Variational Blind Deconvolution of Multi-Channel Images
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Abstract is based on minimization of the functional:

The fundamental problem of de-noising and de-blurring im-  min flu,h) =
ages is addressed in this study. The great difficulty in this L1 2

te?sk is due to the iII-posedneZs of th?a problem. ¥Ve sug- 13,151{5 [P u =27+ ar TV (u) + axTV(R)}
gest to analyze multi-channel images to gain robustness and

to regularize it by the Polyakov action which provides an where the norm in the data term is in the sense offihe
anisotropic smoothing term that use intra-channel infor- norm. The TV regularization operator is defined as:
mation. Blind de-convolution is then solved by additional

anisotropic smo_othing term of the same type. It is shown TV (u) = / |Vul|dzdy | (3)
that the Beltrami regularizer leads to better results than the

Total Variation (TV) regularizer. An analytic comparison to
the TV method is carried out and results on synthetic and
real data are demonstrated.

&)

and it was successfully used for edge preserving image de-
noising [9].
A more general regularization operator was recently in-

; ; troduced in the context of a general Beltrami framework for
1. Introduction and Previous Work low level vision [10] . According to this framework, color

Noisy images are a practical reality that pose a challenge toimages are represented as surface&in with the coor-
any front-end of an imaging or vision system. Noise is in- dinates(z, y, u",u?, u"). A metric is introduced for mea-
troduced due to thermal fluctuations in sensors, quantizationsuring distances on the surfaces, and minimization of the
effects and properties of communications channels. Blur- Polyakov action, adopted from high energy physics, yields
ring occurs due to scattering of the light (e.g. atmospherethe Beltrami operator. In an Euclidean space, the Polyakov
turbulence), optical limitations and motion. The widely- action (along with the induced metric) measures the surface
used model of spatially-invariant linear blurring operator area. Minimizing it causes the image to become smoother,
and additive Gaussian noise is adopted in this study, to acdts color channels to co-orient and align and, consequently,
count for the blurring phenomena and the noise characterisits edges to be preserved and match in position, unlike the

tics . the results of reconstruction by considering the three color
Denoting byu(z,y) « = 1,...,d the source color ~ channels independently.
channels of an image, the observed degraded color channel In this paper the approach of minimizing a functional,
2%(x,y) is modelled as: resembling that of eq. (2), is combined with the Polyakov
action as a regularization operator, in order to deblur and
2 =h*xu*+n Q) denoise a blurred color image contaminated by Gaussian

noise. The functional to be minimized is:
whereh(z, y) is a blurring kernel acting on* by convolu-
tion, n is a Gaussian white noise and= r, g, b in the RGB H(llilﬁ f=
color space. Y o a2 o (
One method, used for reconstructing a gray value image, 3}11,%{5 2,1: I u® = 247 + 1 S(u?) + a2 S(R)},
is the Total Variation (TV) blind de-convolution [3]. This
method suggests simultaneous recovery of the sharp dewhere the norms are in the? sense and is the Polyakov

noised image and its blurring kernel. The recovery processaction. Minimizing eq. (4) with respect t@", u9, u® and

4)



h, recovers the image color channels and the blurring ker-use the knowledge of the metric on M and the map X to con-
nel, simultaneously. The parametersanda, control the struct the metric ox. This procedure is called the pullback
smoothness of the solution. procedure and is given as follows:

Alternatively we will alternate the minimization of the 1 9 1 9 ; y
image and the Blurring kernel such that the following free ~ (9s0)s(07,0%) = (9ij)m (X (07, 07))0, X 0 X7, (8)

energies are minimized: where i,j = 1,...,dimM are being summed over, and
9 xi = OX'(eho?)
min f,(u; h,2z) = nA = Tm - N
o1 by 9 (5) For the two-dimensional surface it is given explicitly as:
min{3 o [|hxu® — 2" + a1 S(u)},
@ n T a b
g = 3 3 ka5
a=1b=1
min f,(h;u,z) = n n ox® ox"
h gl X 9X
G2 =921 = > > ka5 9
min{3 5 [hut = 27 + s, © Ly & e o ay ©)

922 = Z Z kap 86);"’ 83)5) ’

The paper is organized as follows: we first introduce the a=1b=1
main ideas regarding the Beltrami framework i.e. the repre- \yharen is the dimension of the embedding space, apgd
sentation of color images as two-dimensional surfaces em-+g iis metric. Definingk,s for the embedding color space,
bedded in a five-dimensional space, the induced metric for g4 for the embedding blurring kernel space, as (see other
measuring distances on the surface and the Polyakov aCtio”interesting options in [13]):
which measures the surface area. The numerical scheme for
minimizing eq. (4) (or equivalently egs. (5, 6)), which is - dab a,b=1,2
similar to the alternating minimization scheme, described ab B264s elsewere ,
in [3], is then presented. The Beltrami operator is incorpo-
rated into the Euler-Lagrange equations, by modifying the
regularization parameters (or by adding a functional [7]).
The equations are linearized by the fixed-point lagged dif-

(10)

and using the pullback procedure, the metic= g, can
be calculated for the color surface and the blurring kernel
surface respectively:

fusive method, discussed in [18], and solved using the con- 14323 (u2)? 32 > ulul
jugate gradient method. The regularization parameters are Grgp = ) & B iy
then selected to provide the best possible results. ' s za: Uz Uy 1+5 Za:(“y)
Finally, the properties of the Beltrami-based restoration (11)
are analyzed and illustrated by examples, and its advantages 1+ 3% B2z,
over other techniques are discussed. Gn = ( B2z, 14 5%u; )

The Polyakov action is defined for a generally defined
2 Images as surfaces embedded in a metric embedding(* and metrioi as

higher dimensional space S(X) = /dxdy\/MZVXGG—lvxbkab (12)
ab

A color image is represented according to the Beltrami - _ _ _ _
framework [8] as a two-dimensional surface embedded The modified Gradient Descentequat|0nsf0rth|sfUnCt|0na|

in a 5-dimensional ’spatial-feature’ space via the “Monge are [12]:

patch” (Xl,XQ,X3,X4,X5) = (z,y,ur,ug,ub). The . . 1 B .
blurring kernel can be similarly represented as a two- Xi = A¢X" = MV (v det(G)GT'VX ) :
dimensional surface embedded in a three-dimensional (13)

'spatial-feature’ spacéz, y,h). The distanceds, on the
image surface, measured as a function of the local coordi-
nates on the surface, is defined as follows:

a — 0X“
whereX; = %~

For gray—vaIUed and color images and their induced met-
rics, as described above, the functional eq. (12) is reduced
to an area functional:

S(u®) = [ /det G,gpdrdy =

ds® = g11da® + 2g1adxdy + goady® | (7)

whereG = (g,.,) is a metric, calculated using the pullback

procedure described in [11] which is defined as follows: 14 32 Vual?) + 14 Vul. Vub)2ded:
Let X : ¥ — M be an embedding of in M, where J b za:(l w') + 38 %( ut, Vb )odedy
M is a Riemannian manifold with a metr{g; ;) s. We can (14)



S(h) = [ VAet Grerdady = [4/1+ 5% |Vh|*dzdy
(15)
where(Vu®, Vu®) stands for the magnitude of the vector
product of Vu® andVub.

3 Beltrami based restoration

respect toh. For a givenu?, u® andh, f(-,u’,u9,h) is a
convex function with respect t@" and similarly foru? and
u’. This enables the adaptation of the alternating minimiza-
tion scheme, which was found to be robust and fast [2].
These equations (19) can be derived alternatively by
minimizing two functionals. Similarly, the image and the
kernel are described as surfaces embedded in a higher di-
mensional Euclidean space. The metric of the Euclidean

The Polyakov action is used as a regularization operator forspace is,; as described above. The fidelity term is defined
both the color image and its blurring kernel. The functional thenon the manifold

to be minimized is as follows:
min f = min{$ }° (||h *ud — z“|\2) +
u® h u® h a

ay [/det(Gygp)dzdy + as [ \/det(Gyer)dzdy}
(16)

The Euler-Lagrange equations for eq. (16), with respect

tou® andh, are:
o =S (u(—a,—y) * (hxus — 22))—
@2V - (1/det(Gyer)Grh VR) = 0
of _

Sue (_xv _y) * (h kU — Za)_

a1V - (/det(Grgp) Gy, Vu®) =0,

with the boundary conditions% = 0andh(z,y) =0
for (z,y) € 092, whered) is the boundary of the kernel

(17)

. . a a2
ﬁllﬁfu = Iﬁp{%%fdmdy\/Grgb I % u® — 29" +

ay [ drdy\/det(Grg)Gl, Vi XV, X
(20)

1211}1 fn= mhin{% S [ dadyy/Grer ||h + u® — 2% +
+ag [ dedyy/det(Grer) Gy Vi XV, X}

(21)
The modified Euler-Lagrange equations are:
L 0 _
vV Grgb du® B
1 6fn
—-— =0 22
VGyer 6h (22)

and are identical to eq. (19). Note that the fidelity term is
weighted in these functionals by a locally dependent fac-

domain andh is the normal to the image on the boundaries tor. This means that at each point the relation between the

of the image domain. smoothing part and the fidelity part is different. In partic-
Since the extent of regularization is controlled by the reg- ular the fidelity to the measurements is enforced strongly

ularization parameter, we want to diminish it near the edges.at Points with high gradients where the determinant of the

Since the term /det(G) is basically an edge indicator, we metric is large. Larger deviations from the observations is
can use a similar idea to the adaptive TV minimization pre- Permissable at points with low gradients. In the modified

sented in [14] and replace the regularization parameters
andas with the terms:

X1

V det(GT'yb)
(e D] (18)
£/ det(Gp) ’

The new definitions of the regularization parameters

on(z,y) —

Oéz(fE,y) -

Euler-Lagrange equations the factgklet G is shifted to

the smoothing term. This amounts for an adaptive smooth-
ing mechanism: At points of large gradients the smoothing
term is suppressed and fidelity of the restored image to the
observed values is enforced. Larger smoothing is allowed
to take place at points of low gradient values.

The minimization scheme is stated as follows: Take as

andas introduce the natural generalization of the Laplacian initial guessu® = z* andh® = §(z,y). Assume we have

from flat spaces to manifolds, the so-called second orderu”" andh™, and solve fo

differential parameter of Beltrami to be denotedAvy::

U = ut(—w,—y) * (h* u® — 2%) — a2 Arer(h) = 0

(gfa = h(—z,—y) * (hxu® — 2') — 1 Ag, , (u®) :(](-)95

rgb

with the boundary conditions as in (17) where

AG(X):\/d:tWV - \/det(G)GIV X.

The functional f (u”, u9,u®, h) in eq. (16) is not jointly
convex. But, for a given,”, u9 andu’ it is convex with

htl:
S utn (—w, —y) * (AP un — 29)—
OéQAker(thrl) = Ov

and impose the following conditions over the solu-
tion: [ h"M(z,y)dzdy=1, K" (z,y)=h"T} (-, —y),

Q
h" Y (z,y)>0, andh™ L (x,y) = 0 for (z,y) € IN.
Solve foru®n+1:

R (=, —y)x (A" T su 4 —2%) —ag Ag

(23)

(u®*t) = Og
(24)

rgb



and impose the following condition over the solution: adequate for finding the best regularization parameter for
un i (z,y) >0 the kernel. Intuition and previous work [3] suggest that the
The proposed algorithm can be modified to solve first parameter does not depend on the noise level of the image,
for u®»+1 and then fol"*!. The Euler-Lagrange equations but depends on the extent of the desired deblurring.
are linearized using the fixed point lagged diffusive method, = Experiments show that there is a wide range of values
introduced in [18] and solved using the conjugate gradient for a (from 0.01 to 0.05) that estimates the same kernel.
methods described in [4]. Within this range, the estimated kernel depends only on the
extent of blurring affecting the observed image [6]

4 The regularization parameters
5 Results

The parametep, introduced in the induced metric in sec-

tion 2, interpolates between the Eucliddanand Euclidean  The proposed algorithm was found to be robust. It con-
L, norms. Since the Euclideal, norm penalizes discon-  verges after only 5 iterations. Figures 1-4 illustrates exam-
tinuities, and therefore prefers smooth restoration, we ex-ples of restoring Gaussianly blurred, moving and ‘out of fo-

plore the more interesting case of a lafgéEuclidean’, cus’ blurred and noisy images, using the regularization pa-
norm). rameters determined in the previous section. Observe how
The regularization parameters andas control the bal-  the restored images are sharp and noiseless, and the esti-

ance between goodness of fit bf+ u® to the measured mated blurring kernels resemble the true kernels.
dataz® and the amount of regularization with respect to the
Polyakov action of.* andh. Intuitive, analytic, and numer-
ical considerations can lead to the choice of values for the
regularization parameters for the restored color image and
the blurring kernel.

4.1 The parametera;

As was described earlier, the Polyakov action measures
the surface area of the manifold. Color image is a two-
dimensional surface embedded in a five-dimensional space.
Minimizing its surface area will de-noise the image, since
noise is a feature with very large surface area in comparison
to its scale.

The first step of the restoration scheme can be solving
eg. (24) first and then eq. (23). Inserting the initial guess
h® = §(x,y), eq. (24) yields:

al

(u™ —2%) —Ag,,, (u") =0 . (25)
The problem in this step is reduced to finding the best
regularization parameter for de-noising a color chansiel
when blur is not introduced.
In [6] this parameter was found to be proportional to the Fig. 1 Radially symmetric blur. From left to right - 1st row:
noise variance and by numerical experiments, it was foundgyiginal. 2nd row: Blurred and noisy image, restored image.

that setting it to the noise variance is adequate. 3rd row: true and estimated kernels.

4.2 The parameteras

Unlike the case of the regularization parametgr where

the problem was reduced to finding the best regularization
parameter for denoising a color image when blur is not in-
troduced, the case for finding the regularization parameter
as is not that simple. The analytic tools used so far for find-
ing the regularization parameter for the color image are not

4
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Fig. 2 Radially symmetric blur.
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From left to right - 1st row:

Original. 2nd row: Blurred and noisy image, restored image.
3rd row: true and estimated kernels.
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Fig. 3 Out of focus blur. From left to right - 1st row: Original.
2nd row: Blurred and noisy image, restored image.
3rd row: true and estimated kernels

Fig. 4 Motion blur. From left to right - 1st row: Original. 2nd
row: Blurred and noisy image, restored image.
3rd row: true and estimated kernels

A quantitative measure of the error, associated with the estima-
tion of the color image and of the blurring kernel, can be obtained
by calculating the peak signal-to-noise ratio (PSNR):

PSNR(X)= 201log 3 N-M

N M

2200 20 (X=X

a j=1k=1
where X stands foru® or h, and N- M is the number of pixels.
Table 1 summarizes the PSNR of the images in figures 1-4.

Image Observed | Restored | Restored
Image Image Kernel
PSNR PSNR PSNR
Coin 21dB 23 dB 60 dB
Baby 28 dB 32dB 62 dB
Frog 25dB 27 dB 59 dB
Color Bar | 24 dB 31dB 47 dB
Table 1: PSNR of the restored images and kernels

6 Properties of the Beltrami-based
restoration

The properties of restoration of a two-dimensional surface, em-
bedded in a three-dimensional ’spatial-feature’ space, similar to
the case of gray value images (or the blurring kernel), is explored
first. The Polyakov action in equation (14), becomes for a large
the modified Total Variation operator defined in [18]:

S(h) = [\/1+ B2(Vh)2dxdy =
B [ /2 + (Vh)2dady = BTV (h) .
wherey = 3.

Since the Total Variation does not penalize discontinuities or
smooth functions, it was used successfully as a regularization op-
erator in reconstructing gray-valued images [9], [3]. Reconstruc-
tion using the Total Variation operator was explored in [15] and

(26)



yielded the following properties: Edges are preserved in the recon-
structed image; The intensity change of image features is propor-

a1
tional to the regularization parameter, and inversely proportional \/1+62(0.6462—061)2 z € 012
to the feature scale; Small-scale details, like noise, are smoothed 2 S \/ﬁ z €023
out, leaving a sharp noiseless reconstruction. In the Beltrami- /1 + B2 |Vu|2 o oo elsewhere

based restoration, the regularization parameters replaced in

) - - - . i

the Euler-Lagrange equation bym, yielding an adaptive To
_ . [ 0 .

tal Variation restoration [16]. Since the ter ) is basically

an edge indicator, it assumes small values in the presence of an
edge, while in smooth areas, where the gradients are very close
to zero, its values increase up to one. This feature overcomes the
problems of the intensity reduction near edges, and of elimination
of small scale features. To illustrate this property, consider the

simpleR* function:

0.2 e
u(z) ={ 0.8 z € (27)
0.2 z€Qs ,

A Gaussian noise is added to this function to produce the noisy

function:
z(z) =u(z) +n (28)

Experiment with the Beltrami based restoration algorithm on
this noisy function suggests that the restored function should be

0.2 + 01 z e
u(z) ={ 0.8+ 02 x € Qo (29)
0.2+ d3 €3,

whered; is the intensity change in regian The restoration prob-
lemis:
min{3 |lu — 2|+ BTV (u)} =
rr;n{z (le‘ (512) + 0515(0.6 + 02 — 01+0.6 + 62 — (53)} N
l (30)

where|(2; | is the length of region. Minimizing eq. (30) by deriva-
tion with respect t@" yields:

_ apB
o= ‘9112|a 8
02 = — \QIQI (31)
bt

Therefore, in the restored functiar{z), the intensity change
is directly proportional to the parameter and inversely propor-
tional to the scale. This result was presented in [16] for the Total
Variation based restoration.
For simplicity, let assume tha®, | = |Q23] and thereforé,
Modifying the regularization parameter; to —=.

v/ det(G)
——=1L____ introduces the Beltrami operator to the solution. The

regularization parameter can be explicitly expressed by:

d3.

(32)
where 912 stands for the boundary of region 1 and 2, &8
stands for the boundary of region 2 and 3.
Considering only the boundary points and implementing the
modifiedas, eq. (31) becomes:

_ 18
b= \91\\/1-0-[?2(0246—0—;2—51)2 (on 012)
0 = — L 012
2 \flzl\/1+ﬁ22(0<ﬁ6+52—51)2 ( on ) (33)
0 = — o1 023
2 1922]4/1+62(0.6+82—61)2 (on )
18 (on 023) .

8= 121 4/1482(0.64+852—51)2
Sinceg is assumed to be very large, equation ( 33) can be ap-
proximated:

b1 = WIW (on 812)
2 = ~Tmoern sy (on 012) o
= ~ s n 923 (34)
2= T I02[(0.6+62—81) ( on )
3 = loroeis, s (on 023) .

Sinced; = d3 the solution to (34) is:

06121 [1221—1/12112122120.36—4]Q2 (121 [1Q2[+2]21 [2) oy
2(1Q1[1221+2(9211%)

0 =

0612111221 —/19112122]20.36—4] 25 (|21 [|22[+2121 [?) oz

02 = (% P2 [%22)) :
(35)

In this case, intensity change is not directly proportional to
the regularization parameter; or inversely proportional to the
scale in the boundary points. In fact the intensity change is mini-
mal.

The functionz is actually divided into 2 types of regions.
Step regions in which the intensity change is defined in (35), and

smooth regions in which the parame% ~ a1 andthe
u

intensity change are defined in equation (31).

Restoration of the function using the Total Variation operator
and the Beltrami operator are shown in Fig. 5. Gaussian noise
with variance 0.05 was added to the functioen The size of the
regions is|Q: | = |Qs] = 25, [Q2| = 10, a1 = &5 and3 = 60.

The Total Variation restoration should yield:

61 =05 =2L =004
Sp=-28 =02 | (36)
and the Beltrami-based restoration should yield:
f— j— _ - @ j—
61 — 53 — 150 \/22?5)880 600001 = 0.001 (37)
5y = — 150=v22500-60000a1 _ _g 05 .

600

Observe the contrast reduction betwe&enand Q2/3 in the
Total Variation based restoration (caused by the direct relation to



the smoothing parameter;). The value ofQ2; is extensively re-
duced due to its small scale (caused by the inverse relation to the

feature scale). In the Beltrami-based restoration the change in the
contrast is hardly seen due to the wick relatiomtoand the fea-
ture scale. The numerical results as seen in Fig 5 match perfectly
with the analytic prediction of eq. (36) and (37).
Qriginal and Moisy Data
20 40 &0 20 40 B0
08 25 — 25 e \::
S s 20 -b‘_:—:": 20 w -
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0z v | e ey
—— PSP AEAEEAR 5 S e
10 20 30 40 0 &0 15_._.‘_.._&.._”_'[:_:: 15 e
, TV Reconstruction ! Beltrami Reconstruction 35 40 45 a5 a0 45

Fig. 6 Up - down, left to right: Original noisy image, de-noised
image, the angles between colors gradients before, and after the
de-noising process.

Ui

; Color image reconstruction is hardly addressed, due to the
020 30 b s e 0 30 40 50 &0 common belief that color image reconstruction can be treated as
’ reconstructing three gray valued independent channels. This is a
wrong assumption in applications where the human visual system
(HVS) is the receiver. The HVS is very sensitive to the slightest
edge miss-alignment, or to intensity reduction in one of the color
channels. In [1], the color TV was defined as a regularization op-
erator for the restoration of vector valued images. A coupling be-
tween the color channels was achieved through the regularization
parameter, assigning small regularization parameter to channels
with smaller Total Variation. In the reconstructed color image,

Fig. 5 Up: original noisy image. Down-left: After denoising by
total variation. Down-right: After denoising with the Beltrami
operator

As mentioned in section 2, the Polyakov action for a two-
dimensional surface embedded in a five-dimensional 'space-
feature’ space as in the case of a color image is:

S(ut) = f v/ Grgpdady = "weaker” channels are smoothed less and therefore preserve the
intensity relationship between the channels. In the Beltrami-based
toration a coupling between the color channels is introduced
1+ 82 (IVue?) + 16+ Y (Vue, Vub)2dad res reer
f\/ +0 za:“ uel) + 36 %;( ut, Vub)*dady not only through the regularization parameter, but also through the
(38) regularization operator itself. Comparison between the best color

TV reconstruction and the best Beltrami-based reconstruction of a

Where(vua’7 vub) stands for the magnitude of the vector prod_ nOisy image, where blur is not introduced, is depicted in Flg 7.
uct of the vector&7«* andVu". While minimizing the Polyakov ~ Table 2 summarized the PSNR of these images. Observe how in

action, the terml + 82 |Vu®|* regularizes each color chan- both of the recqnstructed images, the noise is removed completely.

) a ) However, only in the Beltrami-based reconstruction the edges are
ns—fl as desirlbedb |2n thg gray value case egrher. _ The term sharp and visually satisfying and color artifacts are not introduced.
B3, (Vu®, Vu’)®, which is more dominant in the limit of 8 The pjur and color artifacts in the TV process is caused probably

large 3, measures the directional difference of the gradients be- pecause of misalignment of the edges in the different color chan-
tween color channels. The minimization of the Polyakov action pelg ('see [17] for a full explanation of this phenomenon).

takes care, therefore, of the alignment and location matching of

the edges over the three channels. To illustrate this, a noisy color

image was produced by a digital camera (Fig. 6 up-left). The an- 7 Concluding remarks

gles between the orientations of the gradient in the noisy image

are plotted by arrows (Fig. 6 down-left). When an arrow points Using the Beltrami operator in the objective functional, and adopt-
right the angle is zero (the gradients are of the same orientation).ing the alternating minimization scheme for minimizing eq. (4),
A Beltrami-based restoration is illustrated on the up-right side of yields a robust algorithm for simultaneous recovery of a blurred
Fig. 6. Note that in the original image the gradient of the channels noisy color image and of its blurring kernel. The parameters

do not align together, the image looks noisy and the edges are notandas of this process are automatically selected to yield the good
sharp. In the restored image, however, the angles between the graresults. The restored images depict sharp edges and gradients of
dient orientations are reduced (Fig. 6 down-right) and the restoredthe channels well align. The RGB color space was adopted in this
image looks sharper and less noisy. study. However, the approach can be just as well incorporate the



HVS color coordinates [19]. The HVS color space was shown to
be effective in spatio-chromatic image enhancement. Another is-
sue to be further explored relates to question of what is the 'right’

metric for measuring distances in the higher dimensional space.

Further such insight will most likely improve the results of the
proposed approach to image deblurring and denoising.

Fig. 7 Left to right, top to bottom: Original, noisy, TV and
Beltrami images.

Observed TV Restored | Beltrami restored
Image PSNR | PSNR PSNR
23dB 29dB 30dB

Table 2: PSNR of the TV and Beltrami restored image
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