Blowing up the power of a singular cardinal of uncountable cofinality with collapses

Sittinon (New) Jirattikansakul

RIMS Set Theory Workshop

November 18th, 2020

Outline

- Definitions
- Main theorem
- Extenders
- Big Pictures
- Forcings
- Forcings extensions
- Some conclusions

Definitions

Definition
 The Singular Cardinal Hypothesis (SCH) states that if κ is singular strong limit, then $2^{\kappa}=\kappa^{+}$.

Definitions

Definition

The Singular Cardinal Hypothesis (SCH) states that if κ is singular strong limit, then $2^{\kappa}=\kappa^{+}$.

Violating SCH requires large cardinal. For example, $2^{\aleph_{\omega}}>\aleph_{\omega+1}$ is equiconsistent with the existence of a cardinal κ whose Mitchell order is κ^{++}.

Definitions

Definition

The Singular Cardinal Hypothesis (SCH) states that if κ is singular strong limit, then $2^{\kappa}=\kappa^{+}$.

Violating SCH requires large cardinal. For example, $2^{\aleph_{\omega}}>\aleph_{\omega+1}$ is equiconsistent with the existence of a cardinal κ whose Mitchell order is κ^{++}.

Definition
Extenders E on (κ, λ) and F on $\left(\kappa^{\prime}, \lambda\right)$ are coherent if $j_{F}(E) \upharpoonright \lambda=E$ where j_{F} is an embedding derived from F.

Definitions

Definition

The Singular Cardinal Hypothesis (SCH) states that if κ is singular strong limit, then $2^{\kappa}=\kappa^{+}$.

Violating SCH requires large cardinal. For example, $2^{\aleph_{\omega}}>\aleph_{\omega+1}$ is equiconsistent with the existence of a cardinal κ whose Mitchell order is κ^{++}.

Definition

Extenders E on (κ, λ) and F on $\left(\kappa^{\prime}, \lambda\right)$ are coherent if $j_{F}(E) \upharpoonright \lambda=E$ where j_{F} is an embedding derived from F.

From the definition above, we have that E is Mitchell below F in the sense that $E \in \operatorname{Ult}(V, F)$.

Main theorem

Theorem (J.)
Given an increasing sequence of cardinals $\left\langle\kappa_{\alpha}: \alpha<\eta\right\rangle$ where $\eta<\kappa_{0}$ is limit. Let $\lambda=\left(\sup _{\alpha<\eta} \kappa_{\alpha}\right)^{++}$.

Main theorem

Theorem (J.)
Given an increasing sequence of cardinals $\left\langle\kappa_{\alpha}: \alpha<\eta\right\rangle$ where $\eta<\kappa_{0}$ is limit. Let $\lambda=\left(\sup _{\alpha<\eta} \kappa_{\alpha}\right)^{++}$. Assume for each α, there is a $\left(\kappa_{\alpha}, \lambda\right)$-extender E_{α} such that:

Main theorem

Theorem (J.)
Given an increasing sequence of cardinals $\left\langle\kappa_{\alpha}: \alpha<\eta\right\rangle$ where $\eta<\kappa_{0}$ is limit. Let $\lambda=\left(\sup _{\alpha<\eta} \kappa_{\alpha}\right)^{++}$. Assume for each α, there is a $\left(\kappa_{\alpha}, \lambda\right)$-extender E_{α} such that:
(1) If $j_{\alpha}: V \rightarrow M_{\alpha}=\operatorname{Ult}\left(V, E_{\alpha}\right)$, we have $\operatorname{crit}\left(j_{\alpha}\right)=\kappa_{\alpha}, j_{\alpha}\left(\kappa_{\alpha}\right) \geq \lambda$, ${ }^{\kappa_{\alpha}} M_{\alpha} \subseteq M_{\alpha}$ and M_{α} computes cardinals correctly up to and including λ.

Main theorem

Theorem (J.)
Given an increasing sequence of cardinals $\left\langle\kappa_{\alpha}: \alpha<\eta\right\rangle$ where $\eta<\kappa_{0}$ is limit. Let $\lambda=\left(\sup _{\alpha<\eta} \kappa_{\alpha}\right)^{++}$. Assume for each α, there is a $\left(\kappa_{\alpha}, \lambda\right)$-extender E_{α} such that:
(1) If $j_{\alpha}: V \rightarrow M_{\alpha}=\operatorname{Ult}\left(V, E_{\alpha}\right)$, we have $\operatorname{crit}\left(j_{\alpha}\right)=\kappa_{\alpha}, j_{\alpha}\left(\kappa_{\alpha}\right) \geq \lambda$, ${ }^{\kappa_{\alpha}} M_{\alpha} \subseteq M_{\alpha}$ and M_{α} computes cardinals correctly up to and including λ.
(2) There is a function $s_{\alpha}: \kappa_{\alpha} \rightarrow \kappa_{\alpha}$ such that $j_{\alpha}\left(s_{\alpha}\right)\left(\kappa_{\alpha}\right)=\lambda$.

Main theorem

Theorem (J.)
Given an increasing sequence of cardinals $\left\langle\kappa_{\alpha}: \alpha<\eta\right\rangle$ where $\eta<\kappa_{0}$ is limit. Let $\lambda=\left(\sup _{\alpha<\eta} \kappa_{\alpha}\right)^{++}$. Assume for each α, there is a $\left(\kappa_{\alpha}, \lambda\right)$-extender E_{α} such that:
(1) If $j_{\alpha}: V \rightarrow M_{\alpha}=\operatorname{Ult}\left(V, E_{\alpha}\right)$, we have $\operatorname{crit}\left(j_{\alpha}\right)=\kappa_{\alpha}, j_{\alpha}\left(\kappa_{\alpha}\right) \geq \lambda$, ${ }^{\kappa_{\alpha}} M_{\alpha} \subseteq M_{\alpha}$ and M_{α} computes cardinals correctly up to and including λ.
(2) There is a function $s_{\alpha}: \kappa_{\alpha} \rightarrow \kappa_{\alpha}$ such that $j_{\alpha}\left(s_{\alpha}\right)\left(\kappa_{\alpha}\right)=\lambda$.
(3) $\left\langle E_{\alpha}: \alpha\langle\eta\rangle\right.$ is pairwise coherent.

Main theorem

Theorem (J.)
Given an increasing sequence of cardinals $\left\langle\kappa_{\alpha}: \alpha<\eta\right\rangle$ where $\eta<\kappa_{0}$ is limit. Let $\lambda=\left(\sup _{\alpha<\eta} \kappa_{\alpha}\right)^{++}$. Assume for each α, there is a $\left(\kappa_{\alpha}, \lambda\right)$-extender E_{α} such that:
(1) If $j_{\alpha}: V \rightarrow M_{\alpha}=\operatorname{Ult}\left(V, E_{\alpha}\right)$, we have $\operatorname{crit}\left(j_{\alpha}\right)=\kappa_{\alpha}, j_{\alpha}\left(\kappa_{\alpha}\right) \geq \lambda$, ${ }^{\kappa_{\alpha}} M_{\alpha} \subseteq M_{\alpha}$ and M_{α} computes cardinals correctly up to and including λ.
(2) There is a function $s_{\alpha}: \kappa_{\alpha} \rightarrow \kappa_{\alpha}$ such that $j_{\alpha}\left(s_{\alpha}\right)\left(\kappa_{\alpha}\right)=\lambda$.
(3) $\left\langle E_{\alpha}: \alpha<\eta\right\rangle$ is pairwise coherent.

Then there is a λ-c.c. forcing extension such that in the generic extension, for limit $\beta<\eta, 2^{\aleph_{\beta}}>\aleph_{\beta+1}$ and $2^{\aleph_{\eta}}=\aleph_{\eta+2}$.

Extenders

$$
\text { Recall } \lambda=\sup _{\alpha<\eta} \kappa_{\alpha}^{++} .
$$

Extenders

$$
\text { Recall } \lambda=\sup _{\alpha<\eta} \kappa_{\alpha}^{++} .
$$

Definition
d_{α} is an α-domain if $d_{\alpha} \in[\lambda]^{\kappa_{\alpha}}$ and $\kappa_{\alpha}+1 \subseteq d_{\alpha}$.

Extenders

Recall $\lambda=\sup _{\alpha<\eta} \kappa_{\alpha}^{++}$.
Definition
d_{α} is an α-domain if $d_{\alpha} \in[\lambda]^{\kappa_{\alpha}}$ and $\kappa_{\alpha}+1 \subseteq d_{\alpha}$.
Recall $j_{\alpha}: V \rightarrow M_{\alpha}$ and ${ }^{\kappa_{\alpha}} M_{\alpha} \subseteq M_{\alpha}$.
Definition
$\mathrm{mc}_{\alpha}\left(d_{\alpha}\right)=\left(j_{\alpha} \upharpoonright d_{\alpha}\right)^{-1}=\left\{\left(j_{\alpha}(\gamma), \gamma\right): \gamma \in d_{\alpha}\right\}$.

Extenders

Recall $\lambda=\sup _{\alpha<\eta} \kappa_{\alpha}^{++}$.
Definition
d_{α} is an α-domain if $d_{\alpha} \in[\lambda]^{\kappa_{\alpha}}$ and $\kappa_{\alpha}+1 \subseteq d_{\alpha}$.
Recall $j_{\alpha}: V \rightarrow M_{\alpha}$ and ${ }^{\kappa_{\alpha}} M_{\alpha} \subseteq M_{\alpha}$.
Definition
$\mathrm{mc}_{\alpha}\left(d_{\alpha}\right)=\left(j_{\alpha} \upharpoonright d_{\alpha}\right)^{-1}=\left\{\left(j_{\alpha}(\gamma), \gamma\right): \gamma \in d_{\alpha}\right\}$. Abbreviate $\mathrm{mc}_{\alpha}\left(d_{\alpha}\right)$ by mc_{α}.

Extenders

Recall $\lambda=\sup _{\alpha<\eta} \kappa_{\alpha}^{++}$.
Definition
d_{α} is an α-domain if $d_{\alpha} \in[\lambda]^{\kappa_{\alpha}}$ and $\kappa_{\alpha}+1 \subseteq d_{\alpha}$.
Recall $j_{\alpha}: V \rightarrow M_{\alpha}$ and ${ }^{\kappa_{\alpha}} M_{\alpha} \subseteq M_{\alpha}$.
Definition
$\mathrm{mc}_{\alpha}\left(d_{\alpha}\right)=\left(j_{\alpha} \upharpoonright d_{\alpha}\right)^{-1}=\left\{\left(j_{\alpha}(\gamma), \gamma\right): \gamma \in d_{\alpha}\right\}$. Abbreviate $\mathrm{mc}_{\alpha}\left(d_{\alpha}\right)$ by mc_{α}.

Definition
$A \in E_{\alpha}\left(d_{\alpha}\right)$ iff $\mathrm{mc}_{\alpha} \in j_{\alpha}(A)$.

Extenders

Definition
 $\mathrm{OB}_{\alpha}\left(d_{\alpha}\right)$ is the collection of functions μ such that

Extenders

Definition

$\mathrm{OB}_{\alpha}\left(d_{\alpha}\right)$ is the collection of functions μ such that
(1) $\operatorname{dom}(\mu) \subseteq d_{\alpha}, \operatorname{rge}(\mu) \subseteq \kappa_{\alpha}$, and $\kappa_{\alpha} \in \operatorname{dom}(\mu)$.

Extenders

Definition

$\mathrm{OB}_{\alpha}\left(d_{\alpha}\right)$ is the collection of functions μ such that
(1) $\operatorname{dom}(\mu) \subseteq d_{\alpha}, \operatorname{rge}(\mu) \subseteq \kappa_{\alpha}$, and $\kappa_{\alpha} \in \operatorname{dom}(\mu)$.
(2) $|\operatorname{dom}(\mu)|=\mu\left(\kappa_{\alpha}\right)$, which is below κ_{α}, and $\mu\left(\kappa_{\alpha}\right)$ is inaccessible.

Extenders

Definition

$\mathrm{OB}_{\alpha}\left(d_{\alpha}\right)$ is the collection of functions μ such that
(1) $\operatorname{dom}(\mu) \subseteq d_{\alpha}, \operatorname{rge}(\mu) \subseteq \kappa_{\alpha}$, and $\kappa_{\alpha} \in \operatorname{dom}(\mu)$.
(2) $|\operatorname{dom}(\mu)|=\mu\left(\kappa_{\alpha}\right)$, which is below κ_{α}, and $\mu\left(\kappa_{\alpha}\right)$ is inaccessible.
(3) $\operatorname{dom}(\mu) \cap \kappa_{\alpha}=\mu\left(\kappa_{\alpha}\right)$.

Extenders

Definition

$\mathrm{OB}_{\alpha}\left(d_{\alpha}\right)$ is the collection of functions μ such that
(1) $\operatorname{dom}(\mu) \subseteq d_{\alpha}, \operatorname{rge}(\mu) \subseteq \kappa_{\alpha}$, and $\kappa_{\alpha} \in \operatorname{dom}(\mu)$.
(2) $|\operatorname{dom}(\mu)|=\mu\left(\kappa_{\alpha}\right)$, which is below κ_{α}, and $\mu\left(\kappa_{\alpha}\right)$ is inaccessible.
(3) $\operatorname{dom}(\mu) \cap \kappa_{\alpha}=\mu\left(\kappa_{\alpha}\right)$.
(1) μ is order-preserving.

Extenders

Definition

$\mathrm{OB}_{\alpha}\left(d_{\alpha}\right)$ is the collection of functions μ such that
(1) $\operatorname{dom}(\mu) \subseteq d_{\alpha}, \operatorname{rge}(\mu) \subseteq \kappa_{\alpha}$, and $\kappa_{\alpha} \in \operatorname{dom}(\mu)$.
(2) $|\operatorname{dom}(\mu)|=\mu\left(\kappa_{\alpha}\right)$, which is below κ_{α}, and $\mu\left(\kappa_{\alpha}\right)$ is inaccessible.
(3) $\operatorname{dom}(\mu) \cap \kappa_{\alpha}=\mu\left(\kappa_{\alpha}\right)$.
(1) μ is order-preserving.
(6) For $\beta \in \operatorname{dom}(\mu) \cap \kappa_{\alpha}, \mu(\beta)=\beta$.

Extenders

Definition

$\mathrm{OB}_{\alpha}\left(d_{\alpha}\right)$ is the collection of functions μ such that
(1) $\operatorname{dom}(\mu) \subseteq d_{\alpha}, \operatorname{rge}(\mu) \subseteq \kappa_{\alpha}$, and $\kappa_{\alpha} \in \operatorname{dom}(\mu)$.
(2) $|\operatorname{dom}(\mu)|=\mu\left(\kappa_{\alpha}\right)$, which is below κ_{α}, and $\mu\left(\kappa_{\alpha}\right)$ is inaccessible.
(3) $\operatorname{dom}(\mu) \cap \kappa_{\alpha}=\mu\left(\kappa_{\alpha}\right)$.
(1) μ is order-preserving.
(0) For $\beta \in \operatorname{dom}(\mu) \cap \kappa_{\alpha}, \mu(\beta)=\beta$.

Lemma
$\mathrm{OB}_{\alpha}\left(d_{\alpha}\right) \in E_{\alpha}\left(d_{\alpha}\right)$.

Extenders

Recall mc ${ }_{\alpha}=\left\{\left(j_{\alpha}(\gamma), \gamma\right): \gamma \in d_{\alpha}\right\}$. Also $\left(j_{\alpha}\left(\kappa_{\alpha}\right), \kappa_{\alpha}\right) \in \mathrm{mc}_{\alpha}$ because $\kappa_{\alpha} \in d_{\alpha}$.

Extenders

Recall mc ${ }_{\alpha}=\left\{\left(j_{\alpha}(\gamma), \gamma\right): \gamma \in d_{\alpha}\right\}$. Also $\left(j_{\alpha}\left(\kappa_{\alpha}\right), \kappa_{\alpha}\right) \in \mathrm{mc}_{\alpha}$ because $\kappa_{\alpha} \in d_{\alpha}$.

Proof.
(1) $\left(\operatorname{dom}(\mu) \subseteq d_{\alpha}, \operatorname{rge}(\mu) \subseteq \kappa_{\alpha}\right.$, and $\left.\kappa_{\alpha} \in \operatorname{dom}(\mu)\right)$.

Extenders

Recall $\mathrm{mc}_{\alpha}=\left\{\left(j_{\alpha}(\gamma), \gamma\right): \gamma \in d_{\alpha}\right\}$. Also $\left(j_{\alpha}\left(\kappa_{\alpha}\right), \kappa_{\alpha}\right) \in \mathrm{mc}_{\alpha}$ because $\kappa_{\alpha} \in d_{\alpha}$.

Proof.
(1) $\left(\operatorname{dom}(\mu) \subseteq d_{\alpha}, \operatorname{rge}(\mu) \subseteq \kappa_{\alpha}\right.$, and $\left.\kappa_{\alpha} \in \operatorname{dom}(\mu)\right)$. $\operatorname{dom}\left(\mathrm{mc}_{\alpha}\right)=j_{\alpha}\left[d_{\alpha}\right] \subseteq j_{\alpha}\left(d_{\alpha}\right) . \operatorname{rge}\left(\mathrm{mc}_{\alpha}\right)=d_{\alpha} \subseteq \lambda \subseteq j_{\alpha}\left(\kappa_{\alpha}\right)$.

Extenders

Recall $\mathrm{mc}_{\alpha}=\left\{\left(j_{\alpha}(\gamma), \gamma\right): \gamma \in d_{\alpha}\right\}$. Also $\left(j_{\alpha}\left(\kappa_{\alpha}\right), \kappa_{\alpha}\right) \in \mathrm{mc}_{\alpha}$ because $\kappa_{\alpha} \in d_{\alpha}$.

Proof.
(1) $\left(\operatorname{dom}(\mu) \subseteq d_{\alpha}, \operatorname{rge}(\mu) \subseteq \kappa_{\alpha}\right.$, and $\left.\kappa_{\alpha} \in \operatorname{dom}(\mu)\right)$. $\operatorname{dom}\left(\mathrm{mc}_{\alpha}\right)=j_{\alpha}\left[d_{\alpha}\right] \subseteq j_{\alpha}\left(d_{\alpha}\right) . \operatorname{rge}\left(\mathrm{mc}_{\alpha}\right)=d_{\alpha} \subseteq \lambda \subseteq j_{\alpha}\left(\kappa_{\alpha}\right)$.
(2) $\left(|\operatorname{dom}(\mu)|=\mu\left(\kappa_{\alpha}\right)\right)$

Extenders

Recall $\mathrm{mc}_{\alpha}=\left\{\left(j_{\alpha}(\gamma), \gamma\right): \gamma \in d_{\alpha}\right\}$. Also $\left(j_{\alpha}\left(\kappa_{\alpha}\right), \kappa_{\alpha}\right) \in \mathrm{mc}_{\alpha}$ because $\kappa_{\alpha} \in d_{\alpha}$.

Proof.
(1) $\left(\operatorname{dom}(\mu) \subseteq d_{\alpha}, \operatorname{rge}(\mu) \subseteq \kappa_{\alpha}\right.$, and $\left.\kappa_{\alpha} \in \operatorname{dom}(\mu)\right)$. $\operatorname{dom}\left(\mathrm{mc}_{\alpha}\right)=j_{\alpha}\left[d_{\alpha}\right] \subseteq j_{\alpha}\left(d_{\alpha}\right) . \operatorname{rge}\left(\mathrm{mc}_{\alpha}\right)=d_{\alpha} \subseteq \lambda \subseteq j_{\alpha}\left(\kappa_{\alpha}\right)$.
(2) $\left(|\operatorname{dom}(\mu)|=\mu\left(\kappa_{\alpha}\right)\right)\left|\operatorname{dom}\left(\mathrm{mc}_{\alpha}\right)\right|=\kappa_{\alpha}=\mathrm{mc}_{\alpha}\left(j_{\alpha}\left(\kappa_{\alpha}\right)\right)$.

Extenders

Recall mc ${ }_{\alpha}=\left\{\left(j_{\alpha}(\gamma), \gamma\right): \gamma \in d_{\alpha}\right\}$. Also $\left(j_{\alpha}\left(\kappa_{\alpha}\right), \kappa_{\alpha}\right) \in \mathrm{mc}_{\alpha}$ because $\kappa_{\alpha} \in d_{\alpha}$.

Proof.
(1) $\left(\operatorname{dom}(\mu) \subseteq d_{\alpha}, \operatorname{rge}(\mu) \subseteq \kappa_{\alpha}\right.$, and $\left.\kappa_{\alpha} \in \operatorname{dom}(\mu)\right)$. $\operatorname{dom}\left(\mathrm{mc}_{\alpha}\right)=j_{\alpha}\left[d_{\alpha}\right] \subseteq j_{\alpha}\left(d_{\alpha}\right) . \operatorname{rge}\left(\mathrm{mc}_{\alpha}\right)=d_{\alpha} \subseteq \lambda \subseteq j_{\alpha}\left(\kappa_{\alpha}\right)$.
(2) $\left(|\operatorname{dom}(\mu)|=\mu\left(\kappa_{\alpha}\right)\right)\left|\operatorname{dom}\left(\mathrm{mc}_{\alpha}\right)\right|=\kappa_{\alpha}=\mathrm{mc}_{\alpha}\left(j_{\alpha}\left(\kappa_{\alpha}\right)\right)$.

The rests are straightforward.

If $d_{\alpha} \subseteq d_{\alpha}^{\prime}$, we have a natural projection $\pi_{d_{\alpha}^{\prime}, d_{\alpha}}: \mu \mapsto \mu \upharpoonright d_{\alpha}$.

Extenders

Recall mc ${ }_{\alpha}=\left\{\left(j_{\alpha}(\gamma), \gamma\right): \gamma \in d_{\alpha}\right\}$. Also $\left(j_{\alpha}\left(\kappa_{\alpha}\right), \kappa_{\alpha}\right) \in \mathrm{mc}_{\alpha}$ because $\kappa_{\alpha} \in d_{\alpha}$.

Proof.
(1) $\left(\operatorname{dom}(\mu) \subseteq d_{\alpha}, \operatorname{rge}(\mu) \subseteq \kappa_{\alpha}\right.$, and $\left.\kappa_{\alpha} \in \operatorname{dom}(\mu)\right)$. $\operatorname{dom}\left(\mathrm{mc}_{\alpha}\right)=j_{\alpha}\left[d_{\alpha}\right] \subseteq j_{\alpha}\left(d_{\alpha}\right) . \operatorname{rge}\left(\mathrm{mc}_{\alpha}\right)=d_{\alpha} \subseteq \lambda \subseteq j_{\alpha}\left(\kappa_{\alpha}\right)$.
(2) $\left(|\operatorname{dom}(\mu)|=\mu\left(\kappa_{\alpha}\right)\right)\left|\operatorname{dom}\left(\mathrm{mc}_{\alpha}\right)\right|=\kappa_{\alpha}=\mathrm{mc}_{\alpha}\left(j_{\alpha}\left(\kappa_{\alpha}\right)\right)$.

The rests are straightforward.

If $d_{\alpha} \subseteq d_{\alpha}^{\prime}$, we have a natural projection $\pi_{d_{\alpha}^{\prime}, d_{\alpha}}: \mu \mapsto \mu \upharpoonright d_{\alpha}$. This induces a projection from $E_{\alpha}\left(d_{\alpha}^{\prime}\right)$ to $E_{\alpha}\left(d_{\alpha}\right)$.

Big pictures

A condition is of the form $p=\left\langle p_{\alpha}: \alpha<\eta\right\rangle$ such that for each α, if p_{α} is pure,

Big pictures

A condition is of the form $p=\left\langle p_{\alpha}: \alpha<\eta\right\rangle$ such that for each α, if p_{α} is pure, then

- p_{α} will have 3 parts: f_{α}-part, A_{α}-part, and \vec{H}_{α}-part.

Big pictures

A condition is of the form $p=\left\langle p_{\alpha}: \alpha<\eta\right\rangle$ such that for each α, if p_{α} is pure, then

- p_{α} will have 3 parts: f_{α}-part, A_{α}-part, and \vec{H}_{α}-part.
- f_{α} lives in a Cohen forcing whose domain is an α-domain d_{α}, range is a subset of κ_{α}.

Big pictures

A condition is of the form $p=\left\langle p_{\alpha}: \alpha<\eta\right\rangle$ such that for each α, if p_{α} is pure, then

- p_{α} will have 3 parts: f_{α}-part, A_{α}-part, and \vec{H}_{α}-part.
- f_{α} lives in a Cohen forcing whose domain is an α-domain d_{α}, range is a subset of κ_{α}.
- A_{α} is a measure-one set in $E_{\alpha}\left(d_{\alpha}\right)$.

Big pictures

A condition is of the form $p=\left\langle p_{\alpha}: \alpha<\eta\right\rangle$ such that for each α, if p_{α} is pure, then

- p_{α} will have 3 parts: f_{α}-part, A_{α}-part, and \vec{H}_{α}-part.
- f_{α} lives in a Cohen forcing whose domain is an α-domain d_{α}, range is a subset of κ_{α}.
- A_{α} is a measure-one set in $E_{\alpha}\left(d_{\alpha}\right)$.
- \vec{H}_{α} is a sequence of functions with domains A or projections of A.

Big pictures

A condition is of the form $p=\left\langle p_{\alpha}: \alpha<\eta\right\rangle$ such that for each α, if p_{α} is pure, then

- p_{α} will have 3 parts: f_{α}-part, A_{α}-part, and \vec{H}_{α}-part.
- f_{α} lives in a Cohen forcing whose domain is an α-domain d_{α}, range is a subset of κ_{α}.
- A_{α} is a measure-one set in $E_{\alpha}\left(d_{\alpha}\right)$.
- \vec{H}_{α} is a sequence of functions with domains A or projections of A. The values of the functions \vec{H} are conditions in Collapse forcings.

Big pictures

A condition is of the form $p=\left\langle p_{\alpha}: \alpha<\eta\right\rangle$ such that for each α, if p_{α} is pure, then

- p_{α} will have 3 parts: f_{α}-part, A_{α}-part, and \vec{H}_{α}-part.
- f_{α} lives in a Cohen forcing whose domain is an α-domain d_{α}, range is a subset of κ_{α}.
- A_{α} is a measure-one set in $E_{\alpha}\left(d_{\alpha}\right)$.
- \vec{H}_{α} is a sequence of functions with domains A or projections of A. The values of the functions \vec{H} are conditions in Collapse forcings.

If p_{α} is impure, then

Big pictures

A condition is of the form $p=\left\langle p_{\alpha}: \alpha<\eta\right\rangle$ such that for each α, if p_{α} is pure, then

- p_{α} will have 3 parts: f_{α}-part, A_{α}-part, and \vec{H}_{α}-part.
- f_{α} lives in a Cohen forcing whose domain is an α-domain d_{α}, range is a subset of κ_{α}.
- A_{α} is a measure-one set in $E_{\alpha}\left(d_{\alpha}\right)$.
- \vec{H}_{α} is a sequence of functions with domains A or projections of A. The values of the functions \vec{H} are conditions in Collapse forcings.

If p_{α} is impure, then

- p_{α} will have 3 parts: f_{α}-part, λ_{α}-part, and \vec{h}_{α}-part.

Big pictures

A condition is of the form $p=\left\langle p_{\alpha}: \alpha<\eta\right\rangle$ such that for each α, if p_{α} is pure, then

- p_{α} will have 3 parts: f_{α}-part, A_{α}-part, and \vec{H}_{α}-part.
- f_{α} lives in a Cohen forcing whose domain is an α-domain d_{α}, range is a subset of κ_{α}.
- A_{α} is a measure-one set in $E_{\alpha}\left(d_{\alpha}\right)$.
- \vec{H}_{α} is a sequence of functions with domains A or projections of A. The values of the functions \vec{H} are conditions in Collapse forcings.

If p_{α} is impure, then

- p_{α} will have 3 parts: f_{α}-part, λ_{α}-part, and \vec{h}_{α}-part.
- f_{α} lives in a Cohen forcing.

Big pictures

A condition is of the form $p=\left\langle p_{\alpha}: \alpha<\eta\right\rangle$ such that for each α, if p_{α} is pure, then

- p_{α} will have 3 parts: f_{α}-part, A_{α}-part, and \vec{H}_{α}-part.
- f_{α} lives in a Cohen forcing whose domain is an α-domain d_{α}, range is a subset of κ_{α}.
- A_{α} is a measure-one set in $E_{\alpha}\left(d_{\alpha}\right)$.
- \vec{H}_{α} is a sequence of functions with domains A or projections of A. The values of the functions \vec{H} are conditions in Collapse forcings.

If p_{α} is impure, then

- p_{α} will have 3 parts: f_{α}-part, λ_{α}-part, and \vec{h}_{α}-part.
- f_{α} lives in a Cohen forcing.
- λ_{α} is a regular cardinal.

Big pictures

A condition is of the form $p=\left\langle p_{\alpha}: \alpha<\eta\right\rangle$ such that for each α, if p_{α} is pure, then

- p_{α} will have 3 parts: f_{α}-part, A_{α}-part, and \vec{H}_{α}-part.
- f_{α} lives in a Cohen forcing whose domain is an α-domain d_{α}, range is a subset of κ_{α}.
- A_{α} is a measure-one set in $E_{\alpha}\left(d_{\alpha}\right)$.
- \vec{H}_{α} is a sequence of functions with domains A or projections of A. The values of the functions \vec{H} are conditions in Collapse forcings.

If p_{α} is impure, then

- p_{α} will have 3 parts: f_{α}-part, λ_{α}-part, and \vec{h}_{α}-part.
- f_{α} lives in a Cohen forcing.
- λ_{α} is a regular cardinal.
- \vec{h}_{α} is a sequence of conditions in Collapse forcings.

Forcings

Instead of giving a formal definition, we start off with a pure condition.

Forcings

Instead of giving a formal definition, we start off with a pure condition. A pure condition is $p=\left\langle p_{\alpha}: \alpha<\eta\right\rangle$ such that $p_{\alpha}=\left\langle f_{\alpha}, A_{\alpha}, \vec{H}_{\alpha}\right\rangle$ such that

Forcings

Instead of giving a formal definition, we start off with a pure condition. A pure condition is $p=\left\langle p_{\alpha}: \alpha<\eta\right\rangle$ such that $p_{\alpha}=\left\langle f_{\alpha}, A_{\alpha}, \vec{H}_{\alpha}\right\rangle$ such that
(1) f_{α} is a partial function from λ to κ_{α} such that $d_{\alpha}:=\operatorname{dom}\left(f_{\alpha}\right)$ is an α-domain.

Forcings

Instead of giving a formal definition, we start off with a pure condition. A pure condition is $p=\left\langle p_{\alpha}: \alpha<\eta\right\rangle$ such that $p_{\alpha}=\left\langle f_{\alpha}, A_{\alpha}, \vec{H}_{\alpha}\right\rangle$ such that
(1) f_{α} is a partial function from λ to κ_{α} such that $d_{\alpha}:=\operatorname{dom}\left(f_{\alpha}\right)$ is an α-domain.
(2) $A_{\alpha} \in E_{\alpha}\left(d_{\alpha}\right)$.
(3) $\vec{H}_{\alpha}=\left\langle H_{\alpha}^{0}, H_{\alpha}^{1}, H_{\alpha}^{2}\right\rangle$

Forcings

Instead of giving a formal definition, we start off with a pure condition. A pure condition is $p=\left\langle p_{\alpha}: \alpha<\eta\right\rangle$ such that $p_{\alpha}=\left\langle f_{\alpha}, A_{\alpha}, \vec{H}_{\alpha}\right\rangle$ such that
(1) f_{α} is a partial function from λ to κ_{α} such that $d_{\alpha}:=\operatorname{dom}\left(f_{\alpha}\right)$ is an α-domain.
(2) $A_{\alpha} \in E_{\alpha}\left(d_{\alpha}\right)$.
(3) $\vec{H}_{\alpha}=\left\langle H_{\alpha}^{0}, H_{\alpha}^{1}, H_{\alpha}^{2}\right\rangle$ where $\operatorname{dom}\left(H_{\alpha}^{\prime}\right)$ depends on the measure-one set A_{α}
(1) $\left\langle d_{\alpha}: \alpha<\eta\right\rangle$ is \subseteq-increasing.
© \ldots

Forcing extensions

$$
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
p_{0}=\left\langle f_{0}, A_{0}, \vec{H}_{0}\right\rangle & p_{1}=\left\langle f_{1}, A_{1}, \vec{H}_{1}\right\rangle & p_{2}=\left\langle f_{2}, A_{2}, \vec{H}_{2}\right\rangle & p_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle \\
q_{0}=\left\langle g_{0}, B_{0}, \vec{K}_{0}\right\rangle & q_{1}=\left\langle g_{1}, B_{1}, \vec{K}_{1}\right\rangle & q_{2}=\left\langle g_{2}, B_{2}, \vec{K}_{2}\right\rangle & q_{3}=\left\langle g_{3}, B_{3}, \vec{K}_{3}\right\rangle
\end{array}
$$

Direct extension: $q \leq^{*} p$ if for all α we have

Forcing extensions

$$
\begin{array}{ccc}
0 & 1 & 2
\end{array}
$$

Direct extension: $q \leq^{*} p$ if for all α we have
(1) $g_{\alpha} \leq f_{\alpha}$.

Forcing extensions

$$
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
p_{0}=\left\langle f_{0}, A_{0}, \vec{H}_{0}\right\rangle & p_{1}=\left\langle f_{1}, A_{1}, \vec{H}_{1}\right\rangle & p_{2}=\left\langle f_{2}, A_{2}, \vec{H}_{2}\right\rangle & p_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle \\
q_{0}=\left\langle g_{0}, B_{0}, \vec{K}_{0}\right\rangle & q_{1}=\left\langle g_{1}, B_{1}, \vec{K}_{1}\right\rangle & q_{2}=\left\langle g_{2}, B_{2}, \vec{K}_{2}\right\rangle & q_{3}=\left\langle g_{3}, B_{3}, \vec{K}_{3}\right\rangle
\end{array}
$$

Direct extension: $q \leq^{*} p$ if for all α we have
(1) $g_{\alpha} \leq f_{\alpha}$.
(2) B_{α} projects down to a subset of A_{α}, meaning $\left\{\mu \upharpoonright \operatorname{dom}\left(f_{\alpha}\right): \mu \in B_{\alpha}\right\} \subseteq A_{\alpha}$.

Forcing extensions

$$
\begin{array}{ccc}
0 & 1 & 2
\end{array}
$$

Direct extension: $q \leq^{*} p$ if for all α we have
(1) $g_{\alpha} \leq f_{\alpha}$.
(2) B_{α} projects down to a subset of A_{α}, meaning $\left\{\mu \upharpoonright \operatorname{dom}\left(f_{\alpha}\right): \mu \in B_{\alpha}\right\} \subseteq A_{\alpha}$.
(3) For $I=0,1,2, K_{\alpha}^{\prime}(\mu) \leq H_{\alpha}^{\prime}\left(\mu \upharpoonright \operatorname{dom}\left(f_{\alpha}\right)\right)$.

Forcing extensions

$$
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
p_{0}=\left\langle f_{0}, A_{0}, \vec{H}_{0}\right\rangle & p_{1}=\left\langle f_{1}, A_{1}, \vec{H}_{1}\right\rangle & p_{2}=\left\langle f_{2}, A_{2}, \vec{H}_{2}\right\rangle & p_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle \\
q_{0}=\left\langle t_{0}, C_{0}, \vec{L}_{0}\right\rangle & q_{1}=\left\langle t_{1}, C_{1}, \vec{L}_{1}\right\rangle & q_{2}=\left\langle g_{2}, \lambda_{2}, \vec{h}_{2}\right\rangle & q_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle
\end{array}
$$

One-step extension (example): p is pure and $\mu \in A_{2}$.

Forcing extensions

$$
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
p_{0}=\left\langle f_{0}, A_{0}, \vec{H}_{0}\right\rangle & p_{1}=\left\langle f_{1}, A_{1}, \vec{H}_{1}\right\rangle & p_{2}=\left\langle f_{2}, A_{2}, \vec{H}_{2}\right\rangle & p_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle \\
q_{0}=\left\langle t_{0}, C_{0}, \vec{L}_{0}\right\rangle & q_{1}=\left\langle t_{1}, C_{1}, \vec{L}_{1}\right\rangle & q_{2}=\left\langle g_{2}, \lambda_{2}, \vec{h}_{2}\right\rangle & q_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle
\end{array}
$$

One-step extension (example): p is pure and $\mu \in A_{2}$. One-step extension of p by μ is a condition q such that:
(1) $q_{\alpha}=p_{\alpha}$ for $\alpha>2$

Forcing extensions

$$
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
p_{0}=\left\langle f_{0}, A_{0}, \vec{H}_{0}\right\rangle & p_{1}=\left\langle f_{1}, A_{1}, \vec{H}_{1}\right\rangle & p_{2}=\left\langle f_{2}, A_{2}, \vec{H}_{2}\right\rangle & p_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle \\
q_{0}=\left\langle t_{0}, C_{0}, \vec{L}_{0}\right\rangle & q_{1}=\left\langle t_{1}, C_{1}, \vec{L}_{1}\right\rangle & q_{2}=\left\langle g_{2}, \lambda_{2}, \vec{h}_{2}\right\rangle & q_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle
\end{array}
$$

One-step extension (example): p is pure and $\mu \in A_{2}$. One-step extension of p by μ is a condition q such that:
(1) $q_{\alpha}=p_{\alpha}$ for $\alpha>2$
(2) Overwrite g_{2} by μ : $\operatorname{dom}\left(g_{2}\right)=\operatorname{dom}\left(f_{2}\right)$ and $g_{2}(\gamma)=\mu(\gamma)$ if $\gamma \in \operatorname{dom}(\mu)$, otherwise $g_{2}(\gamma)=f_{2}(\gamma)$.

Forcing extensions

$$
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
p_{0}=\left\langle f_{0}, A_{0}, \vec{H}_{0}\right\rangle & p_{1}=\left\langle f_{1}, A_{1}, \vec{H}_{1}\right\rangle & p_{2}=\left\langle f_{2}, A_{2}, \vec{H}_{2}\right\rangle & p_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle \\
q_{0}=\left\langle t_{0}, C_{0}, \vec{L}_{0}\right\rangle & q_{1}=\left\langle t_{1}, C_{1}, \vec{L}_{1}\right\rangle & q_{2}=\left\langle g_{2}, \lambda_{2}, \vec{h}_{2}\right\rangle & q_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle
\end{array}
$$

One-step extension (example): p is pure and $\mu \in A_{2}$. One-step extension of p by μ is a condition q such that:
(1) $q_{\alpha}=p_{\alpha}$ for $\alpha>2$
(2) Overwrite g_{2} by μ : $\operatorname{dom}\left(g_{2}\right)=\operatorname{dom}\left(f_{2}\right)$ and $g_{2}(\gamma)=\mu(\gamma)$ if $\gamma \in \operatorname{dom}(\mu)$, otherwise $g_{2}(\gamma)=f_{2}(\gamma)$.
(3) $\lambda_{2}=s_{2}\left(\mu\left(\kappa_{2}\right)\right)\left(\right.$ recall $\left.j_{2}\left(s_{2}\right)\left(\kappa_{2}\right)=\lambda\right)$.

Forcing extensions

$$
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
p_{0}=\left\langle f_{0}, A_{0}, \vec{H}_{0}\right\rangle & p_{1}=\left\langle f_{1}, A_{1}, \vec{H}_{1}\right\rangle & p_{2}=\left\langle f_{2}, A_{2}, \vec{H}_{2}\right\rangle & p_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle \\
q_{0}=\left\langle t_{0}, C_{0}, \vec{L}_{0}\right\rangle & q_{1}=\left\langle t_{1}, C_{1}, \vec{L}_{1}\right\rangle & q_{2}=\left\langle g_{2}, \lambda_{2}, \vec{h}_{2}\right\rangle & q_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle
\end{array}
$$

One-step extension (example): p is pure and $\mu \in A_{2}$. One-step extension of p by μ is a condition q such that:
(1) $q_{\alpha}=p_{\alpha}$ for $\alpha>2$
(2) Overwrite g_{2} by μ : $\operatorname{dom}\left(g_{2}\right)=\operatorname{dom}\left(f_{2}\right)$ and $g_{2}(\gamma)=\mu(\gamma)$ if $\gamma \in \operatorname{dom}(\mu)$, otherwise $g_{2}(\gamma)=f_{2}(\gamma)$.
(3) $\lambda_{2}=s_{2}\left(\mu\left(\kappa_{2}\right)\right)\left(\right.$ recall $\left.j_{2}\left(s_{2}\right)\left(\kappa_{2}\right)=\lambda\right)$.
(c) $\vec{h}_{2}=\vec{H}_{2}(\mu)$.

Forcing extensions

One-step extension (example): p is pure and $\mu \in A_{2}$. One-step extension of p by μ is a condition q such that:
(1) $q_{\alpha}=p_{\alpha}$ for $\alpha>2$
(2) Overwrite g_{2} by μ : $\operatorname{dom}\left(g_{2}\right)=\operatorname{dom}\left(f_{2}\right)$ and $g_{2}(\gamma)=\mu(\gamma)$ if $\gamma \in \operatorname{dom}(\mu)$, otherwise $g_{2}(\gamma)=f_{2}(\gamma)$.
(3) $\lambda_{2}=s_{2}\left(\mu\left(\kappa_{2}\right)\right)\left(\right.$ recall $\left.j_{2}\left(s_{2}\right)\left(\kappa_{2}\right)=\lambda\right)$.
(c) $\vec{h}_{2}=\vec{H}_{2}(\mu)$.
(5) $t_{0}=f_{0} \circ \mu^{-1}, t_{1}=f_{1} \circ \mu^{-1}, C_{0}=A_{0} \circ \mu^{-1}, C_{1}=A_{1} \circ \mu^{-1}$.

Forcing extensions

$$
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
p_{0}=\left\langle f_{0}, A_{0}, \vec{H}_{0}\right\rangle & p_{1}=\left\langle f_{1}, A_{1}, \vec{H}_{1}\right\rangle & p_{2}=\left\langle f_{2}, A_{2}, \vec{H}_{2}\right\rangle & p_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle \\
q_{0}=\left\langle t_{0}, C_{0}, \vec{L}_{0}\right\rangle & q_{1}=\left\langle t_{1}, C_{1}, \vec{L}_{1}\right\rangle & q_{2}=\left\langle g_{2}, \lambda_{2}, \vec{h}_{2}\right\rangle & q_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle
\end{array}
$$

- $\kappa_{1}<\lambda_{2}<\kappa_{2}$

Forcing extensions

$$
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
p_{0}=\left\langle f_{0}, A_{0}, \vec{H}_{0}\right\rangle & p_{1}=\left\langle f_{1}, A_{1}, \vec{H}_{1}\right\rangle & p_{2}=\left\langle f_{2}, A_{2}, \vec{H}_{2}\right\rangle & p_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle \\
q_{0}=\left\langle t_{0}, C_{0}, \vec{L}_{0}\right\rangle & q_{1}=\left\langle t_{1}, C_{1}, \vec{L}_{1}\right\rangle & q_{2}=\left\langle g_{2}, \lambda_{2}, \vec{h}_{2}\right\rangle & q_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle
\end{array}
$$

- $\kappa_{1}<\lambda_{2}<\kappa_{2}$.
- $\left\langle q_{0}, q_{1}\right\rangle$ will now live in $\mathbb{P}_{\left\langle E_{0}\right| \lambda_{2}, E_{1}\left|\lambda_{2}\right\rangle}$.

Forcing extensions

$$
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
p_{0}=\left\langle f_{0}, A_{0}, \vec{H}_{0}\right\rangle & p_{1}=\left\langle f_{1}, A_{1}, \vec{H}_{1}\right\rangle & p_{2}=\left\langle f_{2}, A_{2}, \vec{H}_{2}\right\rangle & p_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle \\
q_{0}=\left\langle t_{0}, C_{0}, \vec{L}_{0}\right\rangle & q_{1}=\left\langle t_{1}, C_{1}, \vec{L}_{1}\right\rangle & q_{2}=\left\langle g_{2}, \lambda_{2}, \vec{h}_{2}\right\rangle & q_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle
\end{array}
$$

- $\kappa_{1}<\lambda_{2}<\kappa_{2}$.
- $\left\langle q_{0}, q_{1}\right\rangle$ will now live in $\mathbb{P}_{\left\langle E_{0}\right| \lambda_{2}, E_{1}\left|\lambda_{2}\right\rangle}$.
- $\vec{h}_{2} \in \operatorname{Col}\left(\kappa_{1},<\right.$ $\left.g_{2}\left(\kappa_{2}\right)\right) \times \operatorname{Col}\left(g_{2}\left(\kappa_{2}\right), s_{2}\left(g_{2}\left(\kappa_{2}\right)\right)^{+}\right) \times \operatorname{Col}\left(\left(s_{2}\left(g_{2}\left(\kappa_{2}\right)\right)\right)^{+3},<\kappa_{2}\right)$.

Forcing extensions

$$
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
p_{0}=\left\langle f_{0}, A_{0}, \vec{H}_{0}\right\rangle & p_{1}=\left\langle f_{1}, A_{1}, \vec{H}_{1}\right\rangle & p_{2}=\left\langle f_{2}, A_{2}, \vec{H}_{2}\right\rangle & p_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle \\
q_{0}=\left\langle t_{0}, C_{0}, \vec{L}_{0}\right\rangle & q_{1}=\left\langle t_{1}, C_{1}, \vec{L}_{1}\right\rangle & q_{2}=\left\langle g_{2}, \lambda_{2}, \vec{h}_{2}\right\rangle & q_{3}=\left\langle f_{3}, A_{3}, \vec{H}_{3}\right\rangle
\end{array}
$$

- $\kappa_{1}<\lambda_{2}<\kappa_{2}$.
- $\left\langle q_{0}, q_{1}\right\rangle$ will now live in $\mathbb{P}_{\left\langle E_{0}\right| \lambda_{2}, E_{1}\left|\lambda_{2}\right\rangle}$.
- $\vec{h}_{2} \in \operatorname{Col}\left(\kappa_{1},<\right.$ $\left.g_{2}\left(\kappa_{2}\right)\right) \times \operatorname{Col}\left(g_{2}\left(\kappa_{2}\right), s_{2}\left(g_{2}\left(\kappa_{2}\right)\right)^{+}\right) \times \operatorname{Col}\left(\left(s_{2}\left(g_{2}\left(\kappa_{2}\right)\right)\right)^{+3},<\kappa_{2}\right)$.
- In particular, a few cardinals in the interval (κ_{1}, κ_{2}] are preserved.

Some conclusions

Let $\bar{\kappa}_{\eta}=\sup _{\alpha<\eta} \kappa_{\alpha}$. Then $\lambda=\bar{\kappa}_{\eta}^{++}$.

- The forcing has the Prikry property.
- Only few cardinals in $\left(\kappa_{\alpha}, \kappa_{\alpha+1}\right]$ are preserved, and hence $\bar{\kappa}_{\eta}$ is a cardinal, and is equal to \aleph_{η}.
- Need a special argument to preserve $\bar{\kappa}_{\eta}^{+}$.
- The forcing is λ-c.c., so preserves λ and $\lambda=\aleph_{\eta+2}$ in the extension.
- One can derive a scale on $\bar{\kappa}_{\eta}$ of length λ. Hence in the extension, $\aleph_{\eta+2}=\lambda=2^{\bar{\kappa}_{\eta}}=2^{\aleph_{\eta}}$.

Thank you!

