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Abstract. The uncertainty principle is a fundamental concept in the
context of signal and image processing, just as much as it has been in
the framework of physics and more recently in harmonic analysis. Un-
certainty principles can be derived by using a group theoretic approach.
This approach yields also a formalism for finding functions which are
the minimizers of the uncertainty principles. A general theorem which
associates an uncertainty principle with a pair of self-adjoint operators
is used in finding the minimizers of the uncertainty related to various
groups.
This study is concerned with the uncertainty principle in the context
of the Weyl-Heisenberg, the SIM(2), the Affine and the Affine-Weyl-
Heisenberg groups. We explore the relationship between the two-dimensional
affine group and the SIM(2) group in terms of the uncertainty minimizers.
The uncertainty principle is also extended to the Affine-Weyl-Heisenberg
group in one dimension. Possible minimizers related to these groups are
also presented and the scale-space properties of some of the minimizers
are explored.

1 Introduction

Various applications in signal and image processing call for deployment of a
filter bank. The latter can be used for representation, de-noising and edge en-
hancement, among other applications. A key issue is the definition of the best
filter bank for the application at hand. One possible criterion lends itself to
using functions which achieve minimal uncertainty. For example, the Gaussian
window minimizes the uncertainty of the combined representation of the signal
in the time-frequency (or position - frequency) space. The short time Fourier
transform, implementing a gaussian window function, is well known in signal
processing as the Gabor transform. The minimal uncertainty quality, together



with the fact that Gabor functions are tuned to orientation and scale, led to
an intensive usage of Gabor functions and Gabor-Morlet wavelets in computer
vision and image processing.

The Gabor transform can be viewed as a representation obtained by the
action of the Weyl-Heisenberg group on a Gaussian window [31], or, alternatively,
as a convolution of the signal with Gaussian-modulated complex exponentials
(Gabor elementary functions (GEF) [10]). These GEF are equivalent to a family
of canonical coherent states of the Weyl-Heisenberg group [16]. The Gaussian
function appears as a pivot in scale-space theory as well, where its successive
applications to images produce coarser resolution images [8].

The wavelet transform emerged as an important theoretical and applicative
tool in signal and image processing, while it is rooted in several research domains,
such as pure mathematics, physics and engineering. Specifically, Gabor wavelets
which sample the frequency domain in a log-polar manner play an important
role in texture representation and segmentation, evaluation of local features in
images and other. Gabor wavelets can be considered as a sub-group of the family
of canonical coherent states related to the Weyl-Heisenberg group. However, they
are generated according to the operations of the affine group in one dimension,
or the similitude group in two dimensions. Therefore, it is interesting to look for
the canonical coherent states of the affine or the similitude groups. Moreover, it
is interesting to investigate whether these minimizers have any scale-space like
attributes, similar to those exhibited by the Gaussian function. It turns out that
this problem does not have a single deterministic solution, similar to the one
that exists in the case of the Weyl-Heisenberg group. Based on previous work
of Dahlke and Maass [4] and of Ali, Antoine and Gazeau [1], one may conclude
that the full significance of the scale-space properties of possible minimizers is
not yet fully understood.

The motivation for this study comes from our previous studies on texture
segmentation and representation [24–28]. A major concern encountered in deal-
ing with these issues is the selection of an appropriate filter bank. In several
studies Gabor-wavelets are chosen because they are believed to provide the best
trade-off between spatial resolution and frequency resolution [2, 12, 20]. How-
ever, this is true in terms of the Weyl-Heisenberg group, i.e. with respect to
Gabor-functions which sample the joint spatial-frequency space via constant-
value translations. Gabor-wavelets can be generated by a logarithmic distortion
of Gabor functions (the minimizers of the Weyl-Heisenberg group) [19] or alter-
natively by using multi-windows, so that a collection of the functions generated
by both the Weyl-Heisenberg group and the affine group are considered [32].
As these Gabor-wavelets are generated using the affine group, the joint spatial-
frequency space is sampled in an octave-like manner. The general question arises
whether Gabor-wavelets provide the minimal combined uncertainty with respect
to the affine group. Since the Gabor wavelets combine both time (position) and
frequency translations, along with dilations, it seems that it may be related to
the Affine-Weyl-Heisenberg (AWH) group. The canonical representation U of



the AWH group on L2(R) is given by:

[U(b, ω, a, ϕ)ψ](t) =
1√
a
eiϕeiωtψ

(
t− b

a

)
(1)

and the coefficients generated by the inner product 〈f, U(x)ψ〉 provide the Gabor-
wavelets transform, if ψ is selected to be a Gaussian. Thus, searching for the
minimizer of the uncertainty principle related to the AWH group, may provide
a mother-wavelet which allows for maximal accuracy in the time-frequency-scale
combined space. This may be significant in terms of optimal representations of
signals. The applications are numerous yet one notable motivation is an affine
invariant treatment of texture. Since one of the most important transformations
in vision is the perspective transformation, which is well approximated in many
cases by the affine group, it is of major interest to generalize the analysis from
the Euclidean case to the Affine case. While we have a reason to believe that
affine based transform can facilitate an invariant treatment of texture we believe
that this issue deserves a separate publication.

The rest of this paper is organized as follows: First, we provide some review of
background and related work. Next, we apply the uncertainty principle theorem
to the Weyl-Heisenberg group in one and two-dimensions, to obtain the Gaussian
function. Motivated by the need to define the minimizers for the uncertainty
associated with the affine group, we follow the analysis of Dahlke and Maass
[4] and that of Ali, Antoine and Gazeau[1], and apply the uncertainty theorem
to the affine group in one and two dimensions. Moreover, we explore this issue
in the context of the AWH group. We conclude by pointing out the scale-space
properties of some of the obtained minimizers [29].

2 Background and Related Work

The uncertainty principle is a fundamental concept in the context of signal and
information theory. It was originally stated in the framework of quantum me-
chanics, where it is known as the Heisenberg uncertainty principle. In this con-
text it does not allow to simultaneously observe the position and momentum of
a particle. In 1946, Gabor [10] has extended this idea to signal and information
theory, and has shown that there exists a trade off between time resolution and
frequency resolution for one-dimensional signals, and that there is a lower bound
on their joint product. These results were later extended to 2D signals [3, 19].

The functions which attain the lower bound of the inequality defining the
uncertainty principle have been the subject of ongoing research. In quantum
mechanics they are regarded as a family of canonical coherent states generated by
the Weyl-Heisenberg group. In information and signal theory, Gabor discovered
that Gaussian-modulated complex exponentials provide the best trade-off for
time resolution and frequency resolution.

A general theorem which is well known in quantum mechanics and harmonic
analysis [9] relates an uncertainty principle to any two self-adjoint operators and
provides a mechanism for deriving a minimizing function for the uncertainty



equation.
Theorem 1: Two self-adjoint operators, A and B obey the uncertainty relation:

∆Aψ∆Bψ ≥ 1
2
|〈[A,B]〉| ∀ψ, (2)

where ∆Aψ,∆Bψ denote the variances of A and B with respect to the signal ψ.
The triangular parenthesis mean an average over the signal i.e. 〈X〉 =

∫
ψ∗Xψ.

The mean of the action of an operator P on a function ψ is denoted by: µP (ψ) =
〈P (ψ)〉, and the commutator [A,B] is given by: [A,B] := AB −BA. A function
ψ is said to have minimal uncertainty if the inequality turns into an equality.
This happens iff there exists an η ∈ iR such that

(A− µA)ψ = η(B − µB)ψ. (3)

This last relation yields a differential equation for each non-commuting couple
of group generators.

The Weyl-Heisenberg and the affine groups are both related to well known
transforms in signal processing: the windowed-Fourier and wavelet transforms.
Both can be derived from square integrable representations of these groups. The
windowed-Fourier transform is related to the Weyl-Heisenberg group, and the
wavelet transform is related to the affine group. Deriving the infinitesimal genera-
tors of the unitary group representations, we obtain self-adjoint operators. Thus,
the general uncertainty theorem [9] stated above provides a tool for obtaining
uncertainty principles using these infinitesimal generators of the group repre-
sentations. In the case of the Weyl-Heisenberg group, the canonical functions
which minimize the corresponding uncertainty relation are Gaussian functions.
The canonical functions which minimize the uncertainty relations for the affine
group in one dimension and for the similitude group in two dimensions, were the
subject of previous studies [4, 1].

In these studies, it was shown that there is no non-trivial canonical function
which minimizes the uncertainty equation associated with the similitude group
of R2, SIM(2) = R2 × (R+ × SO(2)). Thus, there is no non-zero solution to
the set of differential equations obtained for this group generators. Rather than
using the original generators of the SIM(2) group, Dahlke and Maass [4] used
a different set of operators that includes elements of the enveloping algebra, i.e.
polynomials in the generators of the algebra, to obtain the 2D isotropic Mexican
hat as a minimzer. Ali, Antoine and Gazeau [1] noted a symmetry in the set of
commutators obtained for the SIM(2) group and derived a possible minimizer
in the frequency domain for some fixed direction. Their solution is a real wavelet
which is confined to some convex cone in the positive-half-plane of the frequency
space and is exponentially decreasing inside.

The representation theory of the Affine-Weyl-Heisenberg group and its possi-
ble extensions/modifications have already been addressed in this context in the
early 90′s. Torresnai [23] considered wavelets associated with representations of
the AWH group, as well as associated with resolutions of the identity. He had
also shown that the canonical representation of the AWH group is not square



integrable, but can be regularized with some density function. This work was
later extended to N-dimensional AWH wavelets[13]. Segman and Schempp[30]
introduced ways to incorporate scale in the Heisenberg group with an intertwin-
ing operator and presented the resulting signal representations. More recently,
Teschke[22] proposed a mechanism for construction of generalized uncertainty
principles and their minimizing wavelets in anisotropic Sobolev spaces. He de-
rived a new set of uncertainties by weakening the two operator relations and by
introducing a multi-dimensional operator setting.

3 The Weyl-Heisenberg Group

The uncertainty principle related to the Weyl-Heisenberg group has a tremen-
dous importance in two main fields: In quantum mechanics, the uncertainty prin-
ciple prohibits the observer from exactly knowing the location and momentum
of a particle. In signal processing, the uncertainty principle provides a limit on
the localization of the signal in both time (or position) and frequency domains.

Let G be the Weyl-Heisenberg group,

G := {(ω, b, τ)|b, ω ∈ IR, τ ∈ IC, |τ | = 1} , (4)

with group law

(ω, b, τ) ◦ (ω′, b′, τ ′) =
(

ω + ω′, b + b′, ττ ′ei
(ωb′−ω′b)

2

)
. (5)

We assume that the toral component, τ , of the group representation, is fixed. Let
π be its canonical left action on L2(IR); the coefficients generated by 〈f, π(x)ψ〉
are known as the windowed Fourier transform of the function f , with ψ being
the window function. The windowed Fourier transform is defined by:

〈f, π(x)ψ〉 = (Wψf)(ω, b) =
∫

f(x)ψ(x− b)e−iωxdx (6)

The Fourier transform is a tool of profound importance in signal processing
and in quantum physics, where it is used for the study of coherent states. The
Gaussian window function ψ(x) = e−

x2
2 has an important role in the windowed

Fourier analysis as it minimizes the Weyl-Heisenberg uncertainty principle.
Next, we review the derivation of the uncertainty principles for the Weyl-

Heisenberg group in one and two dimensions using the uncertainty principle
theorem. The reader may find the classical proofs of the uncertainty principle
for the Weyl-Heisenberg group in the work of Gabor [10] for one-dimensional
signals and in the work of Daugman [3] for two-dimensional signals.

3.1 The one-dimensional case

The unitary irreducible representation of the Weyl-Heisenberg group in L2(R)
is given by: [U(ω, b, τ)ψ](x) = τe

−iωb
2 eiωxψ(x − b). If the toral component of



the group representation is fixed, then the representation can be defined as:
[U(ω, b)ψ](x) := eiωxψ(x−b). The following infinitesimal generators of the group
can be defined as:

(Tωψ)(x) := i
∂

∂ω
[U(ω, b)ψ](x)|ω=0,b=0 = −xψ(x) (7)

(Tbψ)(x) := i
∂

∂b
[U(ω, b)ψ](x)|ω=0,b=0 = −i

d

dx
ψ(x) (8)

The one-dimensional uncertainty principle for the Weyl-Heisenberg group can
be derived using the general uncertainty principle.
Corollary [9]: Let Tω = −x and Tb = −i ∂

∂x be the infinitesimal operators of the
Weyl-Heisenberg group. If ψ ∈ L2(IR) we have: ‖(Tω − µω)ψ‖2‖(Tb − µb)ψ‖2 ≥
1
4‖ψ‖2, where: ‖‖2 is defined as:

∫
ψ(x)ψ∗(x)dx. Equality is obtained iff

ψ(x) = Ce−iµbxe−
i
2η (x−µω)2 , (9)

where C =
(

i
2πη

) 1
4

and η ∈ iIR+.

3.2 The two-dimensional case

The unitary irreducible representation of the Weyl-Heisenberg group in two di-
mensions is given by: [U(ω1, ω2, b1, b2, τ)ψ](x, y) = τei(ω1x+ω2y)ψ(−→u −−→b ), where
−→u = (x, y),−→b = (b1, b2). The following infinitesimal generators of the group can
be defined as:

(T−→ω ψ)(−→u ) := i
∂

∂−→ω [Uψ](−→u )|−→ω =0,
−→
b =0

= −−→u ψ(−→u ) (10)

(T−→
b

ψ)(−→u ) := i
∂

∂
−→
b

[Uψ](−→u )|−→ω =0,
−→
b =0

= −i
−→∇ψ(−→u ), (11)

where −→ω = (ω1, ω2). The only non-vanishing commutators of these four opera-
tors are:

[Twk
, Tbk

] = −i , k = 1, 2 . (12)

Thus, an uncertainty principle can be obtained for translations in the spatial
and frequency domains. This can be executed for each dimension separately. It
is interesting to note that using the Weyl-Heisenberg group, there is no coupling
between the x and y components. Thus attaining a certain accuracy in the x
component does not affect the degree of accuracy in the y component.

If we derive the minimization equation, we simply get the result of the one-
dimensional analysis for both x and y coordinates. The separability of the Weyl-
Heisenberg group results in separable Gaussian functions as the minimizers of
the combined uncertainty. This is, in fact, an inherent property of the Gaussian
function.



4 The Affine Group

Let A be the affine group, and let π be its canonical left action on L2(IR); the
coefficients generated by 〈f, π(x)ψ〉 are known as the wavelet transform of a
function f , where ψ is the mother wavelet, or template. The wavelet transform
is defined by:

(Wψf)(a, b) =
∫

R

f(x)|a|− 1
2 ψ

(
x− b

a

)
dx, (13)

where x denotes the complex conjugate of x.

4.1 The one-dimensional case

Let A be the affine group,

A :=
{
(a, b)|(a, b) ∈ IR2, a 6= 0

}
(14)

with group law
(a, b) ◦ (a′, b′) = (aa′, ab′ + b). (15)

A unitary group representation is obtained by the action of A on ψ(x):

[U(a, b)ψ](x) = |a|− 1
2 ψ

(
x− b

a

)
(16)

In preparation for our extension of this approach to two-dimensions and
other groups, we quote the main results presented in the work of Dahlke and
Maass [4] for the one-dimensional affine group. First, the self-adjoint infinitesimal
operators are calculated by computing the derivatives of the representation at
the identity element:

Ta = −i

(
1
2
− x

∂

∂x

)

Tb = −i
∂

∂x
. (17)

Using these operators, the affine uncertainty principle is given [4], and the
following differential equation

(Ta − µa)ψ(x) = η ((Tb − µb)ψ(x)) , (18)

which reads:

−1
2
iψ(x)− ixψ′(x)− µaψ(x) = −iηψ′(x)− ηµbψ(x). (19)

The solution to this equation is: ψ(x) = c(x−η)α, where α = − 1
2−iηµa+iµb, and

some constraints on the value of α are imposed to guarantee that the obtained
solution is in L2(IR).



4.2 The two-dimensional case

This section is divided into two parts. In the first part we recall the results of
Dahlke and Maass [4], and of Ali, Antoine and Gazeau [1], who analyze the
SIM(2) group. In the second part, we extend their findings to account for the
full Affine group in two dimensions.

The 2D similitude group of IR2, SIM(2) = IR2 × (IR+ × SO(2)).
Consider the group SIM(2) with group law (a, b, τθ) ◦ (a′, b′, τθ′) = (aa′, b +
aτθb

′, τθ+θ′). The unitary representation of SIM(2) in L2(IR2) is given by:

[U(a, b, θ)f ](x, y) =
1
a
f

(
τ−θ

(
x− b1

a
,
y − b2

a

))
, (20)

where the rotation τθ ∈ SO(2) acts on a vector (x, y) in the following way:

τθ(x, y) = (xcos(θ)− ysin(θ), xsin(θ) + ycos(θ)), (21)

and θ ∈ [0, 2π). The self-adjoint infinitesimal operators are given by:

Tθ = i(−→u ⊥)t · ∇, Ta = −i(1 +−→u t · ∇),
T−→

b
= −i∇.

where (−→u ⊥)t = (−y, x) These operators yield four non-zero commutators,
which generate in turn a system of four differential equations. It turns out that
there does not exist a non-zero solution to this system of differential equations.
Therefore, Dahlke and Maass [4] find a solution for a different set of operators
from the enveloping algebra. The solution they find is a minimizer to the un-
certainty principles associated with the operators: Ta, Tθ and Tb = T 2

b1 + T 2
b2.

A possible solution is the Mexican hat function: ψ(x, y) = [2 − 2βr2]e−βr2
,

where r =
√

x2 + y2. Ali, Antoine and Gazeau [1] observe that the relationships
between Ta and Tb1 , and between Tθ and Tb2 , can be transformed into the rela-
tionships between Ta and Tb2 , and Tθ and Tb1 by a π

2 -rotation. Thus, they define
a new translation operator Tb = Tb1cos(γ) + Tb2sin(γ), so that a minimizing
function can be obtained for this new operator as well as for Ta and Tθ with
respect to a fixed direction γ. The minimizer they obtain in the frequency space
kx, ky is a function which vanishes outside some convex cone in the half-plane
kx > 0 and is exponentially decreasing inside:

ˆψ(k) = c|−→k |se−iηkx , (22)

where s > 0 and iη > 0.

The Affine Group in 2D Let us explore the most straightforward repre-

sentation of the Affine group. Define an invertible matrix s =
[

s11 s12

s21 s22

]
. Its



determinant is D = |s11s22 − s21s12|, −→b = (b1, b2) and −→x = (x, y). The repre-
sentation corresponding to the action of the Affine group is accordingly given
by:

[U(s,−→b )ψ](−→x ) =
√

Dψ
(
s
(−→x −−→b

))
. (23)

Let us calculate the infinitesimal operators associated with: s11, s12, s21, s22, b1, b2:

Ts11(x, y) = i

(
1
2

+ x
∂

∂x

)
, Ts22(x, y) = i

(
1
2

+ y
∂

∂y

)
,

Ts12(x, y) = iy
∂

∂x
, Ts21(x, y) = ix

∂

∂y
,

Tb1(x, y) = −i
∂

∂x
, Tb2(x, y) = −i

∂

∂y
. (24)

As these operators were derived from a unitary representation, they are self-
adjoint. The non-vanishing commutation relations are:

[Ts11 , Ts12 ] = iTs12 , [Ts11 , Ts21 ] = −iTs21 , [Ts11 , Tb1 ] = iTb1

[Ts12 , Ts22 ] = iTs12 , [Ts12 , Tb2 ] = iTb1 , [Ts21 , Ts22 ] = −iTs21

[Ts21 , Tb1 ] = iTb2 , [Ts22 , Tb2 ] = iTb2 , [Ts12 , Ts21 ] = −i(Ts11 − Ts22)

Thus, of the fifteen possible commutation relations, we obtain nine uncertainty
principles. It is interesting to note that the scaling in the x direction (s11) is not
constrained by the scaling in the y direction (s22). The same goes for the x and
y translations. Using the uncertainty theorem for self-adjoint operators, we ob-
tain a set of differential equations, whose solution is the function which obtains
the minimal uncertainty. A simultaneous solution for all equations necessarily
imposes: ψ ≡ 0. Thus, we attempt to find possible solutions over sub-sets. We
define new operators which are derived from the group’s infinitesimal genera-
tors, and are elements of the enveloping algebra. First, we look at the linear
combinations of the infinitesimal operators: Tθ = Ts12−Ts21 = i(y ∂

∂x −x ∂
∂y ) and

Tscale = Ts11 + Ts22 = i + ix ∂
∂x + iy ∂

∂y . We may consider these new operators
as representing the total orientation and scale changes due to the operation of
the affine group. Moreover, these operators, along with the translation opera-
tors, are identical to those obtained for the SIM(2) group and, thus, we can
easily implement the analysis offered for this group. It is also possible to use
rotation invariant functions which can be presented by: ψ(x, y) = g(

√
x2 + y2)

[4]. These are the minimizers of the following three operators, which are defined
as polynomials in the existing six operators:

Tθ = Ts12 − Ts12,

Tscale = Ts11 + Ts22 = i

(
1 + r

∂

∂r

)
,

Tr = T 2
b1 + T 2

b2 =
1
r
− ∂2

∂r2
.

The equations to be solved are:

(Tθ − µθ)g(r) = η1(Tr − µr)g(r) (25)
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Fig. 1. The real part of the minimizer for the Affine group: ψ(x, y) = x−iµ11− 1
2 eiµb2y

which does not belong to L2.

(Tθ − µθ)g(r) = η2(Tscale − µscale)g(r) (26)
(Tr − µr)g(r) = η3(Tscale − µscale)g(r). (27)

Naturally, the motivation for defining these new operators is the rotation in-
variance property of Tθ, i.e. Tθg(r) = 0. Thus, instead of seven equations to be
solved, we are left with only three. We can simply select η1 = η2 = 0, and are
left with:

−g′′(r)− 1
r
g′(r)− µrg = −η3i(g(r) + rg′(r))− η3µscaleg. (28)

As already mentioned, a possible solution of this equation is the Mexican hat
function. Another possible solution, in the spirit of [1], can be obtained by ob-
serving that the set of commutators:

[Ts11 , Ts12 ], [Ts11 , Ts21 ], [Ts11 , Tb1 ], [Ts12 , Ts21 ], [Ts12 , Tb2 ]

transforms under π
2 -rotation into the complementary set of commutators:

[Ts22 , Ts21 ], [Ts22 , Ts12 ], [Ts22 , Tb2 ], [Ts21 , Ts12 ], [Ts21 , Tb1 ].

If the commutator relation between Ts21 and Ts12 is ignored, we may obtain the
following set of differential equations:

i

(
ψ(x, y)

2
+ xψx(x, y)

)
− µ11ψ(x, y) = η1(iyψx(x, y)− µ12ψ(x, y))
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Fig. 2. The real part of the minimizer for the sub-Affine group: ψ(x, y) = (η3 +

x)−
1
2−iµ11+iη3µb1eiµb2y which belongs to L2.

i

(
ψ(x, y)

2
+ xψx(x, y)

)
− µ11ψ(x, y) = η2(ixψy(x, y)− µ21ψ(x, y))

i

(
ψ(x, y)

2
+ xψx(x, y)

)
− µ11ψ(x, y) = η3(−iψx(x, y)− µb1ψ(x, y))

−iψy(x, y)− µb2ψ(x, y) = η4(iyψx(x, y)− µ12ψ(x, y)), (29)

where µij = µψ(Tsij ). Selecting all η’s to be zeros, a possible solution for this
system is: ψ(x, y) = x−iµ11− 1

2 eiµb2y. The real part of this solution is depicted in
Fig. (1). This solution, however, does not belong to L2(R2) in terms of both x
and y. If we restrict our analysis to the differential equations which relate Ts11

to Tb1 and Ts12 to Tb2 :

i

(
ψ(x, y)

2
+ xψx(x, y)

)
− µ11ψ(x, y) = η3(−iψx(x, y)− µb1ψ(x, y))

−iψy(x, y)− µb2ψ(x, y) = η4(iyψx(x, y)− µ12ψ(x, y)), (30)

then, under the selection of η3 to be non-zero, we may obtain a solution of the
form ψ(x, y) = (η3 + x)−

1
2−iµ11+iη3µb1eiµb2y. The solution may become square

integrable with respect to the variable x if we select: |η3| ≥ 1
2µb1

. This solution
is not square integrable in terms of the variable y, although it is periodic. It is
shown in Fig. (2) for a selection of η3 = i and µb1 = 1.



5 The Affine Weyl-Heisenberg Group

The AWH group is generated by time (or spatial coordinate) and frequency
translations, and time (or spatial coordinate) dilations. The AWH group can be
viewed as the extension of the affine group, incorporating frequency translations
or, alternatively, as the extension of the Weyl-Heisenberg group by dilations. Its
canonical representation in L2(R) fails, however, to be square integrable, but can
be regularized in an appropriate way, by the introduction of a density function
[23].

5.1 The one-dimensional case

The unitary irreducible representation of the AWH group in L2(R) is given by:

[U(ω, a, b)ψ](t) =
1√
a
eiωtψ

(
t− b

a

)
. (31)

Following are the infinitesimal generators of the group:

Ta(t) := i
∂U

∂a
|a=1,b=0,ω=0 = −i

(
1
2

+ t
∂

∂t

)

Tb(t) := i
∂U

∂b
|a=1,b=0,ω=0 = −i

∂

∂t

Tω(t) := i
∂U

∂ω
|a=1,b=0,ω=0 = −t (32)

Next, we calculate the commutation relations between the four operators.
The non-zero commutation relations are given by:

[Ta, Tb] = iTb, [Ta, Tω] = −iTw, [Tb, Tω] = −i (33)

Using the uncertainty theorem, the following set of differential equations is
derived:

−iψ′(t)− µbψ(t) = η1
iψ(t)

2
− η1itψ

′(t)− η1µaψ(t)

−tψ(t)− µωψ(t) = η2
iψ(t)

2
− iη2tψ

′(t)− η2µaψ(t)

−iψ′(t)− µbψ(t) = −η3tψ(t)− η3µωψ(t), (34)

The solution of this set of equations is the minimizer of the uncertainty of the
AWH group. However, there is no non-trivial solution for these equations. The
first equation brings us back to the one-dimensional affine group, whose solution
was already discussed. The third equation is the same one obtained for the
one-dimensional Weyl-Heisenberg group. If we solve the second equation, which
relates the scaling and frequency translations, we obtain a polynomial solution
which is not in L2. In order to find a minimizing function for the uncertainty
principle for the AWH group, we substantiate the work of Torresani [23], which
provides the permitted relationships between scale and frequency.



6 A Gabor-wavelet type subgroup of the Affine
Weyl-Heisenberg Group

In his work, Torresani [23] considers a subgroup of the AWH, where frequency
translations are functions of the scale parameter. This sub-group is represented
by Gλ. He proves that the relationship between the scale a and the frequency
Ω(a) has the following form: Ωλ(a) = λ[ 1a − 1], where λ ∈ R. This reciprocal
relations are in agreement with the structure of the Gabor wavelets, where the
frequency depends on the scale, so that smaller scales are related to higher
frequencies and vise-versa. The canonical action of Gλ on L2(R) is inherited
from that of the AWH group:

[U(b, a)ψ](t) = [U(b,Ωλ(a), a, 0)ψ](t) =
1√
a
eiλt( 1

a−1)ψ

(
t− b

a

)
.

This representation is then proved to be square integrable [23].

6.1 The uncertainty principle for Gλ

First, we derive the self-adjoint differential operators which are associated with
the Gλ group. For ease of presentation, we look at the following representation:

[U(b, a)ψ](t) =
√

aeikatψ(a(t− b)).

The two associated self-adjoint operators are defined by:

Ta(t) = eikt

(
−kt +

i

2
+ it

∂

∂t

)

Tb(t) = −ieikt ∂

∂t
. (35)

The associated differential equation is:

(Ta − µa)ψ(t) = η(Tb − µb)ψ(t), (36)

explicitly given by:

eikt

(
−ktψ(t) +

i

2
ψ(t) + itψ′(t)

)
− µaψ(t) = −ηieiktψ′(t)− ηµbψ(t). (37)

After rearranging the terms, we obtain:

ds =
dψ(t)
ψ(t)

=
(−i)

(
kt + (µa − ηµb)e−ikt − i

2 )
)

t + η
. (38)

This integral may be well defined if the integration bounds are finite (e.g. some
finite t0 and the variable t), but not otherwise. The solution is thus given by:
ψ = const ∗ es, where

s =
∫ t

t0

−i
(
kq + (µa − ηµb)e−ikq − i

2 )
)

q + η
dq.



The integration of the terms
∫ t

t0

dq
q+η and

∫ t

t0

q
q+η dq presents no analytical diffi-

culty, while the calculation of
∫ t

t0
e−ikq

q+η dq is not analytically defined. We, there-
fore, must use some approximations to be presented in the next section. The
solution is given by:

s = −ik

(
(t− t0)− ηlog(

η + t

η + t0
)
)
− 1

2
log(

η + t

η + t0
)− i(µa − ηµb)H(t), (39)

where H(t) =
∫ t

t0
e−ikq

q+η dq. Thus, the solution for ψ(t) is:

ψ(t) = eikt0(η + t0)
1
2−ikηe−ikt(η + t)ikη− 1

2 e−iAH(t), (40)

where A = µa−ηµb. In order that the solution will belong to L2(R), Im(η) > 1
2k

if k > 0 or, Im(η) < 1
2k if k < 0.

Our main interest in this approximation is derived from the need to explore
the behavior of the function which provides the minimum value for the AWH
uncertainty rule, and to assess the validity of this approximation. Next, we elab-
orate on the numerical approximations of the complex exponential integral we
have to solve.

6.2 The Complex Exponential Integral

The integral H(t) =
∫ t

t0
e−ikq

q+η dq should be calculated for both t and q being
real. Following the change of variables, w = ik(q + η), we obtain: H(z) =
eikη

∫ z

z0

e−w

w dw, where z0 = ik(t0 + η) and z = ik(t + η).
The following approximation can be obtained for small values of z using the

Taylor expansion:

H(z) = eikη

∫ z

z0

e−w

w
dw = eikη

(
ln(z) + Σ∞

s=1

(−1)szs

ss!
− ln(z0)−Σ∞

s=1

(−1)s(z0)s

ss!

)
.

Thus, inserting this expression into our function, we obtain:

ψ(t) = C1(t0)e−ikt(t + η)ikη− 1
2 (ik(t + η))−i(µa−ηµb)e

ikη

e−i(µa−ηµb)e
ikηΣ∞s=1(−1)s (ik(t+η))s

ss!

= C1(t0)e−ikt(t + η)ikη− 1
2 (ik(t + η))−i(µa−ηµb)e

ikη

exp
{
i(µa − ηµb) (ik(t + η)) eikη

}
exp

{
−i(µa − ηµb)

(ik(t + η))2

2 ∗ 2!
eikη

}
. . . , (41)

where

C1(t0) = eikt0(t0+η)
1
2−ikη (ik(t0 + η))i(µa−ηµb)e

ikη

eieikη(µa−ηµb)Σ
∞
s=1(−1)s (ik(t0+η))s

ss!

Evaluating the exponential integral in the case of large values of z, we can use
asymptotic approximation via successive integration by parts to obtain:

H(z) = eikη

∫ z

z0

e−w

w
dw = eikη−z

{
1
z
− 1

z2
+

2!
z3
− 3!

z4
+ . . .

}
−eikη−z0

{
1
z0
− 1

z2
0

+
2!
z3
0

− 3!
z4
0

+ . . .

}
,



where the general term in the series has the form (−1)n+1(n−1)!
zn for an arbitrary

n. Inserting this into the expression for ψ(t) we obtain:

ψ(t) = C2(t0)e−ikt(t + η)ikη− 1
2 exp

{−i(µa − ηµb)e−iktV (t, η)
}
),

where

C2(t0) = eikt0(t0 + η)
1
2−ikηexp

{
i(µa − ηµb)e−ikt0V (t0, η)

}
,

and

V (t, η) =
1

(ik(t + η))
− 1

(ik(t + η))2
+ ... +

(−1)n+1(n− 1)!
(ik(t + η))n

.

A plot of the absolute value of this function is depicted in Fig. (3), and Fig. (4),
where it is plotted on a logarithmic scale.
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Fig. 3. The behavior of the absolute value of a possible minimizing function of the
AWH uncertainty. The right and left figures demonstrate the behavior of this function
according to the asymptotic expansion in ±∞. The center figure demonstrates the
behavior close to zero.

7 Scale-Space Nature of the Uncertainty Principle
Minimizers

As has already been shown, the Gaussian function is the minimizer of the un-
certainty related to the Weyl-Heisenberg group. It also has an important role
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Fig. 4. The behavior of the absolute value of the possible minimizing function of the
AWH uncertainty, shown in Fig. (3), plotted on a logarithmic scale.

in the framework of scale-space [21]. Application of Gaussian functions with
different values of variance result in smoother versions of the original image,
where the degree of smoothness is determined by the standard deviation of the
Gaussian. Moreover, successive applications of two Gaussian functions with pa-
rameters t1 = 1

2σ2
1 and t2 = 1

2σ2
2 , are equivalent to application of a Gaussian

with t = t1 + t2. Thus, the Gaussian functions with the parameter t = 1
2σ2 form

a semi-group with respect to convolution.
The concept of linear and non-linear scale-space is important in image pro-

cessing, in terms of representation of images, image denoising, features extraction
and image analysis. Therefore, we would like to explore whether functions which
are minimizers of uncertainty principle encompass scale-space like attributes,
and thus may be used in image interpretation. This mathematical curiosity is
rooted in a deeper question: is the Gaussian function really so unique, or is it
one in many other functions that may posses attributes such as: smoothness,
separability, self-similarity (in time and frequency), scale-space generation, min-
imizers of an uncertainty principle and being the kernel (Green function) of a
heat-like (diffusion) equation. This section serves as an appetizer, and provides
evidence that minimizers of uncertainty principles related to groups other than
the Weyl-Heisenberg, also posses scale-space generation properties.

In this study we have considered the minimizers of the uncertainties related
to the SIM(2) and the AWH group. We now proceed to present some prelim-
inary results, indicating that there are scale-space attributes to minimizers of
uncertainty relations, other than the Gaussian function [29].



The solution offered by Dahlke and Maass for the minimizer with respect to
the SIM(2) group is scale-space by nature. The minimizer that they found is the
Mexican hat function: ψ(x, y) = β(1−βr2) exp(−βr2), where r :=

√
x2 + y2. Its

Fourier transform is π2k2 exp(−π2k2

β ). Clearly, if we define β = 1/t then the semi-
group property is trivially satisfied with t as the semi-group parameter. Note
that this is a scale-space of an edge detector and not of the image smoothness
as usual. It is in fact an element of the jet-space of the traditional Gaussian
scale-space. It is interesting to note the similarity with the scale-space generated
by the complex diffusion operator [11], as well as the study of α-scale-spaces [5,
6] and the Poisson Scale-Space [7].

The rest of this section is devoted to exploring the scale-space nature of the
minimizer given by Ali, Antoine and Gazeau for the uncertainty related to the
SIM(2) group [1]. Their solution is given in the the wave number (frequency)
space (kx, ky). It is a function which vanishes outside some convex cone in the
half-plane kx > 0 and is exponentially decreasing inside:

ˆψ(k) = c|−→k |se−rkx , (42)

where s = iη〈P1〉 > 0, η ∈ iIR, 〈P1〉 is the mean value of the translation operator
in the kx direction, and r = iη > 0. The one-dimensional equivalent of this
solution is known as the Cauchy wavelets [14, 18]: ˆψ(ξ) = cξse−rξ for ξ ≥ 0
where ˆψ(ξ) = 0 for ξ < 0, and s > 0. The characteristic responses of the one-
and two-dimensional filters are depicted in Fig. (5,6) and Fig. (7,8), respectively,
in both the Fourier and time/position domains. It is quite obvious, from the
mere definition of the function, that successive applications of the filters with two
values of either s or r correspond to a single application of an effective parameter.
Moreover, this function has the following properties. The term |−→k |s = (k2

x+k2
y)

s
2

in frequency space is actually equivalent (up to a sign) to a power of the Laplacian
operator ( ∂2

∂x2 + ∂2

∂y2 )
s
2 in the spatial space and, thus, can be considered as an

edge enhancement operator. The term e−rkx can be considered as a smoothing
operator in the x direction.

Applications of the Cauchy wavelets to a rectangular pulse function (Fig. 9)
yields the following results: as s increases, the edges become more pronounced,
while as r increases, the signal becomes smoother (Fig. 10).

We next apply the two-dimensional minimizer filter to a test image of a
clown, symmetrizing the filter as follows: ψ̂(k̂) = c|−→k |se−r|kx|. When the value
of r is kept constant, increasing the value of s results in a progressive edge
enhancement (Fig. 11). When the value of s is kept constant, increasing the value
of r results in a motion blurring effect in the x-direction (Fig. 12). To conclude,
we have shown in this section that the minimizers of the uncertainty related
to the SIM(2) group posses intrinsic scale-space generation properties. Further
research is required in order to tackle the more general question regarding the
existence of ”Gaussian-like” functions for other groups, in the context of the
issues discussed at the beginning of this section.
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Fig. 5. The one-dimensional Cauchy wavelets in the frequency domain given by: ˆψ(ξ) =

cξse−rξ for ξ ≥ 0 where ˆψ(ξ) = 0 for ξ < 0, and s > 0. We present the different functions
obtained for different values of s and r.
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Fig. 6. The one-dimensional Cauchy wavelets in the time domain. This is a numerical
approximation obtained by taking the inverse Fourier transform of the function. The
functions depend on both s and r. As r increases, the size of the window increases,
thus it may be associated with a higher degree of smoothing, while as s increases the
window becomes smaller.
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Fig. 8. The 2D solution of Ali et al [1]in the spatial domain. This is a numerical
approximation obtained by taking the inverse Fourier transform of the function. As
r increases, the size of the window increases (a higher degree of smoothing). As s
increases the window becomes smaller.



Fig. 9. A one-dimensional rectangular pulse function.
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Fig. 10. When the 1D Cauchy wavelets are applied to a rectangular pulse, the larger
s is the more noticeable the edges are (left to right). The larger r is the smoother the
edges become (up to bottom).



Fig. 11. For a constant value of r = 0.00001, increasing the value of s the value of s
is increased: 0.01, 0.2, 0.5, 1 (up left to bottom right), results in an edge enhancement
effect.

Fig. 12. For a constant value of s = 0.2, increasing the value of r: 0.001, 0.01, 0.05, 0.1
(up left to bottom right) results in an effect of motion-blurring in the x-direction.



8 Discussion and Conclusions

The use of Gabor wavelets for texture analysis and synthesis is frequently jus-
tified with the well-known fact that Gabor functions provide the best combined
time-frequency resolution. This fact can be easily derived using the basic uncer-
tainty theorem for self-adjoint operators. Moreover, it can be easily extended to
higher dimensions, as for the Weyl-Heisenberg group, we always obtain a Gaus-
sian solution. Dahlke and Maass, as well as Ali, Antoine and Gazeau presented
an extension of this notion to other groups: the affine group in one dimension
and the SIM(2) group in two dimensions. It turned out that finding the unique
function that simultaneously minimizes the uncertainties in these cases is im-
possible.

One of the declared justifications for using Gabor wavelets in image process-
ing is that Gabor functions are the minimizers of the uncertainty of the Weyl-
Heisenberg group. However, these filters are not minimizers of the uncertainty
principle related to the affine group and the wavelet transform. Some intuitive
understanding of this phenomenon can be achieved by looking at the presenta-
tions of the Weyl-Heisenberg group and the affine group. The unitary irreducible
representation of the two-dimensional Weyl-Heisenberg group in L2(R2), is given
by:

[U(ω1, ω2, b1, b2, τ)ψ](x, y) = τeiω1x+iω2yψ(−→u −−→b ),

where −→u = (x, y),−→b = (b1, b2). The unitary irreducible representation of the
two-dimensional affine group in L2(R2) is given by:

u = Dψ
(
s−1

(−→x −−→b
))

.

Thus, a noticeable difference between the two representations is the fact that
the x and y components are independent of each other in the Weyl-Heisenberg
representation, while in the affine representation there is a coupling between the
x and y variables. This may also be the reason for having a multi-dimensional
minimizer for the Weyl-Heisenberg group, and not for the affine group.

In this study we focused our efforts on finding possible solutions for the
minimizers of the affine and AWH groups. We applied the results of Dahlke
and Maass [4] and of Ali, Antoine and Gazeau [1] to the two-dimensional affine
group, and showed that solutions can be found for a sub-set of the affine group,
or when elements of the enveloping algebra are involved. We also presented a
possible candidate for the minimizer of the AWH group in one dimension, where
a Gabor-wavelet type subgroup is considered.

Moreover, the scale-space properties of some of the minimizers have been
considered. We examined the minimizer offered by Ali, Antoine and Gazeau,
and found that modifying the function’s parameters results in either edge en-
hancement or motion-like blurring.

Our preliminary results point to the need to further explore the attributes of
the uncertainty minimizers, obtained in this study, as well as their scale-space
properties. Gabor wavelets are still an important tool when considering the joint



time (spatial) frequency uncertainty. Nevertheless, using these functions cannot
guarantee the maximal joint accuracy.
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