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Abstract. We study, in this work, the maximum principle for the Bel-
trami color flow and the stability of the flow’s numerical approximation
by finite difference schemes. We discuss, in the continuous case, the the-
oretical properties of this system and prove the maximum principle in
the strong and the weak formulations. In the discrete case, all the sec-
ond order explicit schemes, that are currently used, violate, in general,
the maximum principle. For these schemes we give a theoretical stability
proof, accompanied by several numerical examples.
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1 Introduction

The scale-space approach in low-level vision originated from several ideas: One
point of view emphasized the multi-scale nature of images. Important features
are to be found in all scale levels and one should use all scales in order to gain an
understanding of the captured scene. The second, and somewhat related point of
view, looked for a procedure of gradual simplification of the image. In each step
the image should be a simplified version of the preceding step. New features, in
a given step, that cannot be explained as a simplification of the previous step
should not be present. This ”causality” principle, introduced by Koenderink [11],
leads directly to the maximum principle in the one-dimensional case.

Many generalizations of the scale-space linear flow exist. They are based on
anisotropic and/or inhomogeneous diffusion flows. In order to serve as a basis
for a multi scale analysis they should be ”causal” flows. It is well known that
the Perona-Malik continuous flow, for example, does not satisfy the maximum
principle and cannot serve as a basis for a scale-space analysis. However, the
closely related Partial Differential Equation (PDE) introduced by Catté, et al
[2] has this property as does the discrete Perona-Malik flow [18].

There are several possible definitions of causality in higher dimensions. We
restrict ourselves in this article to the study of the maximum principle feature for
the color flow. We assume hereafter that the maximum principle is a necessary
condition for causality. We treat in this paper the Beltrami flow for color images
and show that it satisfies the maximum (minimum) principle in both the strong
and the weak formulations.



We follow the duality approach of Florack [6] and treat an image as a tem-
pered distribution. This approach follows our intuition that by taking two pic-
tures of the scene with two different devices we have two representations of ”the
same thing” and not two completely different objects. The duality approach de-
scribes the sensor space as a functional space. The data that we usually process,
which result from the interaction of the physical/optical data and the sensor, are
modelled as an inner product of the sensor function and the ”true image”. Under
this approach, the set of images is equivalent to the set of linear functionals on
the sensor functional space (i.e. distributions). It is natural from this point of
view to study the flow equations on the image space directly. In order to do that
we have to define the equations in the weak sense. Another reason to study weak
solutions is noise. Since noise is a non-continuous and non-differentiable function
in all its points, the corrupted initial image which is a sum of the ”true image”
and the noise, is non-continuous and non-differentiable as well. One needs, then,
to resort to the weak formulation in order to be able to define the PDE based
denoising algorithm.

The strong formulation is presented here for two reasons. The first and ob-
vious reason is that ”it is there”. Since we can prove it, then it fits naturally to
the rest of this study. The second reason is more technical. It is used as an ap-
proximation tool in the proof of the maximum principle for weak solutions. We
will prove below that if a weak solution exists then it must satisfy the maximum
(minimum) principle.

In the last part of this paper we study the maximum principle for the various
discrete schemes by which the differential equation is approximated. We show
the fact that the various derivatives are approximated to a given order is not
enough to guarantee the maximum principle. Many common numerical schemes
are proved to violate the maximum principle. We present a proof, though, of their
stability along with examples that clearly demonstrate their failure to obey the
maximum principle.

The paper is organized as follows: In section 2 we review the Beltrami Frame-
work. In section 3 we deal with the continuous formulation of the maximum
principle. We present the maximum principle theorem for the strong solution
of the parabolic quasilinear system that characterizes the Beltrami color flow.
In section 4 we introduce the weak (distributional) solution for this system and
present the maximum principle in a weak formulation. In section 5 we discuss
the properties of the second-order central differences scheme, which in general
violates the maximum principle. For this scheme we give a theoretical stability
proof. In section 6 we present numerical results. We summarize and conclude in
Section 7.

2 The Beltrami Framework

Let us briefly review the Beltrami framework for non-linear diffusion in computer
vision [13, 14, 7].



We represent an image and other local features as embedding maps of a
Riemannian manifold in a higher dimensional space. The simplest example is
a gray-level image which is represented as a 2D surface embedded in IR3. We
denote the map by X : Σ → IR3. Where Σ is a two-dimensional surface, and we
denote the local coordinates on it by (σ1, σ2). The map U is given in general by
(U1(σ1, σ2), U2(σ1, σ2), U3(σ1, σ2)). In our example we represent it as follows
(U1 = σ1, U2 = σ2, U3 = I(σ1, σ2)). We choose on this surface a Riemannian
structure, namely, a metric. The metric is a positive definite and a symmetric
2-tensor that may be defined through the local distance measurements:

ds2 = g11(dσ1)2 + 2g12dσ1dσ2 + g22(dσ2)2.

The canonical choice of coordinates in image processing is the cartesian. For such
choice, that we follow in the rest of the paper we identify σ1 = x1 and σ2 = x2.
We use below the Einstein summation convention in which the above equation
reads ds2 = gijdxidxj where repeated indices are summed over. We denote the
elements of the inverse of the metric by superscripts gij = (g−1)ij .

Once the image is defined as an embedding mapping of Riemannian manifolds
it is natural to look for a measure on this space of embedding maps.

2.1 Polyakov Action: A measure on the space of embedding maps

Denote by (Σ, g) the image manifold and its metric and by (M,h) the space-
feature manifold and its metric, then the functional S[U ] attaches a real number
to a map U : Σ → M :

S[Ua, gij , hab] =
∫

dV 〈−→∇Ua,
−→∇U b〉ghab

where dV is a volume element and 〈∇R,∇B〉g = gij∂xiR∂xj B. This functional,
for m = 2 and hab = δab, was first proposed by Polyakov [12] in the context of
high energy physics, and the theory known as string theory.

Let us formulate the Polyakov action in matrix form: (Σ,G) is the image
manifold and its metric as before. Similarly, (M, H) is the spatial-feature mani-
fold and its metric. Define

Aab = (
−→∇Ua)tG−1−→∇U b

The map U : Σ → M has a weight

S[U,G,H] =
∫

dmσ
√

gTr(AH),

where m is the dimension of Σ and g = det(G).
Using standard methods in the calculus of variations the Euler-Lagrange

equations with respect to the embedding (assuming Euclidean embedding space)
are (see [13] for explicit derivation):

− 1
2
√

g
hab δS

δU b
=

1√
g
∂xi(

√
ggij∂xj U

a).



Or in matricial form

− 1
2
√

g
hab δS

δU b
=

1√
g
div

(√
gG−1∇Ua

)

︸ ︷︷ ︸
∆gUa

. (1)

The extension for non-Euclidean embedding space is treated in [14, 15, 8].
The elements of the induced metric for color images are:

gij = δij + β2
3∑

a=1

Ua
xi

Ua
xj

, (2)

where β > 0 is the ratio between the spatial and color distances. Note that this
metric is different from the Di Zenzo matrix [20]( which is not a metric since it is
not positive definite). A generalization of DiZenzo’s gradient for color images has
been investigated in [19] by constructing an anisotropic vector-valued diffusion
model with a common tensor-valued structure descriptor.

The value of parameter β present in the elements of the metric gij is very
important and determines the nature of the flow. In the limit β → 0, for example,
the flow degenerates to the decoupled channel by channel linear diffusion flow.
In the other limit β →∞ we get a new non-linear flow. The gray-value analogue
of this limit is the Total Variation flow of [9] (see details in [14]). Our proof of
the extremum property is independent of the value of β though.

Since (gij) is positive definite, g ≡ det(gij) > 0 for all σi. This factor is
the simplest one that does not change the minimization solution while giving a
reparameterization invariant expression. The operator that is acting on Ua is the
natural generalization of the Laplacian from flat spaces to manifolds, is called
the Laplace-Beltrami operator and is denoted by ∆g.

The non-linear diffusion or scale-space equation emerges as a gradient descent
minimization:

Ua
t =

∂

∂t
Ua = − 1

2
√

g
hab δS

δU b
= ∆gU

a. (3)

The mathematical properties of this system, together with the initial value,
given by the original noisy image and with Neumann boundary condition, are
studied in the rest of the paper with an emphasis on the maximum principle.

3 Extremum Principle for Functional Solutions

We establish, in this subsection, the maximum principle for the strong solution
of the initial boundary-value problem which characterizes the Beltrami color
flow. We refer to the term strong solutions when we talk about solutions which
are functions with some smoothness criteria that we detail below. Let us first
introduce few notations: We denote the image domain by Ω. It is a bounded
open domain in IR2. We denote by ∂Ω the boundary of Ω. We define the space-
time cylinder QT = Ω× (0, T ), and denote its lateral surface by ST = {(x, t)|x ∈



∂Ω, t ∈ (0, T )}. We define also the parabolic boundary by the union of the
bottom and the lateral boundaries of the cylinder ΓT = Ω

⋃
ST .

The PDE is the gradient descent equation for the Polyakov action as was
described in the previous section. We carry out explicitly the result of applying
the derivation operator Div. The result is a sum of two terms: The first term
results from applying the derivative on

√
gG−1, and the second comes from

applying the div on the gradient div(∇Ua) = ∆Ua which is the Laplacian.
Remember that the metric, and consequently its inverse and its determinant,
depends on first order derivatives. The application of the Div operator on it give
rise to second order derivatives of the different channels as well. Rearranging
the right hand side of Eq. (3) according to the second order derivatives and the
coefficients thereof we arrive to the following coupled system of PDEs:

Ua
t = (F a

b)
ijU b

xixj
, (x, t) ∈ QT , (4)

where a, b = 1, 2, 3 are indices in color space, i, j = 1, 2 are spatial indices
and summation is applied on all repeated indices. Note that (F a

b) are nine 2x2
matrices. Denote by Ha = Ua

xixj
the Hessian of Ua. This system of PDEs can

be written in terms of a trace in spatial domain as

Ua
t = Trace

(
F a

bH
b
)

, (x, t) ∈ QT , (5)

where, as before, the repeated b index implies a summation over the color indices.
The initial and boundary conditions are

Ua(x, 0) = Ua
0 (x), x ∈ Ω (6)

(F a
b)
−→∇U b · −→n

∣∣∣
ST

= 0 (no summation on b here), (7)

where −→n is the outer normal to ∂Ω and the dot product denotes, as usual, the
Euclidian scalar product on IR2.

Lemma 1. The nine 2x2 matrices (F a
b ) are symmetric, positive definite, and

their elements (F a
b)

ij are rational functions of the first derivatives of the different
channels. These matrix elements are, moreover, uniformly bounded functions on
QT .

Proof. The proof is by direct calculation. One finds for example:

(
F 2

1

)11
= −RxGx

g2
22

g2
+ (RxGy + RyGx)

g12g22

g2
− RyGy

g

(
1 +

g2
12

g

)

(
F 2

1

)12
=

(
F 2

1

)21
=

RxGy + RyGx

g
− RxGy + RyGx

g2
g11g22−

RxGy + RyGx

g2
g2
12 + 2

RxGxg22 + RyGyg11

g2
g2
12

(
F 2

3

)22
= −RyGy

g2
11

g2
+ (RxGy + RyGx)

g11g12

g2
− RxGx

g
(1 +

g2
12

g
) . (8)

(here R, G,B denote the three components of the color vector
−→
U )



These are rational functions of the first derivatives. The diagonal elements are
strictly positive (by direct check) and the negativity of the discriminant implies
the positive definiteness of this matrix. One can verify by direct check that the
coefficients are bounded functions of the first derivatives values. Other matrices
are checked along the same lines. ¤

Next we state the maximum principle for strong solutions of the coupled
system of PDEs Eq. (4).

Theorem 1. Let
−→
U0 ∈ C2(Ω) with bounded second derivatives. A solution

−→
U ∈

C2,1(Q̄T ) satisfies, then, the following maximum principle:

1) max
Q̄T

Ua = max
Ω

Ua
0

2) max
Q̄T

3∑
a=1

Ua = max
Ω

3∑
a=1

Ua
0 . (9)

Proof. The proof make use of Lemma 1. We describe here the main steps of the
proof. The details can be found in [3]. Note that assertion 1) does not imply, in
principle assertion 2). The proof is based on the observation that the off diagonal
matrices F a

b with a 6= b can be written as Ua
xi

times a bounded function. It
follows that if the maximum is attained in the interior of the cylinder then the
first derivatives vanish at that point while the Hessian is negative definite. It
implies the negativity of the right side of Eq. (4) while the left side is zero by
the maximality of the function at that point. This excludes the interior points.
The lateral boundary is shown to be excluded as well by using the Neumann
boundary conditions. The upper boundary of the cylinder QT is a little more
complicated and we leave the details to our technical report [3]. ¤

This theorem, besides its own value, serves as a basic approximation tool in
the proof of the extremum principle for weak solutions of the non-linear system
of the color Beltrami flow. We assume in the meantime that weak solutions from
a proper space (which will be described below ) exist and prove that if they
exist, they obey the extremum principle.

4 Extremum Principle for Distributional Solutions

There are two reasons that convinced us to look at weak solutions for the, fairly
complicated and highly non-linear, system of the color Beltrami partial differ-
ential equations. The first reason is the fact that this is a denoising algorithm.
It means that the original image is corrupted with noise. One usually assumes
an additive Gaussian or uniform noise. Since the noise is non differential func-
tion in ALL its points then one is not allowed to assume that the original noisy
image is continuous, let alone differentiable. We consider, therefore, the initial
corrupted image to belong to L∞, i.e. for each color component Ua

0 ∈ L∞(QT ).
In order to define a PDE based denoising process, let alone solving it, we have to



work with weak solutions. The second reason is that from the duality viewpoint
of Florack [6] images should be considered as linear functionals on the sensor
functional space. This space of linear functionals is the dual space, composed of
distributions in the sense of Laurent Schwartz [10].

Let us introduce the following notations: We use the following scalar product
on QT :

(u, v) =
∫

QT

(uv + uxk
vxk

+ uxkxj
vxkxj

)dx dt

This scalar products defines naturally a norm which we denote by ||u|| =
√

(u, u).
The Sobolev space of functions, with finite norm, over the cylinder QT is defined
by W 2,0

2 (QT ) = {u : QT → IR
∣∣ ||u|| < ∞}. We will omit from now on the

QT notation. We write, for example, the above functional space as W 2,0
2 and

remember that all the functions in it are defined over the QT cylinder. More
generally, the Sobolev space W p,q

r is the space of functions, for which the Lr

norm of their first generalized p spatial derivatives and q time derivatives, is
finite.

We are now in a position to define weak (generalized) solutions:

Definition 1. A generalized (weak) solution of the system Eq. (4), with bound-
ary and initial conditions Eqs. (7) and (6), is a vector function

−→
U whose com-

ponents Ua ∈ W 2,0
2 (QT ) for a = 1, 2, 3 and such that for any vector function−→η whose components (ηa) ∈ W 2,1

2 (QT ), the following integral equations hold for
almost all t ∈ [0, T ]:

∫

Ω

Uaηa|t=T
t=0 dx−

∫

Ω

Uaηa
t dx dt = −

∫

QT

(
ηaF a ij

b

)
xi

U b
xj

. (10)

For such weak solutions the following maximum principle holds:

Theorem 2. Assume
−→
U 0 ∈ L∞(QT ). For a weak (distributional) solution

−→
U ∈

W 2,0
2 (QT ) of the system (4),(6),(7) we have for almost all (x, t) ∈ QT :

ess inf
Ω
|Ua

0 (x)| ≤ |Ua(x, t)| ≤ ess sup
Ω
|Ua

0 (x)|, (11)

ess inf
Ω
|

3∑
a=1

Ua
0 (x)| ≤ |

3∑
a=1

Ua(x, t)| ≤ ess sup
Ω
|

3∑
a=1

Ua
0 (x)|. (12)

Remark that by definition :
ess sup

x∈X
f(x) = inf

A0⊂S0
( sup
X−S0

f(x)), where S0 = {S ⊂ X|µ(S) = 0}

Proof. The proof is based on Sobolev Embedding Theorem [4] (by which the
space W 2,0

2 (QT ) is embedded in C(Q̄T )) and on a Density Theorem [5] (which
asserts that the space W 2,0

2 (QT )
⋂

C∞(Q̄T ) is dense in the space W 2,0
2 (QT )).

By the density theorem we can approximate the solution
−→
U by smooth vector

functions
−→
Uk ∈ W 2,0

2 (QT )
⋂

C∞(Q̄T ) such that ||Ua
k − Ua||W 2,0

2 (QT ) → 0 as



k → ∞. The initial data
−→
U0 can also be approximated by smooth functions−→

Φk ∈ C∞(Ω), such that Φa
k → Ua

0 uniformly as k →∞. Now for each k consider
the boundary value problem (4),(6),( 7) corresponding to the vector function

−→
Uk.

For enough smooth solution of this problem, based on Theorem 9 we have the
maximum principle: |Ua

k | ≤ sup
Ω
|Φa

k|. Furthermore, by the Embedding Theorem

there exists a constant C such that

|Ua| ≤ ess sup
QT

|Ua
k−Ua|+ess sup

QT

|Ua
k | ≤ C·ess sup

QT

||Ua−Ua
k ||W 2,0

2 (QT )+ess sup
Ω
|Φa

k|

≤ C · ess sup
QT

||Ua − Ua
k ||W 2,0

2 (QT ) + ess sup
Ω
|Ua

0 |+ ess sup
Ω
|Ua

0 − Φa
k|.

Letting k → ∞, we obtain the maximum principle for the weak solutions from
W 2,0

2 :
|Ua| ≤ ess sup

Ω
|Ua

0 |. (13)

In a similar way one obtains (12). ¤

5 The Discrete Maximum Principle and Stability

In this section we show that the commonly used central difference second order
explicit schemes violate, in general, the discrete maximum principle. We give
nevertheless, for these schemes, a theoretical proof of stability.

We work on a rectangular grid

xi = i∆x, yj = j∆y, tm = m∆t,

i, j = 0, 1, 2, ...M ; m = 0, 1, 2, ...[T/∆t]

The spatial units are normalized such that ∆x = ∆y = 1. The approximate
solution (Rm

ij , Gm
ij , Bm

ij ) samples the functions:

Rm
ij ≡ U1(i∆x, j∆y,m∆t),

Gm
ij ≡ U2(i∆x, j∆y, m∆t),

Bm
ij ≡ U3(i∆x, j∆y, m∆t),

On the boundary we impose the Neumann boundary condition. This corresponds
to a prolongation by reflection of the image across the boundary.

We replace the second spatial derivatives and the first time derivative by
central difference and forward difference respectively. Based on (3), the first
equation of the system (4),(6),(7) can be written in the form

U1
t =

1√
g
Div(D∇U1) . (14)



The diffusion matrix is written here as

D =
(

a b
b c

)

where the coefficients are given in terms of the image metric: a = g22/
√

g ; c =
g11/

√
g ; b = −g12/

√
g. With this notation,thus, equation (14) is written as

U1
t =

1√
g
((aU1

x + bU1
y )x + (bU1

x + cU1
y )y) . (15)

We approximate Eq. (15) by the following central difference explicit scheme :

Rm+1
ij = Rm

ij + β∆tOij(Rm, Gm, Bm) (16)

where Oij(Rm, Gm, Bm) is the discrete version of the right side of Eq. (4) and
is given explicitly, in the central difference framework, by

Oij =
1√
g

[
am

i+ 1
2 ,j(R

m
i+1,j −Rm

i,j)− am
i− 1

2 ,j(R
m
i,j −Rm

i−1,j)

+cm
i,j+ 1

2
(Rm

i,j+1 −Rm
i,j)− cm

i,j− 1
2
(Rm

i,j −Rm
i,j−1)

+
1
4
bm
i,j+1(R

m
i+1,j+1 −Rm

i−1,j+1)−
1
4
bm
i,j−1(R

m
i+1,j−1 −Rm

i−1,j−1)

+
1
4
bm
i+1,j(R

m
i+1,j+1 −Rm

i+1,j−1)−
1
4
bm
i−1,j(R

m
i−1,j+1 −Rm

i−1,j−1)
]

, (17)

where the half indices are obtained by linear interpolation. The equations for
the two other color components are discretized in the same manner. This scheme
is stable under CFL-like bound requirements of the step time. The stability, as
well as the lack of extremum principle property, can be learned from the following
theorem.

Theorem 3. If ∆t satisfies the condition :

∆t ≤ 1

8β maxi,j{
a

i+ 1
2 ,j√

gi,j
,

a
i− 1

2 ,j√
gi,j

,
c

i,j+ 1
2√

gi,j
,

c
i,j− 1

2√
gi,j

}
, (18)

then the solution satisfies :

|Rm
i,j | ≤ eαtm max

i,j
|R0

i,j |,
|Gm

i,j | ≤ eαtm max
i,j

|G0
i,j |,

|Bm
i,j | ≤ eαtm max

i,j
|B0

i,j |,

where α = 2β max
ij

|bm
ij |√
gm

ij

≤ 2β.
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Fig. 1. Top-left: Noisy Camila image. Top-right: Result of the Beltrami flow after 90
iteration. Bottom: Plot of maximum of each of the channels versus number of itera-
tions.Parameters: β2 = 100, first scheme: ∆t = 0.0091.
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Fig. 2. Top: Noisy Iguana image. Middle: Denoised Iguana by the Beltrami flow with
after 60 iterations. Bottom: Plot of maximum of each of the channels versus number
of iterations. Parameters: β2=80, ∆t = 0.0091.



Proof. See details in [3] ¤.

The inequalities in Theorem 3 show that the numerical solution is bounded in
each iteration by the maximum value of the initial image multiplied by a factor. It
guarantees that the flow does not blow up in finite time and ensures its stability.
At the same time it is clear from the positivity of β that the maximum principle
can possibly be violated. One can actually see it in practice ( see Fig. 1 ).

The reason for this discrepancy between the continuous and discrete setting is
the fact that this second order approximation is not a non-negative one. Indeed,
the mixed derivatives in eq. (15) can create negative weights in certain pixels.
One can easily show that a scheme which is based on a nonnegative discretization
does satisfy the discrete maximum principle. Based on this result, the problem
of proving the discrete maximum principle boils down to the problem of finding
a nonnegative second order difference approximation. In [18], Weickert proposed
a way for building a nonnegative scheme. The non-negativity of his proposed
scheme depends, though, on the condition number of the diffusion tensor D.
Only in pixels were the condition number is smaller than 3 + 2

√
2 the weights

are non-negative. This limits the application of the scheme since in many images
the condition number is typically higher than this limit in many pixels.

6 Details of the Implementation and Results

We present in this Section results that represent the numerical behavior of the
above described numerical scheme. The initial data is given in three channels r, g
and b in the range 0 to 256. We first transfer the images to the more perceptually
adaptive coordinates R = log(1+r), G = log(1+g), B = log(1+b). The dynamic
range for these variables is 0 to 8 and these adaptive coordinates do not limit
the generality of our analysis. In the two examples presented below we corrupt
an image with random noise and denoise it using the scheme mentioned above.

In the implementation, the parameters β and ∆t were chosen to satisfy the
stability condition Eq. (18).

Figure 2 demonstrates that the violation of the maximum principle does not
obligatory occur in the central difference scheme. In this figure the numerical
scheme respects the maximum principle.

Remark that for a too large time step one gets a violation of the maximum
principle in the Iguana image as well. Yet this violation gets smaller and smaller
until the maximum principle is satisfied as the time step becomes smaller and
smaller. This is NOT the case for the Camila image where the break up of the
maximal principle is stable and does not depend on the time step. It is not clear
for us what are the special characteristic of an image that make it to respect or
not the discrete maximum principle.

7 Concluding remarks

We have studied in this paper the extremum principle condition for the color
image Beltrami flow. This is done in the context of the possibility to build a scale-



space from the solution to this complicated non-linear coupled system of PDEs.
We adapted in this paper the duality paradigm of Florack and we regarded ”true
images” as tempered distributions. We investigate therefore, besides the strong
solutions, the generalized (weak) solutions. We proved that both the strong and
the weak solutions satisfy the extremum principle which is a necessary condition
for causality, and therefore, for the construction of well-defined scale-space.

We addressed also the problem of numerically construct a well-defined scale-
space. It is shown that, in contrast to the continuous case, the extremum principle
is not automatically guaranteed. We prove that the central difference scheme
does not guaranty the satisfaction of the extremum principle. It is important to
note that we studied many variants of central and/or forward-backward schemes.
They all shared similar behavior and the detailed description of these and other
methods will be found in future work.
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