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Abstract— Denoising algorithms based on gradient dependent The Euler-Lagrange (E-L) equation is
regularizers, such as nonlinear-diffusion processes and total via
ation denoising, modify images towards piecewise constant func- o ,, VI
tions. Although edge sharpness and location is well preserved, im- —F=dv ((I) ()VI|> + Ao —1)=0 3)
portant information, encoded in image features like textures or
certain details, is often compromised in the process of denoising. where A € TR is a scalar controlling the fidelity of the solu-
We propose a mechanism that better preserves fine scale featsre tion to the input image (inversely proportional to the measu

in such denoising processes. A basic pyramidal structure-texter . .
decomposition of images is presented and analyzed. A first level ©f denoising). Neumann boundary conditions are assumeel. Th

of this pyramid is used to isolate the noise and the relevant tex- Solution is usually found by a steepest descent method:

ture components in order to compute spatially varying constraints

based on local variance measures. A variational formulation with Iy =-F, I|t:o = Ip. 4)

a spatially varying fidelity term controls the extent of denoising

over image regions. Our results show visual improvement as well  When the noise is approximated by an additive white pro-
as an increase in the signal-to-noise ratio over scalar fidelity term cess of standard deviatien the problem can be formulated as
processes. This type of processing can be used for a variety obtes finding

in PDE-based image processing and computer vision, and is stable

and meaningful from a mathematical viewpoint. min; f &(|VI|)dady

AL 5
Keywords: image denoising, texture processing, spatially vary- subject t0|_g11‘ JoI - Ip)*dedy = o°. ®)
ing fidelity term, nonlinear diffusion, variational imageop

[Note that for noise of impulsive type this method is not suit
able, see e.g. [23], [6]]. In this formulatiohcan be considered
as a Lagrange multiplier, computed by:

1 (o, VI

PDE-based methods have been widely used over the past * — o2[Q) /Q div (‘I) (')W—[> (I = Io)dudy. — (6)
decade for image denoising with edge preservation. These
methods are either based on the axiomatic approach of né§-(5) uses a scalar constraint (and a scajawe refer to it as
linear scale-space (nonlinear diffusions), or on the viarial the scalar® problem The actual function with which we work
approach of energy functional minimization. Details regar in this paper isb(z) = /1 + 3222. The process that results
ing the interaction and close relations between these appes from this function is an approximation of TV which is easy to
can be found, for example, in [1], [35], [37]. implement by standard discretization of the E-L equatiomses

A classical variational denoising algorithm is the totafiva it has no singularity at zero gradient. Also, when the desscen
ation (TV) minimizing process of Rudin-Osher-Fatemi (ROF§ mplemented by an explicit method, the time step bound is
[28]. This algorithm seeks an equilibrium state (minimat edn@ximal (bounded by the standard CFL). .
ergy) of an energy functional comprised of the TV norm of the We choose it as a representative of variational denoisiag pr

imageI and the fidelity of this image to the noisy input imag&®SSes. .
Iy The performance of this, and other PDE-based methods, have

1 shown impressive results, especially for non-texturedgiesa
Ery = / (IVI[+ AU~ Ip)*)dzdy. (1) The implicit assumption that underlies the formulationtege
@ flows/equations is the approximation of images by piecewise
This is further generalized by the-formulation [10] with the ' constant functions, which are in the space of bounded Vamt
functional (BV). We recall that a signal is in BV if

cessing.

I. INTRODUCTION

By = [ (2091 + U= 17) doay. (2 [ 1D+ s < o
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A good cartoon model captures much of the image imposketches at different scales. Let us define a cartoon of scale
tant information. Yet, it has several obvious drawbacks- tes, using the® process, as follows:
tures are excluded, significant small details may be leftand
even large-scale features, that are not characterized oy do Cs = LI>|A:§ (7
nant edges, may be disregarded. The purpose of this paper is . _
to show that a relatively simple modification of the abovea—:tquWh(.ar?.Iq’ Is the steady state of (.4)' See [SQ]’ [31] for a §|m|lar
tion yields a denoising algorithm that better preserves tue definition of the scale. Let us def.lne the residue as the difies
structural and textural information of the image. between two scales of cartoons:

Following Meyer’s work [19] recent studies in the field sug- -
gested the use of weaker norms thiz) such as3 and H 1, Bnim = C = C— (< m). ®
for the data fidelity term [33], [25], [3], [2]. These moderth- \We shall refer to the Non-Cartoon part of scalas the residue
nigques can better distinguish between structural andlaBoy  from level zero:
components and tend to reduce less contrast of the structura
part. However, when used for denoising (as oppose to decom- NCs =Ry s =Co—Cs. (9)
position), these procedures still recover mainly the $tmad _ ) _
image components, where textures may be over-smoothed. ¢S cartoon and residue data structure is analogous of/tae p
G-norm (and its various approximations) is low for osciligti Mid of wavelet approximations. By using the definitions of (7
patterns, and therefore does not penalize much both noise &Rd (8) and integrating the E-L equation (3) we deduce the fol
most types of textures. The TV norm, on the other hand, penkgwing basic properties: _ _
izes strongly oscillating patterns. Therefore this typermdrgy Proposmon_ 1: The cartoon pyramid model has the following
minimization is still not very well adapted to capture teiu Scale properties:
parts of the image (see Fig. 6 for a comparison example). 1) The cartoon of scale O is the input imag&. = o.

Recent studies which perform decomposition to three cate-2) The cartoon of scaleo is the mean of the input image.
gories — structure, texture and noise — by PDE’s and wavelets Coo = fQ Io(x, y)dxdy.
[4], [29] seem to be an appropriate solution also for dengisi 3) The mean of any residue is zerf, R, ,dzdy = 0.
of natural images. We believe that our approach can comple4) A cartoon image can be built from residues of larger
ment and improve the results presented in these paperseAsth scalesCs = > Ry, ni1 + Cw.
weight parameters of these methods are not spatially vgrgin Proof: To prove Property 1 we denotd/ =
constant "ratio” is implicitly assumed between structutes- Jo, ®(|VIo|)dzdy. Let us assumd # I, in the L* sense
tures and noise components throughout the image. Wheréefsany largeX. Specifically, there existd € L* such that
noise can often be regarded as spatially invariant (e.gtewhilkl2 = ¢ > 0 and E¢(I) < Eg(lo) for A > 24, where
Gaussian noise), textures and structures are not homogjgnodi + 2 = Ip. Then
spread in the image (in terms of variance). Another new ap-
proach is the use of Bregman iterations proposed by Osher &p(lo) — Ee(l)
al. [24]. In this method as well, a scalar weight parameter
is used. Our approach may therefore be introduced in the fu-
ture also for these new types of more sophisticated (and cofhich contradicts our assumption.

plicated) denoising schemes. Property 2 can be proved using [1] (p. 79, Prop. 3) where we

In order to keep the presentation of the idea simple and fgaqce thaC.. converges to the mean image value in fHe
cused, we retain in this paper the more classical variationgnseiim ICs — [, Iodwdyl|| 2 = 0
§— 00 S Q - .

regularization based on the gradient magnitude Ehédelity For Property 3 we use [1] (p. 79, Prop. 2) to show that
term. Jo Csdady = [, Iodxdy, Vs> 0, and therefore

O(|VIo|) — @(|VI]) — A||n[3dzdy
— %)\62
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II. THE CARTOON PYRAMID MODEL

The cartoon model has been defined and investigated in the
early 80's [12], [7], was further elaborated in [20], [21]dan
is widely used as the basic underlying model for many image
denoising methods. In the continuous case, the cartoon haZZ‘aZO_QRn ni1 4+ Coo = Ryoi1+ Roitssot...
curveT of discontinuities, but everywhere else it is assumed— =~ 4 R+ Cos
to have a small or a null gradiefiv|. A multi-layered im- = Cy—Cyps + Cyy1 — Cyya + ...

Q Q

Property 4 is verified by expanding the sum expression:

age representation was suggested by [18], mainly for casapre 4 O —Co +C

sion purposes. However, the wavelet compression (thréshol - C..

ing) technique for extracting the cartoon part, by using iy ve

high compression factor, produces blurry results which alo n |
preserve well edges. In Table | a cartoon pyramid example is shown. See [32] for

The TV and other gradient-dependent filters are especiadly alternative pyramidal structure suggested recently.
good for extracting the cartoon part of the image. We use themIn the cased(z) = z in Eq. (2) where we have the ROF
therefore, as a simple pyramid (scale-space) of rough imagedel [28] one can relate the scale and residue directly with



the G-norm (or star norm) presented in [19] p. 30 (see also thg Scale Cartoon Non-Cartoon | ResidueR,, ,,
discrete version defined in [3]). Th& space is closely related
to the dual ofBV. The G norm|| - ||¢ penalizes oscillatory
and piece-wise constant functions in an inverse manner to TY
whereas the TV norm of oscillatory signals is high and tldgir
norm is low, piece-wise constant signals have a low TV normm  (Q
and a highz norm. For example, a signgh(kz) inx € [0, 27]
and zero elsewhere hag:anorm approaching zero @s— oo,
whereas its total-variation in this case approackedg-or more
on this subject we refer the reader to [19], [33], [3], [4]].[2

[25], [22]. 1
Proposition 2: For the functionafb(z) = z, we have
1) |NCsllg = s.

2) m—n < ||Rymllc <m+n.
3) [[Bnmlle =0,Yn > |Co — Cullc-
Proof: The first and third statements are direct conser
guences of our pyramid definitions and Theorem 3 and Lemm
4 in [19]. The second statement is validated by the relatio
Ry.m = NCy,, — NC,, using the triangle inequality and State-
ment 1. ]
Statement 1 states that thenorm of the Non-Cartoon part is
strictly increasing (linearly), implying that larger aresk oscil- 100
latory features are incorporated in this part with the ghooft
s. From Statement 2, one can vidW, ,,, as a texture “band”
of the original image with specified upper and lower bounds of
the G norm. Due to the convexity of the ROF model, the soluA
tions for similar values oh are sufficiently close and therefore | oo
we estimate thafR,, .|| should be in fact closer to its lower
, TABLE |
boundm — n, at least whenm andn are of the same order.
K . EXAMPLE OF A CARTOON PYRAMID. LEFT COLUMN - SCALE s = 1/,
Statement 3 shows that the telescopic buildup of the cartoon
. . SECOND COLUMN- CARTOON PARTC's, THIRD COLUMN - NON-CARTOON
imageC, from larger texture bands, as formulated in Statement
. . e . . . . PART NCs, RIGHT COLUMN - RESIDUE Ry, m (WHERE THE VALUES OF
4 of Proposition 1, is finite in practice (excluding the meam i ’
. . .. (n,m)ARE (0,1), (1,10), (10, 100), (100, c0), FROM SECOND ROW
age valueC',). For other relations connecting the scale with DOWN, RESPECTIVELY)
the G-norm see [31]. ’ '
In order to construct the pyramid, the desired scales should
be specified. A simple mechanism, following Gaussian and
Laplacian pyramids or wavelet decompositions to detail@d the textures at a similar scale or below that of the noisehig t
proximation parts, is to use predefined scales, which grow efmpler case a good representative scale could be selesitegl u
ponentially, such as;, = so7", wherey is some constant (€.9. 3 estimate of the noise variance.

v = 2 for a dyadic scale). In Table | three levels of a pyramid \y,e employ the constrained problem, similar to (5) and im-
are shown fogy = 1,v = 10, k = {0, 1, 2}, as well as the zero pose

and infinite scales. 1 ) )

In this pyramid larger scales retain high frequencies (gfige 9] / (I = Ip)*drdy = ao”, (10)
and one does not re-sample or decimate the image to a smaller @
size. This gives more freedom for choosing any set of scale vavherea > 0 controls the selected scale in terms of variance.
ues. Specifically, the multi-scale decomposition can beganaTypically 1 < o < 2 so that most noise and the relevant tex-
driven. This topic demands more study and would not be eldiwes of that scale are included in the residual part. In atu-n
orated in this paper. For some preliminary directions setggke ral images experiment we set= 1.5.
by the authors and colleagues on how to select image-driverOur model consists of three components= Ic + Inc +
structure-texture splitting parameters see [15], [5]. I, wherel,,;, = Ic+Inc is the original imagel¢ is the Car-
toon approximation/y¢ is the remainder Non-Cartoon part,
and I,, is an additive noise. Note that we left the definition
of "non-cartoon” part vague. lIt, typically, consists of tgses,

The cartoon pyramid has a broad context and may give sogmall-scale details, thin lines etc. The only assumption we
more theoretical insight on issues regarding structusgute make is that it has zero mean. Under this decomposition, the
and scale. residue of the filtered imaggis:

For our denoising purposes of the next section we use only
one decomposition level which should contain the noise and In=Ily—I=Inc+1,. (12)
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job)

=

A. Use for Denoising



Note that we distinguish between the "true” non-oscillgfoart A. Automatic Texture Preserving Denoising
and its approximation by thé diffusion process by the tilde

: In the general case, we do not have much prior knowledge
upperscript.

on the image that can facilitate the denoising process. in ou
lIl. THE ADAPTIVE ® PROBLEM model we assume that the noise is additive, uncorrelated wit

To obtain an adaptive scheme, we generalizeltidenoising IEZtSi;Sr\]/E:ri(:ﬁ?:é i(i(:ri]lté\geevgz:ﬁtneat({izus&an or uniform noise a

roblem by imposing a spatially varying variance constrain . . L
b y Imp 9 P y varying Our aim is to use thé denoising mechanism in a more accu-

Let us define first a measure to which we refer addhal vari- . .
rate and precise manner. Images which can be well represente
ance .
by large scale cartoon model are the best candidates for suc-
1 cessful denoising. Images with much fine texture and details
P,(z,y) = — / (I(%,9) — n[L.])*ws ,(Z,9)dzdg, (12) will not benefit that much from the operation; while reducing
192/ Ja most of the noise, this type of processing will inevitably de
where w, ,(Z,9) = w(|z — z|,|§ — y|) is a normalized grade important image features. The first problem is tordisti
(Jq wey(%,7)dEdy = 1) and radially symmetric smoothing guish between good and bad candidatesifatenoising. The
window, 7[-] is the expected value taken with respect to thesk becomes even more complex if this is done adaptively.
probability densityw, ,(Z,7)/|2] on the setQ x Q of all Many natural images exhibit a mosaic of piecewise smooth and
quadruplez,y, Z,7). From the definition of the local vari- texture patches. This type of image structure calls fortjmosi

ance it follows thatf,, P, (z, y)dzdy = P. , where (spatial)-varying filtering operation.
P. = var(.). (13) The .perf_ormancg of the ;cal@rdenoising process is iIIus_—
trated in Fig. 1, using a typical cartoon-type and texturad i
We reformulate the scalaF problem, stated in Eq. (5), in the gges. The SNR's of these three processed images are summa-
context of the adaptivé problem as follows: rized in Fig. 2, and plotted as a function of the residualarce
min; fQ O(|VI|)dzdy (14) (normalized variance of the residue). Obviously, as thgame
subject toP;(z, y) = S(z,y), ples illustrate, cartoon-type images are denoised muderbet

herels — (I — I — ). O | tant and(z S than textured images (both in terms of SNR and visually). An-
\(/)v_ere R 7d(t 7b o ): ©1S \a/tvconsl anthan (t“.L’y) i other important observation is that the maximal SNR of earto
|sb?ssum¢ E N glvea}prllgrll._ (_3 solve the optimizalion 54 non-cartoon images is reached at different levels afiden

problem using Lagrange mullipliers. ing. Whereas cartoon-type images reach their peak SNR at high
1 isi ~ 2 - I

E— / (@(VI|) + = Az, y) Ps(x, y))dady.  (15) denmsmg levels®r _a_), non cazrtoon images degrad(_a faster
Q 2 and require less denoisin@g < o°). For deeper analysis and
The Euler-Lagrange (EL) equation for the variation witpest  SOmMe bounds on the resulting SNR®frocess denoising see

tolis [14], [13].
- vI We present here a relatively simple method that can approx-
Mz, y)(I — 1o — C) —div (‘P’(-)V—H) =0, (16) imate the desired level of denoising in a region. In our above

_ _ formulation (Eqg. 14), the problem reduces to findifig:, y).
where for any quantityX (z, y) we define the locally averaged e use the cartoon pyramid model for this purpose. Our first
quantity X (z,y) = [, X (&, §)wsy(7,§)dzdj. We solve this aim is to differentiate between the cartoon part of the image

equation forl by a gradient descent: I and the noise and texture paftsc + I,,. Our splitting
_ ) v parameter\ (or scales = 1) is selected using Eq. (10). We
I = XNz,y)(Ip — I + C) + div ((I)I(.)W) . a7 assign A
4
In order to compute the value afwe multiply the EL equa- S(z,y) = 077 (21)
tion (16) by(I — I, — C) and integrate over the domdin After Pr(z,y)
achange in the order of integrals in theerm we get wherePg(z, y) is the local variance of the residig.
In the case wheréi ~ I,, (basic cartoon model without tex-
/Q(/\(x’ y)S(2,y) - Qz,y))dedy = 0, (18)  tures or fine scale details) this scheme is similar to theasdal
where process. In this case should be close td. The local variance
V7 of the residue is almost constar®{(z,y) ~ ¢2) and hence
Q(z,y) = (I — I — C)div <q>’(.)) . S(x,y) ~ o2. We get a high quality denoising process where
VI I ~ Ic = I,y In the case of most natural images, however,
A sufficient condition is textures will also be filtered and included in the residud.par
Q(z,y) As the noise is uncorrelated with the signal, we can approxi-
Az,y) = S(z,y) (19)  mate the total variance of the residuefdsc(z, y) + Pn(z, y),
: . . . . the sum of local variances of the non-cartoon part and theenoi
iFnlga”y, the constant is obtained by solvingc £ = 0, yield- respectively. Thus, textured regions are characterizelidly

Jo My ) (E(s ) — Dol y))dad, local variance of the residue. In order to preserve the lgetai
Q Y Y oL,y y, (20) structure of such regions, the level of filtering there stdug

C =
Jo Mz, y)dzdy reduced over these regions.




this case that portion of the image accounting for the texamd
fine details that may be filtered out by tikeprocess. Formally,
substituting forPgr(z,y) in Eq. (21) the relatiorPg(z,y) =~
Pnc(x,y) + P, = Pyc(z,y) + 02, we get

1
2
[+ Prola,y)/o®

Sz, y)~o (23)

B. Algorithm

1) Separate the noise and relevant textures by minimizing
[ ®(|V1]) subject to (10) and settink; = I, — 1.

2) Compute the local variance &f; by (12) and then com-
pute the local constraint$(x, y) by (21).

3) Solve (14) by iteratively evolving (17) and updater, y)
andC according to (19) and (20).

C. Denoising with prior information

In cases where more information regarding the structure of
the original signal is available, the performance of deingis
process incorporating a spatially-varying fidelity coastt can
be substantially ameliorated. The specifics are applicatio
dependent and heuristic in nature. We therefore mentioa her
only a few related ideas. To preserve specific features in the
denoising process, such as long thin line or known types«ef te
tures, one can pre-process with the corresponding feagteed
tor (Hough transform, texture detector). The valueSét, y)

Fig. 1. Scalar® denoising of textured and texture-free images. Top rowjenends, then, locally on the feature detector responsgesCa
Piecewise constant image, middle row: Textured image of gbadgym row: ! ’

Patches of the two types of images combined in one. Left colupiteethe  Of Spatially varying noise also fit the model. For example, in
original images, middle column - noisy images, right column - Itesfiscalar  [ow-quality JPEG images, the boundaries between 8x8 pixel-

® processing (Eq. 3) at convergeny( = o%). blocks are often more noisy and the fidelity to the originaada
on these block boundaries should, therefore, be decre&sed (
increased). See [17] for a different solution by an adaptive

dow approach.

IV. EXAMPLES

The effects of adaptive- versus scalar-fidelity denoisireg a
illustrated using a synthetic mosaic comprised of two teedu
i patches juxtaposed with two smooth patches (Fig. 3). The

" scalar fidelity term requires that a global variance, equéhé
Fig.2. SNR of scala® denoising of images shown in Fig. 5. SNR is plotted a§10iS€ variance, be filtered. As tkdeprocess is smoothing both
a function of the residual variance, normalized by the nosséamce:Pr /o,  texture and noise, more variance is filtered in the textueed r
E:;E?r?emﬁqggew'se constant image, dash-dot line tektage, solid line  oi,,¢ than in the originally smooth ones. This results inrove

smoothing of textured regions, whereas smooth regionsare n
sufficiently denoised (Fig. 3, left side second row from top)
The adaptive fidelity term process (second row right) agplie
different levels of denoising in different regions. Thigiroves
the result both visually (texture is better preserved, simoe-

Ps(w) gions are better denoised) and in terms of signal-to-nase r
= Bl = Pl (22)  tio. At the third row of Fig. 3, we show how the required spa-

s(w) + Pn(w) ) . . ;
tially varying variance S(z, y) (middle), depends on the value

wherePs(w) and Pn(w) are the power spectrum of the signabf the residue/x (left). The value of the adaptive fidelity term,
and noise, respectively. The basic concept amounts to redd¢z, y) (right), is shown for the converged process (lighter re-
tion in the extent of filtering@ — 1) at frequencies where thegions indicate higher value). Naturally, the values\¢t, y)
signal power exceeds that of the noise. are inversely related to the residual variance meaSurey).

In our case we have a similar principle, whereby reduction in Processing a noisy version of the Barbara image (Fig. 4), it
the extent of filtering (i.eS — 0) is called for in regions where is demonstrated how the adapti®emethod performs well on
signal power exceeds that power of the noise. The signal isriatural images. Our simple local variance criterion seentet

SNR [dB]

3

Let us recall the classical Wiener filter (optimal lineailin
the mean squared-error sense). Its formulation in the &equ
domain is

G(w)



Fig. 3. Processing of a noisy mosaic of textures (fabric an@inahd smooth

areas. From top: Original mosaic made of patches of fabric artdl rrex-

tures, juxtaposed with two constant patches (left); Noisgsion, I, of the

original with SNR=2.4dBg = 40 (right); Result of processing with scalar

A - SNR=6.4dB (left), result with adaptivé - SNR=7.6dB (right); Bottom Fig. 4.  An example of processing results obtained with a mhtmage.

row: Residuelg (left); S(z,y) calculated according to the residue (middle)From top: Original ‘Barbara image’ (left); Noisy version dfet original im-

A(z, y) at the convergence of the process (right). age, Iy, with SNR=8.7dB,c = 20 (right); Result of processing with scalar
A (SNR=12.6dB, left); Result of processing with adaptivéSNR=14.2dB,
right); Residuelr (left); S(z,y) calculated according to residue (middle)
A(z, y) at convergence of process (right).

sufficient to differentiate textured from smooth regionsrein

relatively complex images. Accordingly, appropriate loea
guirements on the variance to be filtered are applied. In%ig.
Barbara'’s right knee is enlarged to highlight similar pheeoa
to those obtained in the case of the synthetic example, where
textures are preserved and the denoising of smooth regions i
stronger.

Fig. 6 shows the Teddy-bear from the Toys image. A com-
parison is performed also to th&/” — H~1 model of [25] and Fig. 5. Enlargement of Barbara’s right knee (full images arkign 3). Top -
to [3] which implements Meyer'd'V — G model [19] (with result of scalar process, bottom - result of adaptive psces
a smallL? residual). The scalar fidelity terms are chosen such
that the variance of the residuaki$. Our algorithm diminishes
the denoising in the textural parts of the bear. THé — G

a way to approximate this parameter). Nevertheless, owor alg
model is quite competitive, but still degrades the shirtuess. rithm consistently achieves better SNR then the optimdasca

Similar effects can be seen in Fig. 7 where the process is cohfpte that with respect to the S_NR criterion modern multiscal
pared with the regularized version of P-M [26] proposed b avelet-pa_sed technlqges g(_:h|eve bett_er performance (gee
Catte et al. [8]. Relatively small regularization is usedtfee [27]). This is due to their ability to denoise well also thtte

gradient computation of the diffusion coefficient (varianaf rart]l parts. I—:owever, in general Waverl1et denoising pfl‘l’d”_m ! "
Gaussian i9.1). This causes some isolated points to remaifil&/P results near edges and may have some oscillatiors. Thi

Stronger regularization in our experiments resulted irelext aff€Cts the denoising quality butis less reflected by the KR
sive over-smoothing of the textures. One may observe tieat {ff11oN- Convex gradient-based variational denoising wtish
textural snow background is better preserved by our prapogdMit the maximum principle and do not produce oscillatory
method, while the smooth coat parts are well denoised. solutions. Our algorithm retains these desired qualities.

In Table Il we show the comparison between scalar and adap- ) )
tive processes in terms of SNR. In the scalar process we shifplementation details
two cases. The "Standard scalar” column refers todthhosen ~ We used explicit Euler schemes to implement the iterative
according to the constrained problem (5). The "Optimalacal processes. The averaging windaw(z, y) was selected to be
refers to choosing the parametesuch that the maximal SNR a Gaussian of standard deviatiey = 5. The potential in all
of the recovered image is reached (out of a finite set of 30 dmages wasb(s) = v/1 + s2 (8 = 1). As we used gray level
tional values). This result naturally can be achieved ambiin-  images with values in the ranig 255] the results are similar to
ulations when the original clean image is at hand (see [13] f&V denoising. We observed that the calculation of the catsta



Fig. 7. Comparison between regularized Perona-Malik andaoiaptive
scheme. Top: original (left), image contaminated by additivétevGaussian
noise (righto = 15). Bottom: image denoised using regularized Perona-Malik
(P-M) (left) and processing with adaptive Textures and small scale features
are kept better in our scheme.

Optimal | Standard| Ours -
Image SNRy | Scalar | Scalar | Adaptive
Cameraman| 15.86 19.56 19.32 20.81
Lena 13.47 | 18.19 17.65 18.59
Boats 15.61 | 20.23 19.83 20.62
Sailboat 10.36 | 15.51 15.16 16.30
Toys 10.00 | 17.69 17.29 17.72

Fig. 6.  Part of the Toys image. Top: original (left), noisygfif). Each TABLE Il

row depicts the denoised imagde(left) and the residualo — I (right) of the by o151 RESULTS OF A FEW CLASSICAL IMAGESFROM LEFT, SNROF
following models:TV — L2 (scalar), our proposed adapti¥d” — L2, scalar '

TV — H~' [25] and scalarTV — G [19,3], from second row to bottom, THE NOISY IMAGE (SN Rp), SNR’S OF SCALAR) DENOISING
respectively. ('OPTIMAL" AND 'STANDARD’, SEE EXPLANATIONS FOR THIS TABLE FOR

DETAILS), SNROF OUR ADAPTIVE A DENOISING ("OURS - ADAPTIVE’).

ALL EXPERIMENTS WERE DONE ON IMAGES DEGRADED BY ADDITIVE
C gives very little improvement. Therefore we &ét= 0. In WHITE GAUSSIAN NOISE (o = 10).

the experiment on natural images (results shown in Table=1) w
set a constant residue variareg = 1.502 (o = 1.5 in (10)).
Texture patches were taken from the VisTex archive [34]. All
images were processed automatically with the same paresneome insight on the decomposition was given also with @ati
(no tuning of parameters was performed for each image).  to Meyer'sG norm [19].
Following this image model we use the scalar process to sep-
V. CONCLUSION arate the noise and the relevant textures of the image which
The widely-used variational denoising algorithms witigould be degraded in the denoising process. Regions of the
global variance constraints perform well on simple cartoofiesidual part with higher local variance than that of thesaoi
type images, where most of the information is represented k¢ treated as textured regions where denoising should-be in
the simple structural approximation of the image. Howeirer, hibited (in a soft manner). This is accomplished by intradgc
order to preserve texture and small scale details, mordesulg new variational formulation with local variance consitai
constraints are called for. We developed an adaptive wamit A-priori knowledge on the details to be preserved can further
scheme that controls the level of denoising by local vagan&nhance this method.
constraints. We have shown that the proposed scheme can filter noise bet-
A pyramidal model of structure and texture was presentedter than the scalar constraint process over a variety ohsyiat
which the structural component at any scale could be budt inrand natural images. Visually, the processed images loole mor
telescopic manner by texture bands of subsequent highesscanatural and less 'cartoon-like’. With respect to SNR, our al



gorithm consistently achieves higher SNR than the optifvet t [15] G. Gilboa, N. Sochen, Y.Y. Zeevi, “Texture preserving varia-
could be achieved with a single scalar value\oThis study as- tional denoising using an adaptive fidelity term”, Proc. Varia-

sumed a simple regularizing model based on the gradient mag- tiggg' and Level-Set Methods 2003, Nice, France, pp. 137-144,
nitude andL“ fidelity. The ability to effectively reduce NOISe 161 G. Gilboa, N. Sochen, Y.Y. Zeevi, PDE-based denoising of com

from textural parts is therefore limited. Further imprO\m’m p|ex scenes using a Spatia”y_varying f|de||ty term”, Proc. ICIP
may be gained by combining PDE-based and wavelet-based 2003, Barcelona, Spain, pp. 865-868, 2003. _

methods in a Spatia”y_varying manner, for structures a&xd t [17] C. Kervrann, “An adaptive window approach for image smooth-
tures, respectively. ing and structures preserving”, ECCV ‘04 (3) pp. 132-144, 2004.

Local . traint b din al t a[r18] F.G. Meyer, A. Averbuch, R.R. Coifman, “Multi-layered image
Ocal variance constraints can be used in aimost any varl- representation: application to image compression”, IEEE Trans.

ational denoising schemes including ones with more saphist  |mage Processing 11(9), pp. 1072-1080, 2002.
cated fidelity terms that are better adequate for oscifjgpat- [19] Y. Meyer, Oscillatory Patterns in Image Processing and Non-

terns [19], [33], [25], [3], [2]. linear Evolution EquationsVol. 22 University Lecture Series,
AMS, 2001.
[20] D. Mumford, J. Shah, “Optimal approximations by piece-wise
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