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ABSTRACT image processing and computer vision are approached by the at-
tachment of a feature space to every point (or pixel in the discrete
We study, in this paper, the problem of denoising images/data whichsetting). The feature spaces in different locations of the image do-
are defined over non-flat surfaces. This problem arises often in main are isomorphic. The combined spatial-feature space is called
many medical imaging tasks. The Beltrami flow which was defined 3 fiber bundle. The image domain is called the base manifold and
in an explicit-intrinsic manner is generalized here to non-flat sur- the feature space is called the fiber. If the feature space is a vector
faces and is defined in an implicit way. We formulate the flow in a space then the spatial-feature space is called a vector bundle. The
variational way which is generalized to a scalar field defined over choice of a poin’[ in the feature space to any point in the image
an n-dimensional manifold. The implementation scheme of this gomain (the base manifold) is called a section.

flow is presented and various experimental results obtained on a In the harmonic map formulation the functional evaluates the
set of real images illustrate the performances of the approach as embedding othe base manifoldin the fiber. The Polyakov action
well as the differences between various flows of interests. in the Beltrami framework evaluates the embeddinthefsection
in the spatial-feature space (the fiber bundle). We will see below
that this difference leads to different denoising flows.

This article is organized as follows: The Beltrami intrinsic ap-
proach is used in Section 2 to derive equations for the denoising

Itwas realized In recent years f[hat po_werful t_echnlques, th_at WETE of gray value images defined over a flat 2D surfaces. We take in
devised to denoise and regularize various objects such as intensity,

. . . ection 3 the Beltrami formulation of scalar denoising on non-flat

1o nonlet domains. Tis s typial Iy mecalmaging r?ilf.e“?qiac?gfgg o i an inplck o The derkad -
fr?:iilsovr\:%rft:]zecrgrlg;m data is attached to a specific tissue such dn for the functional. Section 5 presents examples and results.

Two approaches for regularizing an image on a non-flat sur-
face are known. The Beltrami [19, 20, 22, 10, 18] and the har- 2. INTRINSIC FORMULATION
monic map [3, 14, 6, 4, 17] frameworks define, both, the regular-
ization as a gradient descent flow of a geometric functfondl T ; . . . -
has been shown, in various works [14, 1], that these two function- &€, 1eml3eddsed in af-dimensional manifold\/ with co-
als are in fact the same. The surface is expressed in the harmoni@rd'r_"”_‘tesx , X7, X7, the embeddlng mag’ : % — Mis given
map formulation in an implicit way and in the Beltrami framework €XPlicitly by the 3 functions of 2 variables
in an explicit-intrinsic manner. Yet, the denoising flows, obtained  x . (5! 52) — (X'(0',0?), X*(c*,0%), X* (¢, 07)) .
in these two formulations, defer because of different formulations
of the problem in the two frameworks. We explain in the present A gray-value image/(o', o%) is represented, in this framework,
study the differences in the formulation of the problem and gen- as the embeddingX ' = o', X* = 0%, X* = U (o', 0?)).
eralize, subsequently, the Beltrami flow to non-flat manifolds. We Let us formulate the Polyakov action [15] in a matricial form:
generalize, via the variational approach, our previous results [2] Lét (£, G) be the image manifold and its metric a@/, ) the
where the Beltrami flow was derived for a scalar field defined over spatial-feature manifold and its metric. The spatial-feature mani-
a curve. In [2] the derivation was purely geometric and limited, fold M is simply IR* with the usual Eucledean distance for gray-

1. INTRODUCTION

Suppose we have a 2-dimensional manifaldvith local coordi-

therefore to the one-dimensional case. value images. Define at each point the mattixvhose elements
In order to explain the frameworks we have to describe the aré . U i
space in which these functionals operate. Many of the problems in AY = (0=X")'G™ 05X,

whereds X' = (9,1 X%, 0,2 X"

*This work was supported by the Israel Academy of Science, Minstry The mapX : 3 — M has the following weight:
of Science, The Adamas Center and the University of Tel-Aviv fund for
research.

[ _ m
1For geometric non-variational approach, see [9] S[X', G, H]| = /d o\/gTr(AH),




wherem is the dimension oE andg = det(G). because, by the Nash theorem, it is not always true that one can

The gradient descent equations, with respecfXtd in our represent an n-Dimensional manifold as a zero set of a function in
gray-level image example is (n+1) Euclidean space. Nevertheless it is true for 2d surfaces that
we treat below, and for most cases of interest in computer vision
___1 45 _ idiv (\/§G*1VU) 1) and computer graphics. We define tR& 2 gradientD and the
2,/g0U /g ’ IR"*! gradientV. The functional is simply the volume of this

n-Dimensional manifold. Note however that this is thega man-
ifold and not the fixed underlying manifold describedby

The extension for non-Euclidean embedding space is treated in ~ We have shown in [1] that the volume of the fiber section can
[19, 20, 21, 22, 11, 18], see also in [24, 23, 5]. Note that we D€ written as:

didn’t specify the metric yet. If we choose for a metric the first

fundamental form of the base, non-flat, manifold then this flow is V= /5(W)5(¢’)|\D\P|\IIPDq;D@Hdz <o dTpt2, (5)

the intrinsic-explicit analog of thé, based harmonic map equa-

tion [3]. Both equations describelmear operator that acts on where|| DV|[2 Ppy D® = || DV|2— DU DV, such thaPpy D®

the image function/. One major difference between the Bel- g the projection ofD® on the tangent space to the surface which
trami framework and the harmonic map formulation is the way s defined implicitly byW. Direct computation gives

one chooses the metric. In the harmonic map approach it is treated

AgU

as an a-priori knowledge which is given beforehand. The metric ||PowD®||* = ||PowD (02 — BU|
then isconstant in time. In the Beltrami frameworkhe metric is 0
a dynamic variable to be found by minimizing the functional. P : —BVU
Carrying out the calculation one finds the metric to be [19, 20] : = ( -BVU 1) v 0
1
(14U UL, o - 01
(gnv) = ( U.U, 1+ Uj) @ = 148 |PysVU|%. ©6)

whereU denotes the intensity level. In the Beltrami framework, Using also the fact thafD¥|| = ||V¥|| we see that the integrand

therefor, the manifold of interest, and the metric, is taken to be in Eq. (5) does NOT depend an,.» and therefor we can do the
the data surfacei.e. the graph of the intensity function. In other integration over this variable trivially:
words we are interested in the structurdtu sectionof the fiber

bundle and not in the base manifold. It means tinat metric vV = /5(‘1’)5(¢’)|\V‘If||\/1 + 32||Pyw VU |2d - - - dtn s
itself depends on the data This is the way non-linearities are
introduced in the flow.
= S(W)||V¥|l/1 2||PywVU||2dx - - - dxyp, 7
This choice of the induced metric gives a simple geometric / (I H\/ +BllPow [[*dx o1 (7)

meaning to the functional as well. It becomes simply the volume . . . " .
of the section (area or length for the two- and one- dimensional '€ équation of motion is derived now by a (modified) gradi-
cases). Itis important for the study below to have the explicit form €Nt descent equation

of the functional for flat domains in the scalar case:
1 (

Ut =
5sca|a£f]:/dxdy¢§:/dxdy L+ 32V, (3) IV¥[[y/1+ 3[[Pow VU2

h is th iob he di ken in th il dThis is the direct generalization of the flow Eq. (4) that we ob-
w ere_ﬁ 'S.t € r_atlo etween the ) |stanc§s taken in t e_spatl_a andiained in the previous section for a scalar data field defined over a
intensity directions. Note that this functional was obtained in the flat domain.

d-formulation [8, 12] and it is also equivalent, in the lindit— oo,
to the L; norm of [16].
The gradient descent flow is

B2||V¥||Pye VU
1+ 32| Pyu VU2

4. EXAMPLES AND RESULTS

5 In this section, we first give some implementation details and then
N Div __FvU @ illustrate the capabilities of the approach we have developed to
v/ 14 32||VU|]? 1+ B2||IVU||? regularize noisy signals and images defined on implicit curves and
surfaces. Various experimental results have been carried out, but

3 SCALAR FIELD ON IMPLICIT MANIFOLDS due to space limitations, we just give some figures for illustrations.

We treat here the case where we have an n-Dimensional manifold4-1. Implementing the regularization of scalar fields on sur-
on which a scalar quantity is defined. We describe the manifold by faces

. ol -
the zero level of a function ot Sp"ﬁe Lew(zy,. .., ent1) = We compute the value af?’; ., the value ofu in the pixel(i, j, k)
0 and we extend the scalar datalRF" ™" as well by the function th . ) 1 . .
U(z1,...,2ns1). The data manifold is described then as an n- atthen'” iteration, based on the values«f~" at the neighboring

Dimensional manifold embedded IR"+2 given by the intersec-  PIX€lS. First, we compute the vectdi ~ VU (this is needed only
tion of the two implicit (n+1)D hyperplanest (1. .., #n41) = once), by central differences. Then, for each iteratipave visit

0and®(x1,...,Tnt1) = Tny2 — BU(21,...,Tnt1) = 0. Note all pixels to compute:
that¥ does not depend on,+». This is not the most general form e The gradient, its projection, and



e The divergence.

e The actualization of;.

For the gradient?’; ,, we used backward differences,
Uitk = Uik )

g — noo_ n .
Ui = VUi = | Uijii e — Uik
Uil k1 — Uigk

its projection on the surface, o o o
Original noisy image 8 = 0 (Isotropic diffusion)

3
> Nijxlm] - 07 [m]

m=1 N4

(Py0); ;5 = Uign — HZ\_f”kHz Nijk
andg,
gtk = [INukl* (14 8% (Pg®)!,  117)
where square brackets represent the component of the vector. To B=0.1 Anisotropic diffusion
compute the divergence, we use backward differences, and detail and detail

Vo Wik = Wijk[l] —dio1k[l] +
Wi,k [2] — Wi j—1,6[2] +
Wi, j,k 3] — Wi, j,5—1[3]

We switch forward differences and backward differences to avoid
numerical problems. Finally, the flow implementation is:

of our database (Hidden project for anonymous review) it took less

wTE =+ AL ;
dok than 2 minutes to compute these results.

.9,k

1 _ (ﬂ ||N11k|| (Pﬁg)zj,k

n n
\ Yijk V Yi,j.k

We use atime steéi, adjusted accordingly to section 3.3.

The code is made in C++ using the libraries developed in our
lab. For the visualization, we used the marching cubes algorithm
[13] to obtain a triangulation from our implicit representation of
the surface, and draw the data on this surface. This was made
using VTK.

4.2. Examples

We present in this subsection few figures that illustrate the regu-
larization of noisy data on various implicitly defined curves and
surfaces. The results are given with various values of the parame-
ter 3. Note how the regularization of the data is done isotropically
or anisotropically depending on the value of this parameter.

For the Ella photograph, defined in a solid that looks like a
quadratic, the image is much bigger (2744000 pixels). The time
to compute 20 iterations was almost 3.5 minutes in a 386 sun, 260
MB in RAM. We can see that in strongly noised images like these,
where anisotropic regularization treat some noise as part of the
image discontinuities (the points under the left eye, for example)
the regularization with = 0.1 performs better.

) Finally, for a slice from a cortex (76x100x52) taken from one

Original noisy image B = 0 (Isotropic diffusion)

Anisotropic diffusion
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1996.

In this paper, we have first clarified the link that exists between the [9] R. Kimmel, “Intrinsic Scale Space for Images on Surfaces:

_the ‘.”F””Sic Po!yakov action qf the Be_ltrami framework and the The Geodesic Curvature FlowGraphical Models and Image
implicit harmonic energy functional . It is found that although the Processings9(5) 365-372 1997

functionals are basically the same, there are differences in the way ) ) .
various problems are formulated and consequently in the way the[10] R. Kimmel and R. Malladi and N. Sochen, “Images as Em-

functionals are applied. bedding Maps and Minimal Surfaces: Movies, Color, Tex-
We used the geometrical understanding of the flat Beltrami ture, and Volumetric Medical Images”, International Journal

flow and generalized it to a denoising flow over implicitly defined of Computer Vision 39(2) (2000) 111-129.

curves and surfaces. It is shown that this flow depends which [11] R. Kimmel and N. Sochen, “Orientation Diffusion or How

encodes the ratio between the data and spatial units. This param-  to comb a Porcupine”Journal of Visual Communication and

eter controls the edge-preserving characteristic of the flow. The Image Representatial3:238-248, 2001.

Be'”am' flow was shown in [2] to act as the linear dn‘fusndng(_ [12] P. Kornprobst, R. Deriche, and G. Aubert. “Nonlinear op-

norm) in the limit3 — 0 and to the strongly edge preserving S ion”. In P di f the |

diffusion (Z1-norm) in the limit3 — oo (up to time scaling) erators in image restoration”. In Proceedings of the Interna-
: tional Conference on Computer Vision and Pattern Recog-

This work opens interesting perspectives in some important e ) .
applications such as the inverse EEG-MEG problem. See for in- 2'3220 Rr;ggeiuﬁsslgg%.lEEE Computer Society. San Juan,

stance the work presented in [7] where the authors are interested

by localizing cortex activity from EEG/MEG measurements. The [13] W. E. Lorensen, H. E. Cline, “Marching cubes: A high res-
PDE associated to the inverse problem includes a regularization  olution 3D surface construction algorithm”, Computer Graph-
term on the implicitly defined surface of the cortex. It could cer- ics, 21(4), pages 163-169, 1987.

tainly be of interest to apply the implicit Beltrami flow, we devel- [14] F. Memoli and G. Sapiro and S. Osher, “Solving Variational
oped, to regularize such data defined on implicit cortex surface. It Problems and Partial Differential Equations, Mapping into
will also be of great interest to compare our result to the methods General Target Manifolds”, January 2002 UCLA CAM Tech-
developed to regularize data defined on triangulated surfaces. We  njcal Report (02-04).

refer the interested reader to our incoming research report wher
the intrinsic formulation and the derivation of the implicit Bel-
trami flow from a variational and geometrical points of view are

e[15] A. M. Polyakov, “Quantum geometry of bosonic strings”,
Physics Letters103B(1981) 207-210.
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