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Abstract

The fundamental problem of de-noising and de-blurring im-
ages is addressed in this study. The great difficulty in this
task is due to the ill-posedness of the problem. We sug-
gest to analyze multi-channel images to gain robustness and
to regularize it by the Polyakov action which provides an
anisotropic smoothing term that use intra-channel infor-
mation. Blind de-convolution is then solved by additional
anisotropic smoothing term of the same type. It is shown
that the Beltrami regularizer leads to better results than the
Total Variation (TV) regularizer. An analytic comparison to
the TV method is carried out and results on synthetic and
real data are demonstrated.

1. Introduction and Previous Work
Noisy images are a practical reality that pose a challenge to
any front-end of an imaging or vision system. Noise is in-
troduced due to thermal fluctuations in sensors, quantization
effects and properties of communications channels. Blur-
ring occurs due to scattering of the light (e.g. atmosphere
turbulence), optical limitations and motion. The widely-
used model of spatially-invariant linear blurring operator
and additive Gaussian noise is adopted in this study, to ac-
count for the blurring phenomena and the noise characteris-
tics .

Denoting byua(x, y) a = 1, . . . , d the source color
channels of an image, the observed degraded color channel
za(x, y) is modelled as:

za = h ∗ ua + n , (1)

whereh(x, y) is a blurring kernel acting onua by convolu-
tion, n is a Gaussian white noise anda = r, g, b in the RGB
color space.

One method, used for reconstructing a gray value image,
is the Total Variation (TV) blind de-convolution [3]. This
method suggests simultaneous recovery of the sharp de-
noised image and its blurring kernel. The recovery process

is based on minimization of the functional:

min
u,h

f(u, h) ≡
min
u,h

{1
2 ‖h ∗ u− z‖2 + α1TV (u) + α2TV (h)} ,

(2)

where the norm in the data term is in the sense of theL2

norm. The TV regularization operator is defined as:

TV (u) =
∫
|∇u|dxdy , (3)

and it was successfully used for edge preserving image de-
noising [9].

A more general regularization operator was recently in-
troduced in the context of a general Beltrami framework for
low level vision [10] . According to this framework, color
images are represented as surfaces inR5, with the coor-
dinates(x, y, ur, ug, ub). A metric is introduced for mea-
suring distances on the surfaces, and minimization of the
Polyakov action, adopted from high energy physics, yields
the Beltrami operator. In an Euclidean space, the Polyakov
action (along with the induced metric) measures the surface
area. Minimizing it causes the image to become smoother,
its color channels to co-orient and align and, consequently,
its edges to be preserved and match in position, unlike the
the results of reconstruction by considering the three color
channels independently.

In this paper the approach of minimizing a functional,
resembling that of eq. (2), is combined with the Polyakov
action as a regularization operator, in order to deblur and
denoise a blurred color image contaminated by Gaussian
noise. The functional to be minimized is:

min
ua,h

f ≡
min
ua,h

{ 1
2

∑
a
‖h ∗ ua − za‖2 + α1S(ua) + α2S(h)}, (4)

where the norms are in theL2 sense andS is the Polyakov
action. Minimizing eq. (4) with respect tour, ug, ub and
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h, recovers the image color channels and the blurring ker-
nel, simultaneously. The parametersα1 andα2 control the
smoothness of the solution.

Alternatively we will alternate the minimization of the
image and the Blurring kernel such that the following free
energies are minimized:

min
u

fu(u; h, z) ≡
min
ua
{1

2

∑
a
‖h ∗ ua − za‖2 + α1S(u)}, (5)

min
h

fh(h;u, z) ≡
min

h
{1

2

∑
a
‖h ∗ ua − za‖2 + α2S(h)}, (6)

The paper is organized as follows: we first introduce the
main ideas regarding the Beltrami framework i.e. the repre-
sentation of color images as two-dimensional surfaces em-
bedded in a five-dimensional space, the induced metric for
measuring distances on the surface and the Polyakov action,
which measures the surface area. The numerical scheme for
minimizing eq. (4) (or equivalently eqs. (5, 6)), which is
similar to the alternating minimization scheme, described
in [3], is then presented. The Beltrami operator is incorpo-
rated into the Euler-Lagrange equations, by modifying the
regularization parameters (or by adding a functional [7]).
The equations are linearized by the fixed-point lagged dif-
fusive method, discussed in [18], and solved using the con-
jugate gradient method. The regularization parameters are
then selected to provide the best possible results.

Finally, the properties of the Beltrami-based restoration
are analyzed and illustrated by examples, and its advantages
over other techniques are discussed.

2 Images as surfaces embedded in a
higher dimensional space

A color image is represented according to the Beltrami
framework [8] as a two-dimensional surface embedded
in a 5-dimensional ’spatial-feature’ space via the “Monge
patch”

(
X1, X2, X3, X4, X5

)
=

(
x, y, ur, ug, ub

)
. The

blurring kernel can be similarly represented as a two-
dimensional surface embedded in a three-dimensional
’spatial-feature’ space(x, y, h). The distance,ds, on the
image surface, measured as a function of the local coordi-
nates on the surface, is defined as follows:

ds2 = g11dx2 + 2g12dxdy + g22dy2 , (7)

whereG = (gµν) is a metric, calculated using the pullback
procedure described in [11] which is defined as follows:

Let X : Σ → M be an embedding ofΣ in M, where
M is a Riemannian manifold with a metric(gij)M . We can

use the knowledge of the metric on M and the map X to con-
struct the metric onΣ. This procedure is called the pullback
procedure and is given as follows:

(gµυ)Σ(σ1, σ2) = (gij)M (X(σ1, σ2))∂µXi∂υXj , (8)

where i,j = 1,. . . ,dimM are being summed over, and

∂µXi ≡ ∂Xi(σ1,σ2)
∂σµ .

For the two-dimensional surface it is given explicitly as:

g11 =
n∑

a=1

n∑
b=1

kab
∂Xa

∂x
∂Xb

∂x

g12 = g21 =
n∑

a=1

n∑
b=1

kab
∂Xa

∂x
∂Xb

∂y

g22 =
n∑

a=1

n∑
b=1

kab
∂Xa

∂y
∂Xb

∂y ,

(9)

wheren is the dimension of the embedding space, andkab

is its metric. Definingkab for the embedding color space,
and for the embedding blurring kernel space, as (see other
interesting options in [13]):

kab = { δab a, b = 1, 2
β2δab elsewere ,

(10)

and using the pullback procedure, the metricG = gµν can
be calculated for the color surface and the blurring kernel
surface respectively:

Grgb =




1 + β2
∑
a

(ua
x)2 β2

∑
a

ua
xua

y

β2
∑
a

ua
xua

y 1 + β2
∑
a

(ua
y)2




Gh =
(

1 + β2u2
x β2uxuy

β2uxuy 1 + β2u2
y

)
(11)

The Polyakov action is defined for a generally defined
metric embeddingXa and metricG as

S(Xa) =
∫

dxdy
√

detG
∑

ab

∇XaG−1∇Xbkab (12)

The modified Gradient Descent equations for this functional
are [12]:

Xa
t = ∆GXa =

1√
det(G)

∇
(√

det(G)G−1∇Xa
)

,

(13)
whereXa

t ≡ ∂Xa

∂t .
For gray-valued and color images and their induced met-

rics, as described above, the functional eq. (12) is reduced
to an area functional:

S(ua) =
∫ √

det Grgbdxdy =

∫ √
1 + β2

∑
a

(|∇ua|2) + 1
2β4

∑
ab

(∇ua,∇ub)2dxdy

(14)
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S(h) =
∫ √

detGkerdxdy =
∫ √

1 + β2 |∇h|2dxdy ,

(15)
where(∇ua,∇ub) stands for the magnitude of the vector

product of∇ua and∇ub.

3 Beltrami based restoration

The Polyakov action is used as a regularization operator for
both the color image and its blurring kernel. The functional
to be minimized is as follows:

min
ua,h

f ≡ min
ua,h

{1
2

∑
a

(
‖h ∗ ua − za‖2

)
+

α1

∫ √
det(Grgb)dxdy + α2

∫ √
det(Gker)dxdy} ,

(16)

The Euler-Lagrange equations for eq. (16), with respect
to ua andh, are:

δf
δh =

∑
a

(ua(−x,−y) ∗ (h ∗ ua − za))−
α2∇ · (

√
det(Gker)G−1

ker∇h) = 0

δf
δua = h(−x,−y) ∗ (h ∗ ua − za)−

α1∇ · (√det(Grgb)G−1
rgb∇ua) = 0 ,

(17)

with the boundary conditions:∂ua

∂n = 0 andh(x, y) = 0
for (x, y) ∈ ∂Ω, where∂Ω is the boundary of the kernel
domain andn is the normal to the image on the boundaries
of the image domain.

Since the extent of regularization is controlled by the reg-
ularization parameter, we want to diminish it near the edges.
Since the term

√
det(G) is basically an edge indicator, we

can use a similar idea to the adaptive TV minimization pre-
sented in [14] and replace the regularization parametersα1

andα2 with the terms:

α1(x, y) → α1√
det(Grgb)

α2(x, y) → α2√
det(Gh)

.
(18)

The new definitions of the regularization parametersα1

andα2 introduce the natural generalization of the Laplacian
from flat spaces to manifolds, the so-called second order
differential parameter of Beltrami to be denoted by∆G:

δf
δh =

∑
a

ua(−x,−y) ∗ (h ∗ ua − za)− α2∆ker(h) = 0
δf
δua = h(−x,−y) ∗ (h ∗ ua − zi)− α1∆Grgb

(ua) = 0 ,
(19)

with the boundary conditions as in (17) where
∆G(X)= 1√

det(G)
∇ ·

√
det(G)G−1∇X.

The functionalf(ur, ug, ub, h) in eq. (16) is not jointly
convex. But, for a givenur, ug andub it is convex with

respect toh. For a givenug, ub andh, f(·, ub, ug, h) is a
convex function with respect tour and similarly forug and
ub. This enables the adaptation of the alternating minimiza-
tion scheme, which was found to be robust and fast [2].

These equations (19) can be derived alternatively by
minimizing two functionals. Similarly, the image and the
kernel are described as surfaces embedded in a higher di-
mensional Euclidean space. The metric of the Euclidean
space iskab as described above. The fidelity term is defined
thenon the manifold:

min
ua,h

fu ≡ min
ua
{1

2

∑
a

∫
dxdy

√
Grgb ‖h ∗ ua − za‖2 +

α1

∫
dxdy

√
det(Grgb)G

ij
rgb∇iX

a∇jX
a} ,

(20)

min
ua,h

fh ≡ min
h
{1

2

∑
a

∫
dxdy

√
Gker ‖h ∗ ua − za‖2 +

+α2

∫
dxdy

√
det(Gker)G

ij
ker∇iX

a∇jX
a} ,

(21)

The modified Euler-Lagrange equations are:

1√
Grgb

δfu

δua
= 0

1√
Gker

δfh

δh
= 0 (22)

and are identical to eq. (19). Note that the fidelity term is
weighted in these functionals by a locally dependent fac-
tor. This means that at each point the relation between the
smoothing part and the fidelity part is different. In partic-
ular the fidelity to the measurements is enforced strongly
at points with high gradients where the determinant of the
metric is large. Larger deviations from the observations is
permissable at points with low gradients. In the modified
Euler-Lagrange equations the factor

√
detG is shifted to

the smoothing term. This amounts for an adaptive smooth-
ing mechanism: At points of large gradients the smoothing
term is suppressed and fidelity of the restored image to the
observed values is enforced. Larger smoothing is allowed
to take place at points of low gradient values.

The minimization scheme is stated as follows: Take as
initial guess,ua0 = za andh0 = δ(x, y). Assume we have
uan andhn, and solve forhn+1:

∑
a

uan(−x,−y) ∗ (hn+1 ∗ uan − za)−
α2∆ker(hn+1) = 0,

(23)

and impose the following conditions over the solu-
tion:

∫
Ω

hn+1(x, y)dxdy=1, hn+1(x, y)=hn+1(−x,−y),

hn+1(x, y)≥0, andhn+1(x, y) = 0 for (x, y) ∈ ∂Ω.
Solve foruan+1 :

hn+1(−x,−y)∗(hn+1∗uan+1−za)−α1∆Grgb
(uan+1) = 0g

(24)
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and impose the following condition over the solution:
uan+1(x, y) ≥ 0

The proposed algorithm can be modified to solve first
for uan+1 and then forhn+1. The Euler-Lagrange equations
are linearized using the fixed point lagged diffusive method,
introduced in [18] and solved using the conjugate gradient
methods described in [4].

4 The regularization parameters

The parameterβ, introduced in the induced metric in sec-
tion 2, interpolates between the EuclideanL1 and Euclidean
L2 norms. Since the EuclideanL2 norm penalizes discon-
tinuities, and therefore prefers smooth restoration, we ex-
plore the more interesting case of a largeβ (EuclideanL1

norm).
The regularization parametersα1 andα2 control the bal-

ance between goodness of fit ofh ∗ ua to the measured
dataza and the amount of regularization with respect to the
Polyakov action ofua andh. Intuitive, analytic, and numer-
ical considerations can lead to the choice of values for the
regularization parameters for the restored color image and
the blurring kernel.

4.1 The parameterα1

As was described earlier, the Polyakov action measures
the surface area of the manifold. Color image is a two-
dimensional surface embedded in a five-dimensional space.
Minimizing its surface area will de-noise the image, since
noise is a feature with very large surface area in comparison
to its scale.

The first step of the restoration scheme can be solving
eq. (24) first and then eq. (23). Inserting the initial guess
h0 = δ(x, y), eq. (24) yields:

(ua1 − za)− α1∆Grgb
(ua1) = 0 . (25)

The problem in this step is reduced to finding the best
regularization parameter for de-noising a color channelua1

when blur is not introduced.
In [6] this parameter was found to be proportional to the

noise variance and by numerical experiments, it was found
that setting it to the noise variance is adequate.

4.2 The parameterα2

Unlike the case of the regularization parameterα1, where
the problem was reduced to finding the best regularization
parameter for denoising a color image when blur is not in-
troduced, the case for finding the regularization parameter
α2 is not that simple. The analytic tools used so far for find-
ing the regularization parameter for the color image are not

adequate for finding the best regularization parameter for
the kernel. Intuition and previous work [3] suggest that the
parameter does not depend on the noise level of the image,
but depends on the extent of the desired deblurring.

Experiments show that there is a wide range of values
for α2 (from 0.01 to 0.05) that estimates the same kernel.
Within this range, the estimated kernel depends only on the
extent of blurring affecting the observed image [6]

5 Results

The proposed algorithm was found to be robust. It con-
verges after only 5 iterations. Figures 1-4 illustrates exam-
ples of restoring Gaussianly blurred, moving and ’out of fo-
cus’ blurred and noisy images, using the regularization pa-
rameters determined in the previous section. Observe how
the restored images are sharp and noiseless, and the esti-
mated blurring kernels resemble the true kernels.

Fig. 1 Radially symmetric blur. From left to right - 1st row:
Original. 2nd row: Blurred and noisy image, restored image.
3rd row: true and estimated kernels.
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Fig. 2 Radially symmetric blur. From left to right - 1st row:
Original. 2nd row: Blurred and noisy image, restored image.
3rd row: true and estimated kernels.

Fig. 3 Out of focus blur. From left to right - 1st row: Original.
2nd row: Blurred and noisy image, restored image.
3rd row: true and estimated kernels

Fig. 4 Motion blur. From left to right - 1st row: Original. 2nd
row: Blurred and noisy image, restored image.
3rd row: true and estimated kernels

A quantitative measure of the error, associated with the estima-
tion of the color image and of the blurring kernel, can be obtained
by calculating the peak signal-to-noise ratio (PSNR):

PSNR(X)= 20 log
√√√√

3·N·M∑
a

N∑
j=1

M∑
k=1

(Xa
j,k
−X̂a

j,k
)2

whereX stands forua or h, and N· M is the number of pixels.
Table 1 summarizes the PSNR of the images in figures 1-4.

Image Observed
Image
PSNR

Restored
Image
PSNR

Restored
Kernel
PSNR

Coin 21 dB 23 dB 60 dB
Baby 28 dB 32 dB 62 dB
Frog 25 dB 27 dB 59 dB
Color Bar 24 dB 31 dB 47 dB

Table 1: PSNR of the restored images and kernels

6 Properties of the Beltrami-based
restoration

The properties of restoration of a two-dimensional surface, em-
bedded in a three-dimensional ’spatial-feature’ space, similar to
the case of gray value images (or the blurring kernel), is explored
first. The Polyakov action in equation (14), becomes for a largeβ
the modified Total Variation operator defined in [18]:

S(h) =
∫ √

1 + β2(∇h)2dxdy =

β
∫ √

γ2 + (∇h)2dxdy = βTV (h) .
(26)

whereγ = 1
β

.
Since the Total Variation does not penalize discontinuities or

smooth functions, it was used successfully as a regularization op-
erator in reconstructing gray-valued images [9], [3]. Reconstruc-
tion using the Total Variation operator was explored in [15] and

5



yielded the following properties: Edges are preserved in the recon-
structed image; The intensity change of image features is propor-
tional to the regularization parameter, and inversely proportional
to the feature scale; Small-scale details, like noise, are smoothed
out, leaving a sharp noiseless reconstruction. In the Beltrami-
based restoration, the regularization parameterα1 is replaced in
the Euler-Lagrange equation by α1√

det(G)
, yielding an adaptive To-

tal Variation restoration [16]. Since the term α1√
det(G)

is basically

an edge indicator, it assumes small values in the presence of an
edge, while in smooth areas, where the gradients are very close
to zero, its values increase up to one. This feature overcomes the
problems of the intensity reduction near edges, and of elimination
of small scale features. To illustrate this property, consider the
simpleR1 function:

u(x) = {
0.2 x ∈ Ω1

0.8 x ∈ Ω2

0.2 x ∈ Ω3 ,
(27)

.
A Gaussian noise is added to this function to produce the noisy

function:

z(x) = u(x) + n (28)

.
Experiment with the Beltrami based restoration algorithm on

this noisy function suggests that the restored function should be

u(x) = {
0.2 + δ1 x ∈ Ω1

0.8 + δ2 x ∈ Ω2

0.2 + δ3 x ∈ Ω3 ,
(29)

whereδi is the intensity change in regioni. The restoration prob-
lem is:

min
u
{ 1

2
‖u− z‖2 + α1βTV (u)} =

min
δi
{∑

i

(|Ωi| δ2
i ) + α1β(0.6 + δ2 − δ1+0.6 + δ2 − δ3)} ,

(30)

where|Ωi| is the length of regioni. Minimizing eq. (30) by deriva-
tion with respect toδi yields:

δ1 = α1β
|Ω1|

δ2 = − 2α1β
|Ω2|

δ3 = α1β
|Ω3| .

(31)

Therefore, in the restored functionu(x), the intensity change
is directly proportional to the parameterα1 and inversely propor-
tional to the scale. This result was presented in [16] for the Total
Variation based restoration.

For simplicity, let assume that|Ω1| = |Ω3| and thereforeδ1 =
δ3. Modifying the regularization parameterα1 to α1√

det(G)
=

α1√
1+β2|∇u|2

, introduces the Beltrami operator to the solution. The

regularization parameter can be explicitly expressed by:

α1√
1 + β2 |∇u|2

= {

α1√
1+β2(0.6+δ2−δ1)2

x ∈ ∂12

α1√
1+β2(0.6+δ2−δ1)2

x ∈ ∂23

α1 elsewhere ,

(32)
where∂12 stands for the boundary of region 1 and 2, and∂23
stands for the boundary of region 2 and 3.

Considering only the boundary points and implementing the
modifiedα1, eq. (31) becomes:

δ1 = α1β

|Ω1|
√

1+β2(0.6+δ2−δ1)2
( on ∂12)

δ2 = − 2α1β

|Ω2|
√

1+β2(0.6+δ2−δ1)2
( on ∂12)

δ2 = − 2α1β

|Ω2|
√

1+β2(0.6+δ2−δ1)2
( on ∂23)

δ3 = α1β

|Ω1|
√

1+β2(0.6+δ2−δ1)2
( on ∂23) .

(33)

Sinceβ is assumed to be very large, equation ( 33) can be ap-
proximated:

δ1 = α1
|Ω1|(0.6+δ2−δ1)

( on ∂12)

δ2 = − 2α1
|Ω2|(0.6+δ2−δ1)

( on ∂12)

δ2 = − 2α1
|Ω2|(0.6+δ2−δ1)

( on ∂23)

δ3 = α1
|Ω1|(0.6+δ2−δ1)

( on ∂23) .

(34)

Sinceδ1 = δ3 the solution to ( 34) is:

δ1 =
0.6|Ω1||Ω2|−

√
|Ω1|2|Ω2|20.36−4|Ω2|(|Ω1||Ω2|+2|Ω1|2)α1

2(|Ω1||Ω2|+2|Ω1|2)

δ2 = − 0.6|Ω1||Ω2|−
√
|Ω1|2|Ω2|20.36−4|Ω2|(|Ω1||Ω2|+2|Ω1|2)α1

(|Ω2|2+2|Ω1||Ω2|) .

(35)

In this case, intensity changeδi is not directly proportional to
the regularization parameterα1 or inversely proportional to the
scale in the boundary points. In fact the intensity change is mini-
mal.

The functionz is actually divided into 2 types of regions.
Step regions in which the intensity change is defined in (35), and
smooth regions in which the parameter α1√

1+β2|∇u|2
≈ α1 and the

intensity change are defined in equation (31).
Restoration of the functionu using the Total Variation operator

and the Beltrami operator are shown in Fig. 5. Gaussian noise
with variance 0.05 was added to the functionu. The size of the
regions is|Ω1| = |Ω3| = 25, |Ω2| = 10, α1 = 1

60
andβ = 60.

The Total Variation restoration should yield:

δ1 = δ3 = α1β
25

= 0.04

δ2 = −α1β
5

= −0.2 ,
(36)

and the Beltrami-based restoration should yield:

δ1 = δ3 = 150−√22500−60000α1
3000

= 0.001

δ2 = − 150−√22500−60000α1
600

= −0.005 .
(37)

Observe the contrast reduction betweenΩ1 andΩ2/3 in the
Total Variation based restoration (caused by the direct relation to
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the smoothing parameterα1). The value ofΩ2 is extensively re-
duced due to its small scale (caused by the inverse relation to the
feature scale). In the Beltrami-based restoration the change in the
contrast is hardly seen due to the wick relation toα1 and the fea-
ture scale. The numerical results as seen in Fig 5 match perfectly
with the analytic prediction of eq. (36) and (37).

Fig. 5 Up: original noisy image. Down-left: After denoising by
total variation. Down-right: After denoising with the Beltrami
operator

As mentioned in section 2, the Polyakov action for a two-
dimensional surface embedded in a five-dimensional ’space-
feature’ space as in the case of a color image is:

S(ui) =
∫ √

Grgbdxdy =

∫ √
1 + β2

∑
a

(|∇ua|2) + 1
2
β4

∑
ab

(∇ua,∇ub)2dxdy ,

(38)

where(∇ua,∇ub) stands for the magnitude of the vector prod-
uct of the vectors∇ua and∇ub. While minimizing the Polyakov
action, the term1 + β2

∑
a

|∇ua|2 regularizes each color chan-

nel as described in the gray value case earlier. The term
β4

∑
ab

(∇ua,∇ub)2, which is more dominant in the limit of a
largeβ, measures the directional difference of the gradients be-
tween color channels. The minimization of the Polyakov action
takes care, therefore, of the alignment and location matching of
the edges over the three channels. To illustrate this, a noisy color
image was produced by a digital camera (Fig. 6 up-left). The an-
gles between the orientations of the gradient in the noisy image
are plotted by arrows (Fig. 6 down-left). When an arrow points
right the angle is zero (the gradients are of the same orientation).
A Beltrami-based restoration is illustrated on the up-right side of
Fig. 6. Note that in the original image the gradient of the channels
do not align together, the image looks noisy and the edges are not
sharp. In the restored image, however, the angles between the gra-
dient orientations are reduced (Fig. 6 down-right) and the restored
image looks sharper and less noisy.

Fig. 6 Up - down, left to right: Original noisy image, de-noised
image, the angles between colors gradients before, and after the
de-noising process.

Color image reconstruction is hardly addressed, due to the
common belief that color image reconstruction can be treated as
reconstructing three gray valued independent channels. This is a
wrong assumption in applications where the human visual system
(HVS) is the receiver. The HVS is very sensitive to the slightest
edge miss-alignment, or to intensity reduction in one of the color
channels. In [1], the color TV was defined as a regularization op-
erator for the restoration of vector valued images. A coupling be-
tween the color channels was achieved through the regularization
parameter, assigning small regularization parameter to channels
with smaller Total Variation. In the reconstructed color image,
”weaker” channels are smoothed less and therefore preserve the
intensity relationship between the channels. In the Beltrami-based
restoration a coupling between the color channels is introduced
not only through the regularization parameter, but also through the
regularization operator itself. Comparison between the best color
TV reconstruction and the best Beltrami-based reconstruction of a
noisy image, where blur is not introduced, is depicted in Fig. 7.
Table 2 summarized the PSNR of these images. Observe how in
both of the reconstructed images, the noise is removed completely.
However, only in the Beltrami-based reconstruction the edges are
sharp and visually satisfying and color artifacts are not introduced.
The blur and color artifacts in the TV process is caused probably
because of misalignment of the edges in the different color chan-
nels ( see [17] for a full explanation of this phenomenon).

7 Concluding remarks
Using the Beltrami operator in the objective functional, and adopt-
ing the alternating minimization scheme for minimizing eq. (4),
yields a robust algorithm for simultaneous recovery of a blurred
noisy color image and of its blurring kernel. The parametersα1

andα2 of this process are automatically selected to yield the good
results. The restored images depict sharp edges and gradients of
the channels well align. The RGB color space was adopted in this
study. However, the approach can be just as well incorporate the

7



HVS color coordinates [19]. The HVS color space was shown to
be effective in spatio-chromatic image enhancement. Another is-
sue to be further explored relates to question of what is the ’right’
metric for measuring distances in the higher dimensional space.
Further such insight will most likely improve the results of the
proposed approach to image deblurring and denoising.

Fig. 7 Left to right, top to bottom: Original, noisy, TV and
Beltrami images.

Observed
Image PSNR

TV Restored
PSNR

Beltrami restored
PSNR

23 dB 29 dB 30 dB
Table 2: PSNR of the TV and Beltrami restored image
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