Blowing up the power of a singular cardinal of uncountable cofinality with collapses

Sittinon (New) Jirattikansakul

RIMS Set Theory Workshop

November 18th, 2020

Sittinon (New) Jirattikansakul (RIMS Set ThBlowing up the power of a singular cardinal o

Outline

- Definitions
- Main theorem
- Extenders
- Big Pictures
- Forcings
- Forcings extensions
- Some conclusions

э.

Definition

The Singular Cardinal Hypothesis (SCH) states that if κ is singular strong limit, then $2^{\kappa} = \kappa^+$.

Definition

The Singular Cardinal Hypothesis (SCH) states that if κ is singular strong limit, then $2^{\kappa} = \kappa^+$.

Violating SCH requires large cardinal. For example, $2^{\aleph_{\omega}} > \aleph_{\omega+1}$ is equiconsistent with the existence of a cardinal κ whose Mitchell order is κ^{++} .

Definition

The Singular Cardinal Hypothesis (SCH) states that if κ is singular strong limit, then $2^{\kappa} = \kappa^+$.

Violating SCH requires large cardinal. For example, $2^{\aleph_{\omega}} > \aleph_{\omega+1}$ is equiconsistent with the existence of a cardinal κ whose Mitchell order is κ^{++} .

Definition

Extenders E on (κ, λ) and F on (κ', λ) are coherent if $j_F(E) \upharpoonright \lambda = E$ where j_F is an embedding derived from F.

Definition

The Singular Cardinal Hypothesis (SCH) states that if κ is singular strong limit, then $2^{\kappa} = \kappa^+$.

Violating SCH requires large cardinal. For example, $2^{\aleph_{\omega}} > \aleph_{\omega+1}$ is equiconsistent with the existence of a cardinal κ whose Mitchell order is κ^{++} .

Definition

Extenders E on (κ, λ) and F on (κ', λ) are coherent if $j_F(E) \upharpoonright \lambda = E$ where j_F is an embedding derived from F.

From the definition above, we have that E is Mitchell below F in the sense that $E \in Ult(V, F)$.

- 4 回 ト - 4 回 ト

Theorem (J.)

Given an increasing sequence of cardinals $\langle \kappa_{\alpha} : \alpha < \eta \rangle$ where $\eta < \kappa_0$ is limit. Let $\lambda = (\sup_{\alpha < \eta} \kappa_{\alpha})^{++}$.

Theorem (J.)

Given an increasing sequence of cardinals $\langle \kappa_{\alpha} : \alpha < \eta \rangle$ where $\eta < \kappa_0$ is limit. Let $\lambda = (\sup_{\alpha < \eta} \kappa_{\alpha})^{++}$. Assume for each α , there is a $(\kappa_{\alpha}, \lambda)$ -extender E_{α} such that:

Theorem (J.)

Given an increasing sequence of cardinals $\langle \kappa_{\alpha} : \alpha < \eta \rangle$ where $\eta < \kappa_0$ is limit. Let $\lambda = (\sup_{\alpha < \eta} \kappa_{\alpha})^{++}$. Assume for each α , there is a $(\kappa_{\alpha}, \lambda)$ -extender E_{α} such that:

• If $j_{\alpha}: V \to M_{\alpha} = \text{Ult}(V, E_{\alpha})$, we have $\operatorname{crit}(j_{\alpha}) = \kappa_{\alpha}$, $j_{\alpha}(\kappa_{\alpha}) \ge \lambda$, $\kappa_{\alpha} M_{\alpha} \subseteq M_{\alpha}$ and M_{α} computes cardinals correctly up to and including λ .

Theorem (J.)

Given an increasing sequence of cardinals $\langle \kappa_{\alpha} : \alpha < \eta \rangle$ where $\eta < \kappa_0$ is limit. Let $\lambda = (\sup_{\alpha < \eta} \kappa_{\alpha})^{++}$. Assume for each α , there is a $(\kappa_{\alpha}, \lambda)$ -extender E_{α} such that:

- If $j_{\alpha}: V \to M_{\alpha} = \text{Ult}(V, E_{\alpha})$, we have $\operatorname{crit}(j_{\alpha}) = \kappa_{\alpha}$, $j_{\alpha}(\kappa_{\alpha}) \ge \lambda$, $\kappa_{\alpha} M_{\alpha} \subseteq M_{\alpha}$ and M_{α} computes cardinals correctly up to and including λ .
- **2** There is a function $s_{\alpha} : \kappa_{\alpha} \to \kappa_{\alpha}$ such that $j_{\alpha}(s_{\alpha})(\kappa_{\alpha}) = \lambda$.

Theorem (J.)

Given an increasing sequence of cardinals $\langle \kappa_{\alpha} : \alpha < \eta \rangle$ where $\eta < \kappa_0$ is limit. Let $\lambda = (\sup_{\alpha < \eta} \kappa_{\alpha})^{++}$. Assume for each α , there is a $(\kappa_{\alpha}, \lambda)$ -extender E_{α} such that:

- If $j_{\alpha}: V \to M_{\alpha} = \text{Ult}(V, E_{\alpha})$, we have $\operatorname{crit}(j_{\alpha}) = \kappa_{\alpha}$, $j_{\alpha}(\kappa_{\alpha}) \ge \lambda$, $\kappa_{\alpha} M_{\alpha} \subseteq M_{\alpha}$ and M_{α} computes cardinals correctly up to and including λ .
- Phere is a function s_α : κ_α → κ_α such that j_α(s_α)(κ_α) = λ.
 ⟨E_α : α < η⟩ is pairwise coherent.

Theorem (J.)

Given an increasing sequence of cardinals $\langle \kappa_{\alpha} : \alpha < \eta \rangle$ where $\eta < \kappa_0$ is limit. Let $\lambda = (\sup_{\alpha < \eta} \kappa_{\alpha})^{++}$. Assume for each α , there is a $(\kappa_{\alpha}, \lambda)$ -extender E_{α} such that:

- If $j_{\alpha}: V \to M_{\alpha} = \text{Ult}(V, E_{\alpha})$, we have $\operatorname{crit}(j_{\alpha}) = \kappa_{\alpha}$, $j_{\alpha}(\kappa_{\alpha}) \ge \lambda$, $\kappa_{\alpha} M_{\alpha} \subseteq M_{\alpha}$ and M_{α} computes cardinals correctly up to and including λ .
- **2** There is a function $s_{\alpha} : \kappa_{\alpha} \to \kappa_{\alpha}$ such that $j_{\alpha}(s_{\alpha})(\kappa_{\alpha}) = \lambda$.

3 $\langle E_{\alpha} : \alpha < \eta \rangle$ is pairwise coherent.

Then there is a λ -c.c. forcing extension such that in the generic extension, for limit $\beta < \eta$, $2^{\aleph_{\beta}} > \aleph_{\beta+1}$ and $2^{\aleph_{\eta}} = \aleph_{\eta+2}$.

Recall $\lambda = \sup_{\alpha < \eta} \kappa_{\alpha}^{++}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall $\lambda = \sup_{\alpha < \eta} \kappa_{\alpha}^{++}$.

Definition

 d_{α} is an α -domain if $d_{\alpha} \in [\lambda]^{\kappa_{\alpha}}$ and $\kappa_{\alpha} + 1 \subseteq d_{\alpha}$.

< □ > < □ > < □ > < □ > < □ > < □ >

- 3

Recall $\lambda = \sup_{\alpha < \eta} \kappa_{\alpha}^{++}$.

Definition

 d_{α} is an α -domain if $d_{\alpha} \in [\lambda]^{\kappa_{\alpha}}$ and $\kappa_{\alpha} + 1 \subseteq d_{\alpha}$.

Recall $j_{\alpha}: V \to M_{\alpha}$ and $\kappa_{\alpha} M_{\alpha} \subseteq M_{\alpha}$.

Definition

 $\mathsf{mc}_{\alpha}(d_{\alpha}) = (j_{\alpha} \restriction d_{\alpha})^{-1} = \{(j_{\alpha}(\gamma), \gamma) : \gamma \in d_{\alpha}\}.$

Recall $\lambda = \sup_{\alpha < \eta} \kappa_{\alpha}^{++}$.

Definition

 d_{α} is an α -domain if $d_{\alpha} \in [\lambda]^{\kappa_{\alpha}}$ and $\kappa_{\alpha} + 1 \subseteq d_{\alpha}$.

Recall $j_{\alpha}: V \to M_{\alpha}$ and $\kappa_{\alpha} M_{\alpha} \subseteq M_{\alpha}$.

Definition

 $\mathsf{mc}_{\alpha}(d_{\alpha}) = (j_{\alpha} \upharpoonright d_{\alpha})^{-1} = \{(j_{\alpha}(\gamma), \gamma) : \gamma \in d_{\alpha}\}.$ Abbreviate $\mathsf{mc}_{\alpha}(d_{\alpha})$ by mc_{α} .

Recall $\lambda = \sup_{\alpha < \eta} \kappa_{\alpha}^{++}$.

Definition

 d_{α} is an α -domain if $d_{\alpha} \in [\lambda]^{\kappa_{\alpha}}$ and $\kappa_{\alpha} + 1 \subseteq d_{\alpha}$.

Recall $j_{\alpha}: V \to M_{\alpha}$ and $\kappa_{\alpha} M_{\alpha} \subseteq M_{\alpha}$.

Definition

 $\mathsf{mc}_{\alpha}(d_{\alpha}) = (j_{\alpha} \upharpoonright d_{\alpha})^{-1} = \{(j_{\alpha}(\gamma), \gamma) : \gamma \in d_{\alpha}\}.$ Abbreviate $\mathsf{mc}_{\alpha}(d_{\alpha})$ by mc_{α} .

Definition

$$A \in E_{\alpha}(d_{\alpha})$$
 iff $mc_{\alpha} \in j_{\alpha}(A)$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト - - ヨ -

Definition

 $OB_{\alpha}(d_{\alpha})$ is the collection of functions μ such that

Sittinon (New) Jirattikansakul (RIMS Set ThBlowing up the power of a singular cardinal o November 18th, 2020 6/14

< □ > < □ > < □ > < □ > < □ > < □ >

э

Definition

 $OB_{\alpha}(d_{\alpha})$ is the collection of functions μ such that $\bigcirc dom(\mu) \subseteq d_{\alpha}$, $rge(\mu) \subseteq \kappa_{\alpha}$, and $\kappa_{\alpha} \in dom(\mu)$.

Definition

 $\mathsf{OB}_{\alpha}(d_{\alpha})$ is the collection of functions μ such that

- dom $(\mu) \subseteq d_{\alpha}$, rge $(\mu) \subseteq \kappa_{\alpha}$, and $\kappa_{\alpha} \in dom(\mu)$.
- $|\operatorname{dom}(\mu)| = \mu(\kappa_{\alpha})$, which is below κ_{α} , and $\mu(\kappa_{\alpha})$ is inaccessible.

Definition

 $\mathsf{OB}_{\alpha}(\mathbf{\textit{d}}_{\alpha})$ is the collection of functions μ such that

- dom $(\mu) \subseteq d_{\alpha}$, rge $(\mu) \subseteq \kappa_{\alpha}$, and $\kappa_{\alpha} \in dom(\mu)$.
- $| \operatorname{dom}(\mu)| = \mu(\kappa_{\alpha})$, which is below κ_{α} , and $\mu(\kappa_{\alpha})$ is inaccessible.

3 dom
$$(\mu) \cap \kappa_{\alpha} = \mu(\kappa_{\alpha}).$$

Definition

 $\mathsf{OB}_{\alpha}(\mathsf{d}_{\alpha})$ is the collection of functions μ such that

- dom $(\mu) \subseteq d_{\alpha}$, rge $(\mu) \subseteq \kappa_{\alpha}$, and $\kappa_{\alpha} \in dom(\mu)$.
- $|\operatorname{dom}(\mu)| = \mu(\kappa_{\alpha})$, which is below κ_{α} , and $\mu(\kappa_{\alpha})$ is inaccessible.

3 dom
$$(\mu) \cap \kappa_{lpha} = \mu(\kappa_{lpha}).$$

• μ is order-preserving.

Definition

 $\mathsf{OB}_{\alpha}(\mathsf{d}_{\alpha})$ is the collection of functions μ such that

- dom $(\mu) \subseteq d_{\alpha}$, rge $(\mu) \subseteq \kappa_{\alpha}$, and $\kappa_{\alpha} \in dom(\mu)$.
- $|\operatorname{dom}(\mu)| = \mu(\kappa_{\alpha})$, which is below κ_{α} , and $\mu(\kappa_{\alpha})$ is inaccessible.
- 3 dom $(\mu) \cap \kappa_{\alpha} = \mu(\kappa_{\alpha}).$
- μ is order-preserving.
- For $\beta \in \operatorname{dom}(\mu) \cap \kappa_{\alpha}$, $\mu(\beta) = \beta$.

Definition

 $\mathsf{OB}_{\alpha}(\mathsf{d}_{\alpha})$ is the collection of functions μ such that

- dom $(\mu) \subseteq d_{\alpha}$, rge $(\mu) \subseteq \kappa_{\alpha}$, and $\kappa_{\alpha} \in dom(\mu)$.
- $| \operatorname{dom}(\mu)| = \mu(\kappa_{\alpha})$, which is below κ_{α} , and $\mu(\kappa_{\alpha})$ is inaccessible.
- 3 dom $(\mu) \cap \kappa_{\alpha} = \mu(\kappa_{\alpha}).$
- μ is order-preserving.
- For $\beta \in \operatorname{dom}(\mu) \cap \kappa_{\alpha}$, $\mu(\beta) = \beta$.

Lemma

$$\mathsf{OB}_{\alpha}(d_{\alpha})\in \mathit{E}_{\alpha}(d_{\alpha}).$$

Recall $mc_{\alpha} = \{(j_{\alpha}(\gamma), \gamma) : \gamma \in d_{\alpha}\}$. Also $(j_{\alpha}(\kappa_{\alpha}), \kappa_{\alpha}) \in mc_{\alpha}$ because $\kappa_{\alpha} \in d_{\alpha}$.

< □ > < □ > < □ > < □ > < □ > < □ >

- 3

Recall $mc_{\alpha} = \{(j_{\alpha}(\gamma), \gamma) : \gamma \in d_{\alpha}\}$. Also $(j_{\alpha}(\kappa_{\alpha}), \kappa_{\alpha}) \in mc_{\alpha}$ because $\kappa_{\alpha} \in d_{\alpha}$.

Proof.

(dom(μ) $\subseteq d_{\alpha}$, rge(μ) $\subseteq \kappa_{\alpha}$, and $\kappa_{\alpha} \in dom(\mu)$).

- ∢ ⊒ →

< A > < B >

Recall $mc_{\alpha} = \{(j_{\alpha}(\gamma), \gamma) : \gamma \in d_{\alpha}\}$. Also $(j_{\alpha}(\kappa_{\alpha}), \kappa_{\alpha}) \in mc_{\alpha}$ because $\kappa_{\alpha} \in d_{\alpha}$.

Proof.

(dom(
$$\mu$$
) $\subseteq d_{\alpha}$, rge(μ) $\subseteq \kappa_{\alpha}$, and $\kappa_{\alpha} \in dom(\mu)$).
dom(mc _{α}) = $j_{\alpha}[d_{\alpha}] \subseteq j_{\alpha}(d_{\alpha})$. rge(mc _{α}) = $d_{\alpha} \subseteq \lambda \subseteq j_{\alpha}(\kappa_{\alpha})$.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

- ∢ ⊒ →

Recall $mc_{\alpha} = \{(j_{\alpha}(\gamma), \gamma) : \gamma \in d_{\alpha}\}$. Also $(j_{\alpha}(\kappa_{\alpha}), \kappa_{\alpha}) \in mc_{\alpha}$ because $\kappa_{\alpha} \in d_{\alpha}$.

Proof.

(dom(μ) ⊆ d_α, rge(μ) ⊆ κ_α, and κ_α ∈ dom(μ)). dom(mc_α) = j_α[d_α] ⊆ j_α(d_α). rge(mc_α) = d_α ⊆ λ ⊆ j_α(κ_α).
(|dom(μ)| = μ(κ_α))

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall $mc_{\alpha} = \{(j_{\alpha}(\gamma), \gamma) : \gamma \in d_{\alpha}\}$. Also $(j_{\alpha}(\kappa_{\alpha}), \kappa_{\alpha}) \in mc_{\alpha}$ because $\kappa_{\alpha} \in d_{\alpha}$.

Proof.

- (dom(μ) $\subseteq d_{\alpha}$, rge(μ) $\subseteq \kappa_{\alpha}$, and $\kappa_{\alpha} \in dom(\mu)$). dom(mc_{α}) = $j_{\alpha}[d_{\alpha}] \subseteq j_{\alpha}(d_{\alpha})$. rge(mc_{α}) = $d_{\alpha} \subseteq \lambda \subseteq j_{\alpha}(\kappa_{\alpha})$.
- $(|\operatorname{dom}(\mu)| = \mu(\kappa_{\alpha})) |\operatorname{dom}(\operatorname{mc}_{\alpha})| = \kappa_{\alpha} = \operatorname{mc}_{\alpha}(j_{\alpha}(\kappa_{\alpha})).$

.

3

< 1 k

Recall $mc_{\alpha} = \{(j_{\alpha}(\gamma), \gamma) : \gamma \in d_{\alpha}\}$. Also $(j_{\alpha}(\kappa_{\alpha}), \kappa_{\alpha}) \in mc_{\alpha}$ because $\kappa_{\alpha} \in d_{\alpha}$.

Proof.

The rests are straightforward.

If $d_{\alpha} \subseteq d'_{\alpha}$, we have a natural projection $\pi_{d'_{\alpha},d_{\alpha}}: \mu \mapsto \mu \restriction d_{\alpha}$.

Recall $mc_{\alpha} = \{(j_{\alpha}(\gamma), \gamma) : \gamma \in d_{\alpha}\}$. Also $(j_{\alpha}(\kappa_{\alpha}), \kappa_{\alpha}) \in mc_{\alpha}$ because $\kappa_{\alpha} \in d_{\alpha}$.

Proof.

The rests are straightforward.

If $d_{\alpha} \subseteq d'_{\alpha}$, we have a natural projection $\pi_{d'_{\alpha},d_{\alpha}} : \mu \mapsto \mu \upharpoonright d_{\alpha}$. This induces a projection from $E_{\alpha}(d'_{\alpha})$ to $E_{\alpha}(d_{\alpha})$.

A condition is of the form $p = \langle p_{\alpha} : \alpha < \eta \rangle$ such that for each α , if p_{α} is **pure**,

< □ > < □ > < □ > < □ > < □ > < □ >

- 3

A condition is of the form $p = \langle p_{\alpha} : \alpha < \eta \rangle$ such that for each α , if p_{α} is **pure**, then

• p_{α} will have 3 parts: f_{α} -part, A_{α} -part, and \vec{H}_{α} -part.

∃ ⇒

A condition is of the form $p = \langle p_{\alpha} : \alpha < \eta \rangle$ such that for each α , if p_{α} is **pure**, then

- p_{α} will have 3 parts: f_{α} -part, A_{α} -part, and \vec{H}_{α} -part.
- f_{α} lives in a Cohen forcing whose domain is an α -domain d_{α} , range is a subset of κ_{α} .

A condition is of the form $p = \langle p_{\alpha} : \alpha < \eta \rangle$ such that for each α , if p_{α} is **pure**, then

- p_{α} will have 3 parts: f_{α} -part, A_{α} -part, and \vec{H}_{α} -part.
- f_{α} lives in a Cohen forcing whose domain is an α -domain d_{α} , range is a subset of κ_{α} .
- A_{α} is a measure-one set in $E_{\alpha}(d_{\alpha})$.

A condition is of the form $p = \langle p_{\alpha} : \alpha < \eta \rangle$ such that for each α , if p_{α} is **pure**, then

- p_{α} will have 3 parts: f_{α} -part, A_{α} -part, and \vec{H}_{α} -part.
- f_{α} lives in a Cohen forcing whose domain is an α -domain d_{α} , range is a subset of κ_{α} .
- A_{α} is a measure-one set in $E_{\alpha}(d_{\alpha})$.
- \vec{H}_{α} is a sequence of functions with domains A or projections of A.

A condition is of the form $p = \langle p_{\alpha} : \alpha < \eta \rangle$ such that for each α , if p_{α} is **pure**, then

- p_{α} will have 3 parts: f_{α} -part, A_{α} -part, and \vec{H}_{α} -part.
- f_{α} lives in a Cohen forcing whose domain is an α -domain d_{α} , range is a subset of κ_{α} .
- A_{α} is a measure-one set in $E_{\alpha}(d_{\alpha})$.
- \vec{H}_{α} is a sequence of functions with domains A or projections of A. The values of the functions \vec{H} are conditions in Collapse forcings.

A condition is of the form $p = \langle p_{\alpha} : \alpha < \eta \rangle$ such that for each α , if p_{α} is **pure**, then

- p_{α} will have 3 parts: f_{α} -part, A_{α} -part, and \vec{H}_{α} -part.
- f_{α} lives in a Cohen forcing whose domain is an α -domain d_{α} , range is a subset of κ_{α} .
- A_{α} is a measure-one set in $E_{\alpha}(d_{\alpha})$.
- \vec{H}_{α} is a sequence of functions with domains A or projections of A. The values of the functions \vec{H} are conditions in Collapse forcings.

A condition is of the form $p = \langle p_{\alpha} : \alpha < \eta \rangle$ such that for each α , if p_{α} is **pure**, then

- p_{α} will have 3 parts: f_{α} -part, A_{α} -part, and \vec{H}_{α} -part.
- f_{α} lives in a Cohen forcing whose domain is an α -domain d_{α} , range is a subset of κ_{α} .
- A_{α} is a measure-one set in $E_{\alpha}(d_{\alpha})$.
- \vec{H}_{α} is a sequence of functions with domains A or projections of A. The values of the functions \vec{H} are conditions in Collapse forcings.

If p_{α} is **impure**, then

• p_{α} will have 3 parts: f_{α} -part, λ_{α} -part, and \vec{h}_{α} -part.

A condition is of the form $p = \langle p_{\alpha} : \alpha < \eta \rangle$ such that for each α , if p_{α} is **pure**, then

- p_{α} will have 3 parts: f_{α} -part, A_{α} -part, and \vec{H}_{α} -part.
- f_{α} lives in a Cohen forcing whose domain is an α -domain d_{α} , range is a subset of κ_{α} .
- A_{α} is a measure-one set in $E_{\alpha}(d_{\alpha})$.
- \vec{H}_{α} is a sequence of functions with domains A or projections of A. The values of the functions \vec{H} are conditions in Collapse forcings.

- p_{α} will have 3 parts: f_{α} -part, λ_{α} -part, and \vec{h}_{α} -part.
- f_{α} lives in a Cohen forcing.

A condition is of the form $p = \langle p_{\alpha} : \alpha < \eta \rangle$ such that for each α , if p_{α} is **pure**, then

- p_{α} will have 3 parts: f_{α} -part, A_{α} -part, and \vec{H}_{α} -part.
- f_{α} lives in a Cohen forcing whose domain is an α -domain d_{α} , range is a subset of κ_{α} .
- A_{α} is a measure-one set in $E_{\alpha}(d_{\alpha})$.
- \vec{H}_{α} is a sequence of functions with domains A or projections of A. The values of the functions \vec{H} are conditions in Collapse forcings.

- p_{α} will have 3 parts: f_{α} -part, λ_{α} -part, and \vec{h}_{α} -part.
- f_{α} lives in a Cohen forcing.
- λ_{α} is a regular cardinal.

A condition is of the form $p = \langle p_{\alpha} : \alpha < \eta \rangle$ such that for each α , if p_{α} is **pure**, then

- p_{α} will have 3 parts: f_{α} -part, A_{α} -part, and \vec{H}_{α} -part.
- f_{α} lives in a Cohen forcing whose domain is an α -domain d_{α} , range is a subset of κ_{α} .
- A_{α} is a measure-one set in $E_{\alpha}(d_{\alpha})$.
- \vec{H}_{α} is a sequence of functions with domains A or projections of A. The values of the functions \vec{H} are conditions in Collapse forcings.

- p_{α} will have 3 parts: f_{α} -part, λ_{α} -part, and \vec{h}_{α} -part.
- f_{α} lives in a Cohen forcing.
- λ_{α} is a regular cardinal.
- \vec{h}_{α} is a sequence of conditions in Collapse forcings.

Instead of giving a formal definition, we start off with a pure condition.

< □ > < □ > < □ > < □ > < □ > < □ >

э

Instead of giving a formal definition, we start off with a pure condition. A pure condition is $p = \langle p_{\alpha} : \alpha < \eta \rangle$ such that $p_{\alpha} = \langle f_{\alpha}, A_{\alpha}, \vec{H}_{\alpha} \rangle$ such that

Instead of giving a formal definition, we start off with a pure condition. A pure condition is $p = \langle p_{\alpha} : \alpha < \eta \rangle$ such that $p_{\alpha} = \langle f_{\alpha}, A_{\alpha}, \vec{H}_{\alpha} \rangle$ such that

• f_{α} is a partial function from λ to κ_{α} such that $d_{\alpha} := \operatorname{dom}(f_{\alpha})$ is an α -domain.

Instead of giving a formal definition, we start off with a pure condition. A pure condition is $p = \langle p_{\alpha} : \alpha < \eta \rangle$ such that $p_{\alpha} = \langle f_{\alpha}, A_{\alpha}, \vec{H}_{\alpha} \rangle$ such that

- f_{α} is a partial function from λ to κ_{α} such that $d_{\alpha} := \operatorname{dom}(f_{\alpha})$ is an α -domain.
- $\ \, \vec{H}_{\alpha} = \langle H_{\alpha}^{0}, H_{\alpha}^{1}, H_{\alpha}^{2} \rangle$

Instead of giving a formal definition, we start off with a pure condition. A pure condition is $p = \langle p_{\alpha} : \alpha < \eta \rangle$ such that $p_{\alpha} = \langle f_{\alpha}, A_{\alpha}, \vec{H}_{\alpha} \rangle$ such that

- f_{α} is a partial function from λ to κ_{α} such that $d_{\alpha} := \operatorname{dom}(f_{\alpha})$ is an α -domain.
- $a A_{\alpha} \in E_{\alpha}(d_{\alpha}).$
- $\vec{H}_{\alpha} = \langle H_{\alpha}^{0}, H_{\alpha}^{1}, H_{\alpha}^{2} \rangle$ where dom (H_{α}^{I}) depends on the measure-one set A_{α}
- ⟨d_α : α < η⟩ is ⊆-increasing.
 ...

Direct extension: $q \leq^* p$ if for all α we have

Sittinon (New) Jirattikansakul (RIMS Set ThBlowing up the power of a singular cardinal o November 18th, 2020 10/14

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Direct extension: $q \leq^* p$ if for all α we have

イロト 不得 トイヨト イヨト 二日

Direct extension: $q \leq^* p$ if for all α we have

Output B_α projects down to a subset of A_α, meaning {μ ↾ dom(f_α) : μ ∈ B_α} ⊆ A_α.

→ < ∃ →</p>

- ∢ 🗗 ▶

- 3

Direct extension: $q \leq^* p$ if for all α we have

- Ø B_α projects down to a subset of A_α, meaning {μ ↾ dom(f_α) : μ ∈ B_α} ⊆ A_α.
- So For l = 0, 1, 2, $K'_{\alpha}(\mu) \leq H'_{\alpha}(\mu \restriction \operatorname{dom}(f_{\alpha}))$.

November 18th, 2020

One-step extension (example): p is pure and $\mu \in A_2$.

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\ \, \mathbf{q}_{\alpha} = \mathbf{p}_{\alpha} \text{ for } \alpha > 2$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $\ \, \mathbf{q}_{\alpha} = \mathbf{p}_{\alpha} \text{ for } \alpha > 2$
- Overwrite g₂ by μ: dom(g₂) = dom(f₂) and g₂(γ) = μ(γ) if γ ∈ dom(μ), otherwise g₂(γ) = f₂(γ).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト - - ヨ -

- $\ \, \mathbf{q}_{\alpha} = \mathbf{p}_{\alpha} \text{ for } \alpha > 2$
- Overwrite g₂ by μ: dom(g₂) = dom(f₂) and g₂(γ) = μ(γ) if γ ∈ dom(μ), otherwise g₂(γ) = f₂(γ).
- $\lambda_2 = s_2(\mu(\kappa_2))$ (recall $j_2(s_2)(\kappa_2) = \lambda$).

Image: A = 1 = 1

1)
$$q_{lpha} = p_{lpha}$$
 for $lpha > 2$

 Overwrite g₂ by μ: dom(g₂) = dom(f₂) and g₂(γ) = μ(γ) if γ ∈ dom(μ), otherwise g₂(γ) = f₂(γ).

$$\lambda_2 = s_2(\mu(\kappa_2)) \text{ (recall } j_2(s_2)(\kappa_2) = \lambda).$$
 $\vec{h}_2 = \vec{H}_2(\mu).$

- Overwrite g_2 by μ : dom $(g_2) = \text{dom}(f_2)$ and $g_2(\gamma) = \mu(\gamma)$ if $\gamma \in \operatorname{dom}(\mu)$, otherwise $g_2(\gamma) = f_2(\gamma)$.
- 3 $\lambda_2 = s_2(\mu(\kappa_2))$ (recall $i_2(s_2)(\kappa_2) = \lambda$). **(4)** $\vec{h}_2 = \vec{H}_2(\mu)$.
- **5** $t_0 = f_0 \circ \mu^{-1}, t_1 = f_1 \circ \mu^{-1}, C_0 = A_0 \circ \mu^{-1}, C_1 = A_1 \circ \mu^{-1}.$

< (17) × <

•
$$\kappa_1 < \lambda_2 < \kappa_2$$

Sittinon (New) Jirattikansakul (RIMS Set ThBlowing up the power of a singular cardinal o November 18th, 2020 12 / 14

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $\kappa_1 < \lambda_2 < \kappa_2$.
- $\langle q_0, q_1 \rangle$ will now live in $\mathbb{P}_{\langle E_0 \upharpoonright \lambda_2, E_1 \upharpoonright \lambda_2 \rangle}$.

Image: A matrix

→ 3 → 3

- $\kappa_1 < \lambda_2 < \kappa_2$.
- $\langle q_0, q_1 \rangle$ will now live in $\mathbb{P}_{\langle E_0 \upharpoonright \lambda_2, E_1 \upharpoonright \lambda_2 \rangle}$.
- $\vec{h}_2 \in \text{Col}(\kappa_1, < g_2(\kappa_2)) \times \text{Col}(g_2(\kappa_2), s_2(g_2(\kappa_2))^+) \times \text{Col}((s_2(g_2(\kappa_2)))^{+3}, < \kappa_2).$

- 3

12/14

- $\kappa_1 < \lambda_2 < \kappa_2$.
- $\langle q_0, q_1 \rangle$ will now live in $\mathbb{P}_{\langle E_0 \upharpoonright \lambda_2, E_1 \upharpoonright \lambda_2 \rangle}$.
- $\vec{h}_2 \in \text{Col}(\kappa_1, < g_2(\kappa_2)) \times \text{Col}(g_2(\kappa_2), s_2(g_2(\kappa_2))^+) \times \text{Col}((s_2(g_2(\kappa_2)))^{+3}, < \kappa_2).$
- In particular, a few cardinals in the interval $(\kappa_1, \kappa_2]$ are preserved.

12/14

Some conclusions

Let $\overline{\kappa}_{\eta} = \sup_{\alpha < \eta} \kappa_{\alpha}$. Then $\lambda = \overline{\kappa}_{\eta}^{++}$.

- The forcing has the Prikry property.
- Only few cardinals in $(\kappa_{\alpha}, \kappa_{\alpha+1}]$ are preserved, and hence $\overline{\kappa}_{\eta}$ is a cardinal, and is equal to \aleph_{η} .
- Need a special argument to preserve $\overline{\kappa}_{\eta}^+$.
- The forcing is λ -c.c., so preserves λ and $\lambda = \aleph_{\eta+2}$ in the extension.
- One can derive a scale on $\overline{\kappa}_{\eta}$ of length λ . Hence in the extension, $\aleph_{\eta+2} = \lambda = 2^{\overline{\kappa}_{\eta}} = 2^{\aleph_{\eta}}$.

Thank you!

< □ > < □ > < □ > < □ > < □ >

3