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ABSTRACT

We study, in this paper, the problem of denoising images/data which
are defined over non-flat surfaces. This problem arises often in
many medical imaging tasks. The Beltrami flow which was defined
in an explicit-intrinsic manner is generalized here to non-flat sur-
faces and is defined in an implicit way. We formulate the flow in a
variational way which is generalized to a scalar field defined over
an n-dimensional manifold. The implementation scheme of this
flow is presented and various experimental results obtained on a
set of real images illustrate the performances of the approach as
well as the differences between various flows of interests.

1. INTRODUCTION

It was realized in recent years that powerful techniques, that were
devised to denoise and regularize various objects such as intensity,
color and various vector fields on flat space, need to be generalized
to non-flat domains. This is typical in many medical imaging pro-
cesses were the relevant data is attached to a specific tissue such as
the colon or the cortex.

Two approaches for regularizing an image on a non-flat sur-
face are known. The Beltrami [19, 20, 22, 10, 18] and the har-
monic map [3, 14, 6, 4, 17] frameworks define, both, the regular-
ization as a gradient descent flow of a geometric functional1. It
has been shown, in various works [14, 1], that these two function-
als are in fact the same. The surface is expressed in the harmonic
map formulation in an implicit way and in the Beltrami framework
in an explicit-intrinsic manner. Yet, the denoising flows, obtained
in these two formulations, defer because of different formulations
of the problem in the two frameworks. We explain in the present
study the differences in the formulation of the problem and gen-
eralize, subsequently, the Beltrami flow to non-flat manifolds. We
generalize, via the variational approach, our previous results [2]
where the Beltrami flow was derived for a scalar field defined over
a curve. In [2] the derivation was purely geometric and limited,
therefore to the one-dimensional case.

In order to explain the frameworks we have to describe the
space in which these functionals operate. Many of the problems in
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1For geometric non-variational approach, see [9]

image processing and computer vision are approached by the at-
tachment of a feature space to every point (or pixel in the discrete
setting). The feature spaces in different locations of the image do-
main are isomorphic. The combined spatial-feature space is called
a fiber bundle. The image domain is called the base manifold and
the feature space is called the fiber. If the feature space is a vector
space then the spatial-feature space is called a vector bundle. The
choice of a point in the feature space to any point in the image
domain (the base manifold) is called a section.

In the harmonic map formulation the functional evaluates the
embedding ofthe base manifoldin the fiber. The Polyakov action
in the Beltrami framework evaluates the embedding ofthe section
in the spatial-feature space (the fiber bundle). We will see below
that this difference leads to different denoising flows.

This article is organized as follows: The Beltrami intrinsic ap-
proach is used in Section 2 to derive equations for the denoising
of gray value images defined over a flat 2D surfaces. We take in
Section 3 the Beltrami formulation of scalar denoising on non-flat
manifold and reformulate it in an implicit form. The derived im-
plicit equation, obtained in section 4, is the gradient descent equa-
tion for the functional. Section 5 presents examples and results.

2. INTRINSIC FORMULATION

Suppose we have a 2-dimensional manifoldΣ with local coordi-
natesσ1, σ2 embedded in an3-dimensional manifoldM with co-
ordinatesX1, X2, X3, the embedding mapX : Σ → M is given
explicitly by the 3 functions of 2 variables

X : (σ1, σ2) −→ (X1(σ1, σ2), X2(σ1, σ2), X3(σ1, σ2)) .

A gray-value imageU(σ1, σ2) is represented, in this framework,
as the embedding(X1 = σ1, X2 = σ2, X3 = βU(σ1, σ2)).

Let us formulate the Polyakov action [15] in a matricial form:
Let (Σ, G) be the image manifold and its metric and(M, H) the
spatial-feature manifold and its metric. The spatial-feature mani-
fold M is simply IR3 with the usual Eucledean distance for gray-
value images. Define at each point the matrixA whose elements
are

Aij = (∂ΣXi)tG−1∂ΣXj ,

where∂ΣXi = (∂σ1Xi, ∂σ2Xi)t.
The mapX : Σ → M has the following weight:

S[Xi, G, H] =

∫
dmσ

√
gTr(AH),



wherem is the dimension ofΣ andg = det(G).
The gradient descent equations, with respect toX3 in our

gray-level image example is

Ut = − 1

2
√

g

δS

δU
=

1√
g

div
(√

gG−1∇U
)

︸ ︷︷ ︸
∆gU

. (1)

The extension for non-Euclidean embedding space is treated in
[19, 20, 21, 22, 11, 18], see also in [24, 23, 5]. Note that we
didn’t specify the metric yet. If we choose for a metric the first
fundamental form of the base, non-flat, manifold then this flow is
the intrinsic-explicit analog of theL2 based harmonic map equa-
tion [3]. Both equations describe alinear operator that acts on
the image functionU . One major difference between the Bel-
trami framework and the harmonic map formulation is the way
one chooses the metric. In the harmonic map approach it is treated
as an a-priori knowledge which is given beforehand. The metric
then isconstant in time. In the Beltrami frameworkthe metric is
a dynamic variable to be found by minimizing the functional.
Carrying out the calculation one finds the metric to be [19, 20] :

(gµν) =
(

1 + U2
x UxUy

UxUy 1 + U2
y

)
. (2)

whereU denotes the intensity level. In the Beltrami framework,
therefor, the manifold of interest, and the metric, is taken to be
the data surfacei.e. the graph of the intensity function. In other
words we are interested in the structure ofthe sectionof the fiber
bundle and not in the base manifold. It means thatthe metric
itself depends on the data. This is the way non-linearities are
introduced in the flow.

This choice of the induced metric gives a simple geometric
meaning to the functional as well. It becomes simply the volume
of the section (area or length for the two- and one- dimensional
cases). It is important for the study below to have the explicit form
of the functional for flat domains in the scalar case:

Sscalar[I] =

∫
dxdy

√
g =

∫
dxdy

√
1 + β2||∇I||2 , (3)

whereβ is the ratio between the distances taken in the spatial and
intensity directions. Note that this functional was obtained in the
Φ-formulation [8, 12] and it is also equivalent, in the limitβ →∞,
to theL1 norm of [16].

The gradient descent flow is

Ut =
1√

1 + β2||∇U ||2
Div

(
β2∇U√

1 + β2||∇U ||2

)
. (4)

3. SCALAR FIELD ON IMPLICIT MANIFOLDS

We treat here the case where we have an n-Dimensional manifold
on which a scalar quantity is defined. We describe the manifold by
the zero level of a function onIRn+1 space i.e.Ψ(x1, . . . , xn+1) =
0 and we extend the scalar data toIRn+1 as well by the function
U(x1, . . . , xn+1). The data manifold is described then as an n-
Dimensional manifold embedded inIRn+2 given by the intersec-
tion of the two implicit (n+1)D hyperplanes:Ψ(x1, . . . , xn+1) =
0 andΦ(x1, . . . , xn+1) = xn+2 − βU(x1, . . . , xn+1) = 0. Note
thatΨ does not depend onxn+2. This is not the most general form

because, by the Nash theorem, it is not always true that one can
represent an n-Dimensional manifold as a zero set of a function in
(n+1) Euclidean space. Nevertheless it is true for 2d surfaces that
we treat below, and for most cases of interest in computer vision
and computer graphics. We define theIRn+2 gradientD and the
IRn+1 gradient∇. The functional is simply the volume of this
n-Dimensional manifold. Note however that this is thedata man-
ifold and not the fixed underlying manifold described byΨ.

We have shown in [1] that the volume of the fiber section can
be written as:

V =

∫
δ(Ψ)δ(Φ)||DΨ||||PDΨDΦ||dx · · · dxn+2 , (5)

where||DΨ||2PDΨDΦ = ||DΨ||2−DΨDΨt, such thatPDΨDΦ
is the projection ofDΦ on the tangent space to the surface which
is defined implicitly byΨ. Direct computation gives

||PDΨDΦ||2 = ||PDΨD(xn+2 − βU ||2

= ( −β∇U 1 )




0

P∇Ψ

...
0

0 · · · 0 1





−β∇U

1




= 1 + β2||P∇Ψ∇U ||2 . (6)

Using also the fact that||DΨ|| = ||∇Ψ|| we see that the integrand
in Eq. (5) does NOT depend onxn+2 and therefor we can do the
integration over this variable trivially:

V =

∫
δ(Ψ)δ(Φ)||∇Ψ||

√
1 + β2||P∇Ψ∇U ||2dx · · · dxn+2

=

∫
δ(Ψ)||∇Ψ||

√
1 + β2||P∇Ψ∇U ||2dx · · · dxn+1 (7)

The equation of motion is derived now by a (modified) gradi-
ent descent equation

ut =
1

||∇Ψ||
√

1 + β2||P∇Ψ∇U ||2
Div

(
β2||∇Ψ||P∇Ψ∇U√
1 + β2||P∇Ψ∇U ||2

)

This is the direct generalization of the flow Eq. (4) that we ob-
tained in the previous section for a scalar data field defined over a
flat domain.

4. EXAMPLES AND RESULTS

In this section, we first give some implementation details and then
illustrate the capabilities of the approach we have developed to
regularize noisy signals and images defined on implicit curves and
surfaces. Various experimental results have been carried out, but
due to space limitations, we just give some figures for illustrations.

4.1. Implementing the regularization of scalar fields on sur-
faces

We compute the value ofun
i,j,k, the value ofu in the pixel(i, j, k)

at thenth iteration, based on the values ofun−1 at the neighboring
pixels. First, we compute the vector~N ' ∇Ψ (this is needed only
once), by central differences. Then, for each iterationn, we visit
all pixels to compute:

• The gradient, its projection, andg.



• The divergence.

• The actualization ofu.

For the gradient~vn
i,j,k we used backward differences,

~vn
i,j,k = ∇+un

i,j,k =

(
un

i+1,j,k − un
i,j,k

un
i,j+1,k − un

i,j,k

un
i,j,k+1 − un

i,j,k

)

its projection on the surface,

(P ~N~v)n

i,j,k
= ~vn

i,j,k −

3∑
m=1

~Ni,j,k[m] · ~vn
i,j,k[m]

∥∥ ~Ni,j,k

∥∥2
~Ni,j,k

andg,

gn
i,j,k = || ~Ni,j,k||2

(
1 + β2|| (P ~N~v)n

i,j,k
||2

)
,

where square brackets represent the component of the vector. To
compute the divergence, we use backward differences,

∇− · ~wi,j,k = ~wi,j,k[1]− ~wi−1,j,k[1] +
~wi,j,k[2]− ~wi,j−1,k[2] +
~wi,j,k[3]− ~wi,j,k−1[3]

We switch forward differences and backward differences to avoid
numerical problems. Finally, the flow implementation is:

un+1
i,j,k = un

i,j,k + ∆t
1√
gn

i,j,k

∇− ·
(

β
∥∥ ~Ni,j,k

∥∥ (P ~N~v)n

i,j,k√
gn

i,j,k

)

We use a time stepdt
β

, adjusted accordingly to section 3.3.
The code is made in C++ using the libraries developed in our

lab. For the visualization, we used the marching cubes algorithm
[13] to obtain a triangulation from our implicit representation of
the surface, and draw the data on this surface. This was made
using VTK.

4.2. Examples

We present in this subsection few figures that illustrate the regu-
larization of noisy data on various implicitly defined curves and
surfaces. The results are given with various values of the parame-
terβ. Note how the regularization of the data is done isotropically
or anisotropically depending on the value of this parameter.

For the Ella photograph, defined in a solid that looks like a
quadratic, the image is much bigger (2744000 pixels). The time
to compute 20 iterations was almost 3.5 minutes in a 386 sun, 260
MB in RAM. We can see that in strongly noised images like these,
where anisotropic regularization treat some noise as part of the
image discontinuities (the points under the left eye, for example)
the regularization withβ = 0.1 performs better.

Original noisy image β = 0 (Isotropic diffusion)

β = 0.1 Anisotropic diffusion
and detail and detail

Finally, for a slice from a cortex (76x100x52) taken from one
of our database (Hidden project for anonymous review) it took less
than 2 minutes to compute these results.

Original noisy image β = 0 (Isotropic diffusion)

β = 0.1 Anisotropic diffusion



5. SUMMARY AND CONCLUSIONS

In this paper, we have first clarified the link that exists between the
the intrinsic Polyakov action of the Beltrami framework and the
implicit harmonic energy functional . It is found that although the
functionals are basically the same, there are differences in the way
various problems are formulated and consequently in the way the
functionals are applied.

We used the geometrical understanding of the flat Beltrami
flow and generalized it to a denoising flow over implicitly defined
curves and surfaces. It is shown that this flow depends onβ which
encodes the ratio between the data and spatial units. This param-
eter controls the edge-preserving characteristic of the flow. The
Beltrami flow was shown in [2] to act as the linear diffusion (L2-
norm) in the limit β → 0 and to the strongly edge preserving
diffusion (L1-norm) in the limitβ →∞ (up to time scaling).

This work opens interesting perspectives in some important
applications such as the inverse EEG-MEG problem. See for in-
stance the work presented in [7] where the authors are interested
by localizing cortex activity from EEG/MEG measurements. The
PDE associated to the inverse problem includes a regularization
term on the implicitly defined surface of the cortex. It could cer-
tainly be of interest to apply the implicit Beltrami flow, we devel-
oped, to regularize such data defined on implicit cortex surface. It
will also be of great interest to compare our result to the methods
developed to regularize data defined on triangulated surfaces. We
refer the interested reader to our incoming research report where
the intrinsic formulation and the derivation of the implicit Bel-
trami flow from a variational and geometrical points of view are
presented (see [1] for details).
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