉 will satisfy the condition for the strong Prikry
property.

Construction of q0: Let

Q0 = {(f, ~r) ∈ (A(κ0, λ)/fp0 ,≤)×((P/p)\1,≤∗) : dom(f) is a subset of dom(fr1 ) }.

Note that fr1 is the first Cohen part of ~r. Fix a sufficiently large regular cardinal
θ. Build an elementary submodel N0 ≺ Hθ of size κ0 closed under < κ0-sequences
containing enough information. Let (f ′0, ~r0) be (N0,Q0)-generic. Let d′0 = dom(f ′0)
and A′0 ∈ E0(d′0) be such that A′0 ⊆ A0(d′0) and A′0 projects down to a subset of
Ap0.

Let ν ∈ A′0(κ0). As usual, let {µj , h0j , h1j}j<λ0(ν) be an enumeration in N0

of the triples µ, h0, h1 where µ ∈ A′0, µ(κ0) = ν, h0 ∈ Col(ω1, < ν), and h1 ∈
Col(ν, ρ0(ν)+), respectively.

Define Dν as the collection of (g, ~r) ∈ Q0 such that there is an h ∈ Col(λ0(ν)+, <
κ0) with h ≤ (H2

0 )p(ν) meeting the following requirements:

(1) For all j < λ0(ν), dom(µj) ⊂ dom(g).
(2) For all j < λ0(ν),

• EITHER (〈g ⊕ µj , λ0(ν), h0j , h
1
j , h〉_~r) ∈ D,
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• OR there is no g′ ≤ g, h′ ≤ h, and ~r′ ≤∗ ~r such that dom(g′) is a
subset of the Cohen part of ~r′, and the condition
(〈g′ ⊕ µj , λ0(ν), h0j , h

1
j , h
′〉_~r′) ∈ D.

Then Dν is a dense open subset of Q0 and is in N0. Hence (f ′0, ~r0) ∈ Dν , with a
witness h ∈ Col(λ0(ν)+, < κ0). Define (H2

0 )′(ν) = h.
Now fix µ ∈ A′0. Find h0(µ) ≤ (H0

0 )p(µ � dp0) and h1(µ) ≤ H1(µ � dp0) (if exist)
such that there are f ≤ f ′0, h ≤ (H2

0 )′(µ(κ0)), and ~r ≤∗ ~r0,

〈f ′ ⊕ µ, λ0(µ), h0(µ), h1(µ), h)〉_~r ∈ D.

Hence

〈f ′0 ⊕ µ, λ0(µ), h0(µ), h1(µ), (H2
0 )′(µ(κ0))〉_~r0 ∈ D.

Otherwise, set h0(µ) = (H0
0 )p(µ � dp0), h1(µ) = (H2

0 )p(µ � dp0). Define (H0
0 )′(µ) =

h0(µ) and (H1
0 )′(µ) = h1(µ). Shrink A′0 to A′′0 so that

(R1) EITHER for every µ ∈ A′′0 , there are f ′ ≤ f ′0, h ≤ (H2
0 )′(µ(κ0)), and

~r ≤∗ ~r0 such that 〈f ′ ⊕ µ, λ0(µ), h0(µ), h1(µ), h)〉_~r ∈ D,
(R2) OR for every µ ∈ A′′0 , for every f ′ ≤ f ′0, h ≤ (H2

0 )′(µ(κ0)), and ~r ≤∗ ~r0
such that 〈f ′ ⊕ µ, λ0(µ), h0(µ), h1(µ), h)〉_~r 6∈ D.

Finally, define q0 = 〈f ′0, A′′0 , (H0
0 )′ � A′′0 , (H

1
0 ) � A′′0 , (H

2
0 )′ � A′′0(κ0)〉_~r0. Here is

the property of q0: if q′ is an extension of q0 with supp(q′) = {0} and q′ ∈ D, then

for every τ ∈ Aq
0

0 , q0 + τ ∈ D.
Construction of qm+1: Suppose qm is constructed. Define

Qm+1 = {(f, ~r) ∈ (A(κm+1, λ)/fq
m

m+1),≤)× (P/qm \ (m+ 2),≤∗) :
dom(f) is a subset of dom(frm+2)}.

Here note that frm+2 is the first Cohen part of ~r. Fix a sufficiently large reg-
ular cardinal θ. Build an elementary submodel Nm+1 ≺ Hθ of size κm+1 closed
under < κm+1-sequences and containing enough information. Let (f ′m+1, ~rm+1) be
(Nm+1,Qm+1)-generic. Let d′m+1 = dom(f ′m+1) and A′m+1 ∈ Em+1(d′m+1) be such

that A′m+1 ⊆ Am+1(d′m+1) and A′m+1 projects down to a subset of Aq
m

m+1.

Let ν ∈ A′m+1(κm+1). As usual, let {tj , µj , h0j , h1j}j<λm+1(ν) be an enumeration

in Nm+1 of the quadruples t, µ, h0, h1 where t ∈ P〈En�λm+1(ν):n≤m〉, µ ∈ A′m+1 with

µ(κm+1) = ν, h0 ∈ Col(κ+m, < ν), and h1 ∈ Col(ν, ρm+1(ν)+), respectively.
DefineDν as the collection of (g, ~r) ∈ Qm+1 such that there is an h ∈ Col(λm+1(ν)+, <

κm+1) with h ≤ (H2
m+1)q

m

(ν) meeting the following requirements:

(1) For all j < λm+1(ν), dom(µj) ⊂ dom(g).
(2) For all j < λm+1(ν),

• EITHER t_j 〈g ⊕ µj , λm+1(ν), h0j , h
1
j , h〉_~r ∈ D,

• OR there is no g′ ≤ g, h′ ≤ h, and ~r′ ≤∗ ~r, such that dom(g′) is a
subset of the Cohen part of ~r′, and the condition
t_j 〈g′ ⊕ µj , λm+1(ν), h0j , h

1
j , h
′〉_~r ∈ D.

The set Dν is a dense, open subset of Qm+1, and Dν ∈ Nm+1. Hence we have
(f ′m+1, ~rm+1) ∈ Dν with a witness h ∈ Col(λm+1(ν)+, < κm+1). Define (H2

m+1)′(ν) =
h.

Now outside of Nm+1, let Eµ be the collection of (t, h0, h1) ∈ P〈En�λm+1(ν):n≤m〉×
Col(κ+m, < ν)× Col(ν, ρm+1(ν)+) such that EITHER
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t_〈f ′m+1 ⊕ µ, λm+1(ν), h0, h1, (H2
m+1)′(ν)〉_~rm+1 ∈ D,

OR for all g ≤ f ′m+1 ⊕ µ, h2 ≤ (H2
m+1)′(µ), and ~r′ ≤∗ ~rm+1,

t_〈f ′m+1 ⊕ µ, λm+1(ν), h0, h1, (H2
m+1)′(ν)〉_~rm+1 6∈ D.

We can use the property of Dµ(κm+1) to show that Eµ is open dense. Use the

induction hypothesis to find t(µ) ≤∗ (qm � (m+1))µ, h0(µ) ≤ (H0
m+1)q

m

(µ � dq
m

m+1),

and h1(µ) ≤ (H1
m+1)q

m

(µ � dq
m

m+1) with the least [OR]<ω-element ~αµ = αµ0 < · · · <
αµk(µ)−1, in the lexicographic order, such that for every ~τ ∈

∏
α∈~αµ

A
t(µ)
α , h0 ≤ h0(µ),

and h1 ≤ h1(µ), we have (t(µ) + ~τ , h0, h1) ∈ Eµ.

For each µ ∈ A′m+1, define Fµ : A
t(µ)

αµ0
× . . . At(µ)

αµ
k(µ)−1

→ 2 by Fµ(τ0, . . . , τk(µ)−1) =

1 if and only if

(t(µ) + 〈τ0, . . . , τk(µ)−1〉)_
〈f ′m+1 ⊕ µ, µ(κm+1), h0(µ), h1(µ), (H2

m+1)′(µ(κm+1))〉_~rm+1 ∈ D.

By Lemma 1, we have a measure one set B
t(µ)

αµi
⊆ At(µ)

αµi
for all i < k(µ) such that

F � Bt(µ)
αµ0
× . . . Bt(µ)

αµ
k(µ)−1

is constant. Shrink the measure one sets A
t(µ)

αµ0
, . . . , A

t(µ)

αµ
k(µ)−1

inside t(µ) to B
t(µ)

αµ0
, . . . , B

t(µ)

αµ
k(µ)−1

, respectively, that Fµ is constant on the product

of those measure one sets. Restrict the collapses based on the measure one sets we
just shrank. Call the resulting condition t∗(µ). By the shrinking of measure one
sets in t(µ), we arranged that

(S1) EITHER t∗(µ)+〈τ0, . . . , τk(µ)−1〉_〈f ′m+1⊕µ, h0(µ), h1(µ), (H2
m+1)′(µ(κm+1)〉_~rm+1 ∈

D for all ~τ ,
(S2) OR for all τ , there are no g ≤ f ′m+1 ⊕ µ, h2 ≤ (H2

m+1)′(µ(κm+1)), and
~r′ ≤∗ ~rm+1 such that t∗(µ) + 〈τ0, . . . , τk(µ)−1〉_ 〈g, h0(µ), h1(µ), h2〉_~r′ ∈
D.

Shrink A′m+1 further so that every µ satisfies (S1), or every µ satisfies (S2). If
every µ satisfies (S1), shrink further so that there is a sequence ~αm+1 such that for
every µ ∈ A′m+1, ~αµ = ~αm+1.

Observe that t∗(µ) ≤∗ (qm � (m + 1))µ, h0(µ) ≤ (H0
m+1)q

m

(µ � dq
m

m+1), and

h1(µ) ≤ (H1
m+1)q

m

(µ � dq
m

m+1). Use Lemma 6 to integrate these components to-

gether to form a condition qm+1. Hence for τ ∈ Aq
m+1

m+1 with µ = τ � dq
m

m+1,

and ν = µ(κm+1) = τ(κm+1), we have (qm+1 + τ) � (m + 1) ≤∗ t∗(µ), for

n ≤ m, fq+τn = f
t∗(µ)
n , (H0

m+1)q
m+1

(τ) = h0(µ), (H1
m+1)q

m+1

(τ) = h1(µ), and

(H2
m+1)q

m+1

(ν) = h2(ν). This completes the construction of qm+1. Here is what
we have: if q′ is an extension of qm+1 such that supp(q′) is the least in the lexico-
graphic order in [OR]<ω, max(supp(q′)) = m+ 1, and q′ ∈ D, then every extension
q′′ of qm+1 with supp(q′′) = supp(q′) is in D. Now we have q ≤∗ qm for all m.

Claim 7.5. q satisfies the strong Prikry property.

Proof: (sketch) Let q′ ≤ q with q′ ∈ D. Assume q′ is not pure with the least supp(q′)
in the lexicographic order in [OR]<ω. Enumerate supp(q′) in increasing order as
α0 < · · · < αk−1. If αk−1 = 0, then the proof is easy. Assume αk−1 = m+1. Using

the notations from the construction of qm+1, we have that for every τ ∈ Aq
′

m+1,
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τ � d′m+1 satisfies the property (S1), and ~αm+1 = 〈α0, . . . , αk−1〉. By the way we
shrank A′m+1, for every ~τ ∈

∏
α∈~αm+1

Aqα, we have q + ~τ ∈ D. �

�

5. cardinal preservation

This section is dedicated to showing some cardinal preservation results. We an-
alyze the generic extension. From now, assume the length of the extender sequence
is limit η. Also assume ρ = κ̄η and κ0 = max{ω, η}. Let G be P-generic over V .

Lemma 8. For each α < η, the cardinal κα is preserved in V [G], (2κα)V [G] ≤ κα+1.
As a consequence, for any limit ordinal β ≤ η, κβ is a singular strong limit cardinal

in V [G], and κβ = ℵV [G]
β .

Proof. Let α < η. By a density argument, we find p ∈ G with α, α + 1 ∈ supp(p).
Then G/p is factored into G0 := G/p � P〈Eγ�λα:γ<α〉, G1 := G/p � {α} and
G2 := G/p � (P \ (α + 1)), for some λα < κα. G0 comes from a forcing that has
λα-c.c. Thus κα is preserved in the extension by G0. G1 comes from a forcing which
is equivalent to A(κα, λα+1)×Col(κ̄α, < ν)×Col(ν, sα(ν)+)×Col(sα(ν)+3, < κα)
for some inaccessible ν. We see that κα is still preserved, and in the extension by

G0 and G1, 2κα ≤ 2κ
+
α = λα+1 < κα+1. Finally G2 comes from a forcing whose ≤∗

is κ+α -closed. By the Prikry property, it does not add new κα-sequences. Hence in
V [G], κα is preserved, and (2κα)V [G] ≤ κα+1.

By our analysis, on each interval (κα, κα], there is a να ∈ (κα, κα) such that κ+α ,
να, sα(να)++,sα(να)+3, and κα are preserved (see Lemma 9), and ν0 becomes η+,
so we are done. �

The only reason we designate κ̄0 = max{ω, η} is to make sure we have room to
directly extend any given condition η-many times. In practice, we can split forcing
into blocks. For instance if η > ω1, we may split P to P � ω and P \ ω. As a result,
assuming κ̄0 = ω does no harm, and we can keep factoring as we need. To avoid
worries about cardinal arithmetic up to η, we may assume κ0 = ω.

We know for each limit β ≤ η, (κ̄++
β )V is preserved by chain condition. (κ̄+β )V

is also preserved by this forcing:

Lemma 9. For any limit ordinal β ≤ η, κ̄+β V is preserved in V [G].

Proof. We only show the case β = η here. The case β < η is similar, together with
the fact that (P \ β,≤∗) is κ̄+β -closed.

Suppose not. Then in V [G], let ξ = cf κ+η < κη. Choose α < η such that ξ < κα.
Extend p so that α ∈ supp(p). Break p into p � α, p(α), and p \ α. Since p � α and
the Collapse parts in p(α) come from forcings which have κα-.c.c., and the Cohen
part of p(α) comes from a forcing which is κ+α -closed. κη is collapsed in the forcing
in which p \ α lives (which is P \ α).

In V , let {γ̇i : i < ξ} be a sequence of names, forced by p\α ∈ P\α, to be a cofinal
sequence in κ̄+η

V . Build a sequence of conditions {pi : i < ξ} such that p0 = p \ α,
{pi\ : i < ξ} is ≤∗-decreasing, and pi+1 satisfies Lemma 7 for Di = {q ∈ P \ α : q
decides the value of γ̇i}.

Set r to be a (≤∗)- lower bound of {pi : i < ξ} in P \ (α+ 1). By Lemma 7, for
each i < ξ, Ai = {β : ∃r′ ≤ r, r′ 
 γ̇i = β̌} has size at most καi for some αi < η.
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Set βi = supAi, and β = sup
i<ξ

βi. Then r 
 sup{γ̇i : i < ξ} ≤ β̌ and β < (κ̄+η )V ,

which is a contradiction. �

From the series of lemmas above and some chain condition arguments, in the
generic extension V [G], we get that for each limit ordinal β ≤ η, κβ , (κ+β )V , (κ++

β )V

are preserved, κβ = ℵV [G]
β , (κ+β )V = (ℵβ+1)V [G], (κ++

β )V = (ℵβ+2)V [G], and if β < η

is limit, then λβ = ℵβ+3, where λβ = λpβ for some p ∈ G with β ∈ supp(p).

From this point, for limit β < η, let λβ = λpβ for some p ∈ V [G] with β ∈ supp(p),

and λη = λ. Next, we are going to verify that in V [G], for limit β ≤ η, 2κβ = λβ .
On one hand, 2κβ ≤ λβ by a chain condition argument.

To show λβ ≤ 2κβ , we will build a scale of length λβ . We analyse the scales in
the next section.

6. scale analysis

Lemma 10. Let β ≤ η be a limit ordinal, let q be a condition such that β ∈ supp(q)
if β < η, and let λβ = λ if β = η and λβ = λqβ if β < η. Let γ ∈ [κβ , λβ) and
α < β. Let D be the collection of p ≤ q such that

(1) α ∈ supp(p).
(2) If we enumerate supp(p) ∩ (β + 1) \ α in decreasing order as α0 > · · · >

αk−1 = α such that if β < η, α0 = β, then γ ∈ dom(fpα0
), the sequence

of ordinals defined inductively by setting γ0 = γ and γi+1 = fpαi(γi) for as
long as γi ∈ dom(fpαi) reaches a stage where γk−1 is defined, and γk−1 ∈
dom(fpα).

Then D is open dense below q.

Fix a limit ordinal β ≤ η. In V [G], let λβ = λpβ when p ∈ G with β ∈ supp(p).

Note that by genericity of V [G], λβ is well-defined.
For γ ∈ [κβ , λβ), define a function tγ : β → κ̄β as follows: for α < β, find p ∈ G

with p lying in the dense set from Lemma 10. Enumerate supp(p) ∩ (β + 1) \ α in
decreasing order as α0 > · · · > αk−1 = α. Define γ0, . . . γk−1 as in Lemma 10, and
define tγ(α) = fpα(γk−1).

To check that tγ is well-defined, suppose p, q ∈ G satisfy the conditions in Lemma
10. Find r ∈ G with r ≤ p, q. Hence ((supp(p) ∪ supp(q)) ∩ (β + 1)) \ α ⊆
(supp(r) ∩ (β + 1)) \ α and α0 = β if β < η. Assume r ≤∗ p + 〈µ0, . . . , µl−1〉
and r ≤∗ q + 〈τ0, . . . , τl−1〉. For simplicity, assume µi is an βi-object, τj is an
ζj-object, α < β0 < · · · < βl−1 and α < ζ0 < · · · < ζm−1. We will show that p
and r compute the same tγ(α)-value. A similar argument will show q computes
the same tγ(α) as r. Simplify further that l = 1, µ = µ0, and β = β0. Enumerate
(supp(p)∩ (β+1))\α in decreasing order as αk−1 > . . . αn > αn−1 > · · · > α0 = α,
where αn > ξ > αn−1. Then

frαk−1
◦ . . . frαn ◦ f

r
ξ ◦ frαn−1

◦ . . . frα0
(γ) = fpαk−1

◦ . . . frαn ◦ f
r
ξ ◦ fpαn−1

◦ . . . fpα0
(γ)

= fpαk−1
◦ . . . fpαn ◦ µ

−1 ◦ µ ◦ fpαn−1
◦ . . . fpα0

(γ)

= fpαk−1
◦ . . . fpαn ◦ f

q
αn−1

◦ . . . fpα0
(γ).

Thus p and r compute the same tγ(α). Lemmas 11 and 12 are parallel to Lemmas
2.29 and 3.12 in [3],
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Lemma 11. In V [G], 〈tγ : γ ∈ [κ̄β , λβ)〉 is <∗- increasing, where t <∗ t′ means
there is α < η such that for all α′ > α, t(α′) < t′(α′).

Proof. We prove the case β = η. The case β < η is similar. Let γ < γ′ ∈ [κη, λ).
We will show the conclusion by a density argument. Let p ∈ P. We can find p′ ≤ p
such that γ and γ′ are in the domains of the Cohen parts of p. Assume γ and γ′

belong to dom(fp
′

α0
) where max(supp(p′)) < α0

We can also assume that for α > α0, the domain of each object in Ap
′

α contains
γ, and γ′. We will show

p′ 
 ∀α > α0(ṫγ(α) < ṫγ′(α)).

This is true because for each α > α0, we can find q ≤ p′ with α ∈ supp(q) and
for α′ ∈ supp(q) \ α, we use an addable α′-object whose domain contains γ and
γ′. Every addable object is order-preserving, and by a density argument, we are
done. �

In particular, we conclude in V [G], 2ℵβ = ℵ+3
β for β < η, and 2ℵη = ℵ++

η .

We set λα as λpα when p ∈ G and α ∈ supp(p). We have

Lemma 12. In V [G], 〈tγ : γ ∈ [κβ , λβ)〉 is a scale in (
∏
α<β

λα, <bd).

Proof. Again, assume for simplicity that β = η. First, note that for each condition
p and α > max(supp(p)), ran(mcα(dpα)) ⊆ λ = j(sα)(κα)++. Hence there is a
measure one set of µ such that ran(µ) ⊆ sα(µ(κα))++ = λα(µ). Hence the type is
correct.

Let ḣ be a name and p be a condition forcing that ḣ ∈
∏
α<η

λ̇α. Suppose now for

simplicity that p is pure. For α < η, let Dα = {q : q decides ḣ(α)}. Find q ≤∗ p
witnessing the strong Prikry property for Dα, with the finite set of coordinates Iα,
for all α < η. Assume further that α ∈ Iα. Define Yα(~µ) to be the value that q+ ~µ

decides for ḣ(α). Note that this is less than λα(µα), which is a regular cardinal. Now
for ~µ ∈

∏
δ∈Iα\α

Aqδ, define Zα(~µ) := sup
~τ

(Y (~τ_~µ))+1. By a simple counting argument

Zα(~µ) < λα(µα), and for ~µ ∈
∏

δ∈Iα\α
Aqδ, we still have q + ~µ 
 ḣ(α) < Zα(~µ). We

have that for ~µ ∈
∏

δ∈Iα\(α+1)

jEα(Aqδ),

jEα(q) + (〈mcα(dqα)〉_~µ) 
 jEα(ḣ(α)) < λ.

Since for δ > α, jEα(Aqδ) comes from a measure which is jEα(κδ)-complete, and
jEα(κδ) > jEα(κα) ≥ λ, there are γα < λ and measure one set Bαδ for δ ∈ Iα\(α+1)
such that for ~µ ∈

∏
δ∈Iα\(α+1)

Bαδ ,

jEα(q) + (〈mcα(dqα)〉_~µ) 
 jEα(ḣ(α)) = γα.

We run through the process as above for all α < η. Take γ = supα<η γα. Let
r ≤∗ q with γ ∈ dom(fr0 ). Hence for α < η, and ~µ ∈

∏
δ∈Iα\(α+1)

jEα(Arδ) ∩Bαδ ,

jEα(r) + (〈mcα(drα)〉_~µ) 
 jEα(ḣ(α)) < mcα(drα)(jEα(γ)).
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Since the sets of such ~µ are of measure one, by elementarity we may shrink
measure one sets Arδ for δ ∈ Iα \ α so that every extension of r using objects in

{Arδ : δ ∈ Iα} decides that ḣ(α) < µ(γ) where µ is the object being used in Arα.
Repeat the shrinking process for all α and call the resulting condition s.

We claim that s 
 ḣ(α) < ṫγ(α) for all α. To show this, fix an α. Let s′ ≤ s

such that s′ decides ḣ(α). Assume s′ ≤∗ s∗ + ~µ where ~µ comes from measure one
sets {Arδ : δ ∈ X} and X ⊇ Iα. By the strong Prikry property, s∗∗ := s∗ + (~µ � Iα)

decides ḣ(α) to be an ordinal less than µα(γ). A straightforward calculation tells

that s∗∗ decides ḣ(α) to be an ordinal less than ṫγ(α). Hence, we are done.
�

To investigate the scale further, note that if p ∈ G and β ∈ supp(p), λβ = ρ++
β

for some β. The exact same argument shows that 〈tγ : γ ∈ [κβ , ρ
+
β )〉 is a scale in

(
∏
α<β

ρ+α , <bd). Recall that a scale 〈hα : α < χ+〉 on
∏
β<θ

θβ is very good if modulo

club filter, every α < χ+ with cf(α) > θ is a very good point, meaning there is a
club C ⊆ α of type cf(α) and γ < θ such that for β0 and β1 in C with β0 < β1 and
ξ > γ, fβ0

(ξ) < fβ1
(ξ).

Lemma 13. 〈tγ : γ ∈ [κβ , ρ
+
β )〉 is a very good scale.

Proof. For simplicity, assume β = η. Let γ < ρ+, say η < cf(γ) < κα for some
α < η. Let C ⊆ (γ \ ρ be a club of order type cf(γ). Let p ∈ P be such that

α+ 1 ∈ supp(p). Let θ = min(η \ supp(p)). Extend p to p′ so that C ⊆ dp
′

θ . Shrink

the measure one set Ap
′

α+1 so that the domain of any θ-object in the measure one
set contains C. Call the final condition q. It is easy to see that q 
 ∀β0, β1 ∈
C(β0 < β1 → ∀ξ > θ(fβ0

(ξ) < fβ1
(ξ))). Hence the scale is very good. �

7. large cardinals

In this section we clarify how to obtain a pairwise coherent sequence of extenders.

Definition 8. Let κ be a cardinal. Then κ is weakly compact if for every
transitive set M such that |M | = κ, M is closed under < κ-sequences, and satisfies
enough set theory, then there is an elementary embedding j : M → N such that N
is transitive, |N | = κ, N is closed under < κ-sequences, and crit(j) = κ.

Definition 9. Let κ < χ ≤ δ be cardinals, and A ⊆ Vδ. κ is χ-A-strong if there
is an elementary embedding j : V → M with M transitive, crit(j) = κ, Vχ ⊆ M ,
and j(A)∩ Vχ = A∩ Vχ. κ is < δ-A-strong if κ is λ-A-strong for λ < δ. Finally, δ
is a Woodin cardinal if for A ⊆ Vδ, there is κ < δ such that κ is < δ-A-strong.

Definition 10. Let δ be a cardinal. Then δ is superstrong if there is an elemen-
tary embedding j : V →M such that M is transitive, crit(j) = δ, and Vj(δ) ⊆M .

Here is a standard fact:

Proposition 11. If δ is superstrong, then δ is weakly compact and Woodin.

We will elaborate how we derive the sequence of pairwise coherent extenders
from a weakly compact Woodin cardinal. Note that the least Woodin cardinal is
not weakly compact. This is because weakly compact cardinals are

∏1
1-reflecting

and “δ is Woodin” is captured by a
∏1

1-sentence holding in Vδ.
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Lemma 14. If δ is weakly compact Woodin, then for all A ⊆ Vδ there is κ < δ
which is δ-A-strong.

Proof. Let A ⊆ Vδ. By Woodinness of δ, let κ < δ be < δ-A-strong. Let M ≺ Hθ

be of size δ, closed under < δ-sequences, trcl({Vδ, A}) ∈ M . By elementarity,
M |= κ is < δ-A-strong. Let M̄ be the transitive collapse of M with the associated
isomorphism i : M → M̄ . Hence i(κ) = κ, i(δ) = δ, and i(A) = A. Hence M̄ |= κ
is < δ-A-strong. Since δ is weakly compact, let j : M̄ → N with |N | = δ, N is
closed under < δ-sequence, δ = crit(j), and N is transitive. Thus N |= κ is < j(δ)-
j(A)-strong. Since δ < j(δ), in N , κ is δ-j(A)-strong. Thus κ is δ-A-strong in N .
We can derive an extender in N witnessing κ is δ-A-strong. Since the extender can
be coded as a subset of Vδ, κ is δ-A-strong.

�

Note that by Woodinness of δ, we can also prove that for each A ⊆ Vδ, the set
of κ < δ which is δ-A-strong is unbounded in δ.

Theorem 12. Suppose that for each A ⊆ Vδ, {κ : κ is δ-A-strong} is unbounded
in δ, then there exists a sequence of extenders 〈Eα : α < η〉 such that Eα is a
(κα, δ)-extender for some κα, and the sequence of extenders is pairwise coherent.

Proof. Pick κ0 ∈ (η, δ) such that κ0 is δ-∅-strong. Derive a (κ0, δ)-extender E0

from the strongness of κ0. Let α < η. Suppose ~Eα := 〈Eβ : β < α〉 have been

constructed, we see that ~Eα can be coded as a subset of Vδ. Find κα > supβ<α κβ

such that κα is δ- ~Eα-strong. Set a witness jEα : V →Mα. Then derive an (κα, δ)-
extender from jEα . By the strongness of Eα, we conclude that jEα(Eβ) ∩ Vδ =
Eβ ∩ Vδ = Eβ for all β < α. �
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