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Abstract. We introduce a short time kernel for the Beltrami image
enhancing flow. The flow is implemented by ‘convolving’ the image with
a space dependent kernel in a similar fashion to the implementation of
the heat equation by a convolution with a gaussian kernel. The expression
for the kernel shows, yet again, the connection between the Beltrami flow
and the Bilateral filter. The kernel is calculated by measuring distances
on the image manifold by an efficient variation of the fast marching
method. The kernel, thus obtained, can be used for arbitrary large time
steps in order to produce adaptive smoothing and/or a new scale-space.
We apply it to gray scale and color images to demonstrate its flow like
behavior.

1 Introduction

The Beltrami flow [4,12] is a powerful tool for image enhancement. Its good
visual effect results from de-noising the image while keeping the edges intact.
The flow originates from minimizing the area of the 2-dimensional Riemannian
image manifold embedded in RV, where N = 3 for gray scale images and N = 5
for color images.

A short time kernel has been presented for 1D non-linear diffusion in [10] and
an approximation for the 2D Beltrami operator in [9]. These kernels enable the
implementation of the flows by ‘convolving’ the signals with the kernels, similar
to the implementation of the heat equation by a convolution with a gaussian
kernel. This implementation replaces the conventional method of solving the
first variation as a gradient descent PDE process by the appropriate numerical
schemes. One of the main advantages of this approach is the ability to select an
arbitrary time step for the kernel.

In order to compute the short time kernel we need to calculate distances on
the image manifold. Measuring distances on manifolds has been done before for
triangulated manifolds [5], graphs of functions [8], and implicit manifolds [6].
Here, we propose a new variation of the fast marching method for calculating
the distances, especially suited for image manifolds.

This paper is organized as follows. The first section describes the Beltrami
flow for gray scale and color images. In Section 2 the derivation of the short
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time kernel is presented. Section 3 reviews our new contribution for calculating
geodesic distances on the image manifold, which is required for the implemen-
tation of the short time kernel. The simulations and results are in Section 4 and
the conclusions in Section 5.

2 The Beltrami Flow

In the Beltrami framework the image is regarded as the embedding X :U — R,
with U the 2-dimensional image manifold and RY the space-feature manifold.
For gray scale images

X (u',u?) = {u, v, I(u',u?)}, (1)

where u!,u? are the space coordinates and I is the intensity component. The
metric h;; of the space-feature manifold is

100
H=(hij)={010 |, (2)
00 82

where [ is the relative scale between the space coordinates and the intensity
component. This is an Euclidean space-feature manifold. Non-Euclidean mani-
folds were addressed in [11, 13]. The metric elements g;; of the image manifold U
are derived from the metric elements h;; and the embedding X by the pullback

procedure
_ oy _ (1+5°} pPLL
G - (gz]) - ( 1321112 1 _1_13213 ) (3)
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where I; = %.

For color images
X (u,u?) = {ut,u?, I'(u', u?), P (ut,u?), 1P (ut, u?)}, 4)

where I'', I2, I® are the three color components (for instance red, green and blue
for the RGB color space). The metric h;; of the space-feature manifold is

H = (hy) =100 p?

and the metric of the image manifold is
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The Beltrami flow can be obtained by minimizing the area of the image
manifold

S = // Vgduidus, (7

with respect to the embedding, where g = det(G) = g11922 — g%5. The corre-
sponding Euler-Lagrange equations as a gradient descent process are

a —1,4 6‘9 -1 1 i a
Xi=—g 20" =5 =g 20i(92970;X"), (8)
with g¥ the contravariant metric of the image manifold (the inverse of the metric
tensor g;;) and using Einstein’s summation convention. In a matricial form it
reads )
X = —Div (y/gG'VX*® (9)

~ S
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where A, is the Laplace-Beltrami operator which is the extension of the Lapla-
cian to manifolds.
For gray scale images we get

I = A,l (10)
For color images we get for each color component
Il = AT (11)

We introduce in the next sections the kernel method for solving these coupled
and highly non-linear partial differential equations.

3 A Short Time Kernel for the Beltrami Flow

It can be shown that applying the heat equation
I, = AI (12)

to the 2-dimensional data I(u',u?,t) for the duration ¢ is equivalent to con-
volving the data with a Gaussian kernel

T(ul,u2, by + ) = /I(al,aQ,to)Kuul — |, | — @2); ) da di?
=I(u1,u2,t0)*K(u1,u2;t) ) (13)

where the kernel is given by

K(u',u?t) = %ﬂexp (—W) . (14)
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An iterative implementation of the PDE is replaced, in this approach, by a one
step filter.

In this section we extend this result to the Beltrami flow. Because of the non-
linearity of this flow (the Beltrami operator depends on the data TI), a global
(in time) kernel is impossible. We therefore develop a short time kernel that if
used iteratively, has an equivalent effect to that of the Beltrami flow. We replace
Equation (13) with

ﬁw&MJVHyz/ﬂ@%#¢@K@H#m2wﬁmmm2, (15)

which we denote by
I'(ut,u? tg + t) = T (ut, u?, to) x4 K (ut,u?;t), (16)

This is not a convolution in the strict sense, because K does not depend
on the differences u® — iif. In general, the coordinates u! are arbitrary local
coordinates on the manifold. These coordinates are not a geometric object and
the difference between coordinates, therefore, has no intrinsic meaning. We will
justify our definition of a convolution on a manifold after we develop the explicit
form of the kernel. The general form of K is

K(ul,u2;t) — H(ul;:uz;t) exp (_¢2(ut1au2)) , (17)

where we take, without lose of generality, (a',42) = (0,0) and omit from K
the notation of dependency on these coordinates. It will be re-instated later
on by fixing the integration constants. Note, that 1) does not depend on ¢ at
all, while H is a regular function of ¢ and can be expanded as a Taylor series
H(z,y,t) =Y o o Hu(z,y)t™. In order to find K, we use the fact that it should
satisfy Equation (11). Therefore,

K, = AK. (18)

The left hand side of the equation is

s (oo )
x

H, Hy H: Hy* Hy? 2
- (5 - e S o Jeo (<)
2 2 2
_ (H‘t);’” 2 H°+0(%)) exp (-%) (19)

For the right hand side of Equation (18) we calculate

_OK _ (Ho 2Hepy;  2Hiip; P?
K;= Sui = (T S E— + O(l)) exp (_T> . (20)
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The second derivative is calculated similarly. The first two leading terms that
multiply the exponential are

AHoY*$ith;  2(Hoi — 2Hippi)yy); + 0;(2Hog¢hi) -

3 2 (21)
Putting everything together, we get for the leading order
AgK t3g ("p ¢z¢] +O(t ( )) (22)
Equating the leading terms in Equations (19) and (18), yields
- 1
99 = [Va|* = 7 (23)

with V the extension of the gradient to the manifold. This is the Eikonal equa-
tion on the manifold, and its viscosity solution is a geodesic distance map ¥ on
the manifold. An efficient solution of the Eikonal equation for image manifolds
is given in the next section. The H,, coefficients, which depend on the spatial
variables, are solutions of the PDEs that are obtained by equating the coeffi-
cients of powers of ¢. It is not too difficult to be convinced that Hy is a constant
(see [10] for an example of such a computation).
The resulting short time kernel is thereby

L (Ji ’:%)ds)

K(ud w2 ot a2 1) = _
(u™,u”, a4 ,a%;t) L ex 1
H & ((ul,u?), (@, @2
= _to exp (— g((u u4)t (@, @) , (24)

where ds is an arc-length element on the manifold, and d, (p1, p2) is the geodesic
distance between two points, p; and ps, on the manifold. Note that in the FEu-
clidean space with Cartesian coordinate system dg(pi,p2) = |p1 — p2|- The
geodesic distance on manifolds is therefore the natural generalization of the dif-
ference between coordinates in the Euclidean space. It is natural then to define
the convolution on a manifold by

Ti(ul,u?) %, K(ub,uit) = /I'( i, @)K (d, ((u',a?), (@, @?))) da'da® (25)
The update step for the image is

’u )
H, ful u? ds
I'(u',u?, to+t) = =2 // I'(a', a2, tg) exp —M di'du?,
(ul uZ)eN(ul uZ) 4t

(26)
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with N (u!,u?) the neighborhood of the point (u!,u?), where the value of the
kernel is above a certain threshold. Because of the monotone nature of the fast
marching algorithm used in the next section for the solution of the Eikonal
equation, once a point is reached, where the value of the kernel is smaller than
the threshold, the algorithm can stop and thereby naturally bound the numerical
support of the kernel. The value of the kernel for the remaining points of the
manifold would be negligible. Therefore, the Eikonal equation is solved only in a
small neighborhood of each image point. Hy is taken such that integration over
the kernel in the neighborhood N (u!,u?) of the point equals one.

The short time Beltrami kernel in Equation (24) is very similar to the Bilat-
eral filter kernel [15, 3]. The difference between them is that the Beltrami kernel
uses geodesic distances on the image manifold, while the Bilateral kernel uses
Euclidean distances. The derivation of the Beltrami kernel shows that the Bilat-
eral filter originates from image manifold area minimization. The Bilateral filter
can actually be viewed as an Euclidean approximation of the Beltrami flow. An-
other connection between the Beltrami flow and the Bilateral filter appears in
[2].

The Euclidean distance used in the Bilateral filter, while being easier to
calculate, does not take into account the image intensity values between two
image points. A point can have a relatively high kernel value, although it belongs
to a different object than that of the filtered image point. The Beltrami kernel
takes this effect into account and penalizes a point that belongs to a different
‘connected component’. That is, it is not ‘as blind’ as the Bilateral filter to the
spatial structure of the image.

4 Solving the Eikonal Equation on Image Manifolds

The image manifold is a parametric manifold, where the metric g;; is given for
every point. We present here an efficient solution for the Eikonal equation on
parametric manifolds, based on the fast marching approach [7]. A more detailed
description appears in [14].

The original fast marching algorithm [7] solves the Eikonal equation in an
orthogonal coordinate system. In this case, the numerical support for the update
of a grid point consists of one or two points out of its four neighbors. The first
point is from the up/down pair and the second is from the left/right pair. The
two selected grid points, together with the updated one, compose the vertices of
a right triangle. See Figure 1.

This is not the case for image manifolds. There g2 # 0 and we get a non-
orthogonal coordinate system on the manifold, see Figure 2. The resulting angles
are not necessarily right angles. If a grid point is updated by a stencil which
includes an obtuse angle, a problem may arise. The value of one of the points
of the stencil might not be set in time and cannot be used. There is a similar
problem with fast marching on triangulated domains which include obtuse angles

[5].
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Fig. 1. The numerical support for the orthogonal fast marching algorithm.
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Fig. 2. The orthogonal grid on the parameterization plane is transformed into a non-
orthogonal grid on the manifold.
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Our solution is similar to that of [5]. We perform a pre-processing stage for
the grid, in which we split every obtuse angle into two acute ones, see Figure
3. The split is performed by adding an additional edge, connecting the updated
grid point with a non-neighboring grid point. The distant grid point becomes
part of the numerical stencil. The need for splitting is determined according to
the angle between the non-orthogonal axes at the grid point. It is calculated by

X1 - Xo ) _ 912

cos (@) = (||X1||||X2|| NN @7)

Fig. 3. The numerical support for the non-orthogonal coordinate system. Triangle 1
gives a proper numerical support, yet triangle 2 is obtuse. It is replaced by triangle 3
and triangle 4.

If cos (@) = 0, the axes are perpendicular, and no splitting is required. If
cos (@) < 0, the angle a is obtuse and should be split. The denominator of
Equation (27) is always positive, so we need only check the sign of the numerator
g12-

In order to split an angle, we should connect the updated grid point with
another point, located m grid points from the point in the direction of X; and
n grid points in the direction of X (m and n can be negative). The point is
a proper supporting point, if the obtuse angle is split into two acute ones. For
cos (@) < 0 this is the case if

cos (B1) = ( X1 - (mX; +nXs) ) mgi1 + ngia

= > 0,
1 X 1 [[[[mX71 +nXs|| Vi1 (m?gi1 + 2mngia + n2gos)

(28)
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and

> 0.

Xo-(mX; +nX mgis +n
cos(ﬂ2)=< 2 ( 1 2)) gi2 g22

|1 Xo[[[[mXy +nXal| ) V922 (m2g11 + 2mngi2 + n2gso)

(29)
Here it is enough to check the sign of the numerator. For cos (a) > 0, cos (82)
changes its sign and the constraints are

mgi1 +ngie > 0, (3())

and
mgi2 +nga2 < 0. (31)

This process is done for all grid points. Once the pre-processing stage is done,
we have a suitable numerical stencil for each grid point and we can solve the
Eikonal equation numerically. The numerical scheme used is similar to that of
solving the Eikonal equation on triangulated manifolds [5] with the exception
that there is no need to perform the unfolding step. The supporting grid points
that split the obtuse angles can be found more efficiently. The required triangle
edge lengths and angles are calculated according to the image metric g;; at the
grid point, see [14].

5 Simulations and Results

First, we demonstrate the performance of our algorithm for the solution of the
Eikonal equation. The algorithm is tested for a parametric manifold with a non-
orthogonal coordinate system. In Figure 4 it is implemented on the tilted plane
z = 3z + 2y. The correctness of the distance map is evident from the resulting
level curves, which are concentric circles on the manifold.

Next, we use the solution of the Eikonal equation to create the short time
kernel for the Beltrami flow. Figure 5 shows the implementation of the Beltrami
flow for a gray scale image using a short time kernel. In this case § = 3, the
time step taken was t = 0.5, and only grid points with a kernel value above 0.01
were used for the filtering. The time difference between the images is 1. Similar
results for color images appear in [1].

The use of pixels with a weight larger than 0.01 resulted in an average of
25 neighboring pixels that take part in the filtering of each image pixel. When
the threshold is reached, the fast marching algorithm is stopped, and the cal-
culation of the distance to unnecessary points is avoided. In order to make the
fast marching algorithm even faster, we can bound in advance the neighborhood
in which the Eikonal equation is solved. This way, the pre-processing stage of
the algorithm, including the splitting of obtuse angles, is done only for relevant
pixels. In Figure 5 the size of this neighborhood is 7 x 7.

In order to demonstrate the spatial structure of the kernel, we tested it on
the synthetic image in Figure 6. At isotropic areas of the image, the kernel is
isotropic and its weights are determined solely by the spatial distance from the
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X

o y x

Fig. 4. Fast marching on the manifold z = 3z + 2y. Left: implemented on the parame-
terization plane. Right: projected on the manifold. Lower values are assigned brighter
colors. The black curves are the level curves.

filtered pixel. Across edges the significant change in intensity is translated into
a long geodesic distance, which results in negligent kernel weights on the other
side of the edge. The filtered pixel is computed as an average of the pixels on
the ‘right’ side of the edge.

6 Conclusions

A short time kernel was derived for the Beltrami image enhancing flow. Geodesic
distances on the image manifold, which are required for the implementation of
the kernel, were calculated in a new efficient way. From the theoretical stand
point, a connection has been shown between the Beltrami flow and the Bilateral
filter. The Bilateral filter is found to be a Euclidean approximation of the Bel-
trami flow. From a practical stand point, the kernel filter enables an arbitrary
time step for a Beltrami-like adaptive smoothing, which is impossible for the
explicit numerical schemes currently existing for color images.
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