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Abstract. This study is concerned with the uncertainty principles which
are related to the Weyl-Heisenberg, the SIM(2) and the Affine groups.
A general theorem which associates an uncertainty principle to a pair of
self-adjoint operators was previously used in finding the minimizers of the
uncertainty principles related to various groups, e.g., the one and two-
dimensional Weyl-Heisenberg groups, the one-dimensional Affine group,
and the two-dimensional similitude group of IR2, SIM(2) = IR2× (IR+×
SO(2)). In this study the relationship between the affine group in two
dimensions and the SIM(2) group is investigated in terms of the un-
certainty minimizers. Moreover, we present scale space properties of a
minimizer of the SIM(2) group.

1 Introduction

The 2D Gabor function and Gabor-Morlet wavelets are commonly used in com-
puter vision. Mostly in relation to texture analysis, synthesis and segmentation.
The use of these functions is usually motivated by the fact that the Gaussian
window minimizes the uncertainty and attains the maximal possible accuracy in
both the spatial and frequency domains. In fact, the Gabor transform is a rep-
resentation of the Weyl-Heisenberg group while the 2D Gabor-Morlet transform
is a representation of the 2D affine group or of subgroups thereof. Since both
the 2D Gabor-Morlet wavelet transform and the multi-window Gabor transform
involve rotation and scaling (and potentially few more transformations) in addi-
tion to the usual translation and frequency modulations, it makes sense to look
for a window shape that maximizes the accuracy in all attributes. This study
explores this question and shows that this aim can only be partially attained.

The Gaussian function appears as a pivot in scale-space theory as well, where
its successive applications to images produce coarser resolution images. It is
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shown, in fact, that the family of Gaussian functions posses semi-group proper-
ties with respect to the width of the Gaussian. This raises the question whether
families of functions that minimize the uncertainty for other groups of trans-
formations posses the same characteristic. It is shown in this study that this is
in fact true for the cases that we consider. This is an intriguing fact whose full
significance is not yet fully understood.

In this study we consider the results obtained for the similitude group [1, 3]
and apply them to the affine group in two dimensions. Moreover, we explore the
scale-space nature of the minimizer derived by Ali, Antoine and Gazeau [1] and
find that their solution has smoothing and edge detection attributes which can
produce scale-space representation of images.

The rest of this paper is organized as follows: First, we review the uncertainty
principle theorem for self-adjoint operators and point out related works. We
then apply it to the Weyl-Heisenberg group and the affine group in one and
two dimensions. We conclude by pointing out the scale-space properties of the
minimizers obtained.

2 Background and Related Work

The uncertainty principle is a fundamental concept in quantum mechanics as
well as in signal and information theory. In quantum mechanics, the Heisenberg
uncertainty principle states that the position and momentum of a particle cannot
be simultaneously known. In signal and information theory, Gabor [5] showed
that there exists a trade off between time resolution and frequency resolution
for one-dimensional signals, and that there is a lower bound on their product.
These results were extended to consideration of images [9].

A special attention has been given to the functions which attain the lower
bound of the inequality defined by the uncertainty principle. It is used to define
the canonical coherent states for quantum systems in physics. In signal process-
ing it was discussed, inter alia, by Gabor. He showed that Gaussian-modulated
complex exponentials provide the best trade-off for time resolution and frequency
resolution. These are equivalent to a family of canonical coherent states gener-
ated by the Weyl-Heisenberg group.

A general theorem which is well known in quantum mechanics and harmonic
analysis [4] relates an uncertainty principle to any two self-adjoint operators and
provides a mechanism for deriving a minimizing function for the uncertainty
equation: two self-adjoint operators, A and B obey the uncertainty relation:

∆Af∆Bf ≥ 1
2
|〈[A,B]〉| ∀f, (1)

where ∆Af ,∆Bf denote the variances of A and B respectively with respect
to the signal f. The triangular parnthesis mean an average over the signal i.e.
〈X〉 =

∫
f∗Xf . The mean of the action of an operator P on a function f is

denoted as: µP = 〈P 〉 and the commutator [A,B] is given by: [A,B] := AB−BA.
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A function f is said to have minimal uncertainty if the inequality turns into an
equality. This happens if and only if there exists a λ ∈ iIR such that

(A− µA)f = λ(B − µB)f. (2)

Thus, any two self-adjoint operators, whose commutator does not vanish, lead to
an uncertainty principle. Moreover, the constraint for equality, together with a
realization of the operators in differential form, lead to a set of partial differential
equations. The solution is the function which minimizes the uncertainty for the
relevant operators.

Both windowed Fourier and wavelet transforms are related to group theory,
as both can be derived from square integrable group representations [6]. The
windowed Fourier transform is related to the Weyl-Heisenberg group, and the
wavelet transform is related to the affine group. The general uncertainty theo-
rem [4] stated above provides a tool for obtaining uncertainty principles using
the infinitesimal generators of the groups’ representations. In the case of the
Weyl-Heisenberg group, the canonical functions which minimize the correspond-
ing uncertainty relation are Gaussian functions. The canonical functions which
minimize the uncertainty relations for the affine group in one dimension and
for the similitude group in two dimensions were the subject of previous studies,
among them is the study of Dhalke and Maass [3] and that of Ali, Antoine and
Gazeau [1].

Dahlke and Maass [3], as well as Ali, Antoine and Gazeau [1] studied the
uncertainty principle for a sub-group of the affine group, the similitude group of
IR2, SIM(2) = IR2 × (IR+ × SO(2)), which is related to the wavelet transform.
Dahlke and Maass [3] have included commutators with elements of the enveloping
algebra, i.e. polynomials in the generators of the algebra, and managed to find
the 2D isotropic Mexican hat. Ali, Antoine and Gazeau [1] derived a possible
minimizer in the frequency domain for some fixed direction. Their solution is a
real wavelet which is confined to some convex cone in the positive half plane of
the frequency space and is exponentially decreasing inside.

3 The Weyl-Heisenberg Group

The uncertainty principle related to the Weyl-Heisenberg group has a tremen-
dous importance in two main fields; in quantum mechanics, the uncertainty
principle prohibits the observer from exactly knowing the location and momen-
tum of a particle. In signal processing, the uncertainty principle provides a limit
on the localization of the signal in both time (spatial) and frequency domains.

Let G be the Weyl-Heisenberg group,

G := {(ω, b, τ)|b, ω ∈ IR, τ ∈ IC, |τ | = 1} (3)

with group law

(ω, b, τ) ◦ (ω′, b′, τ ′) = (ω + ω′, b + b′, ττ ′ei
(ωb′−ω′b)

2 ). (4)
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Let π be a representation of the group’s action on L2(IR); then, the coefficients
generated by 〈f, π(x)ψ〉 are known as the windowed Fourier transform of the
function f , with ψ being the window function. The windowed Fourier transform
is defined by:

〈f, π(x)ψ〉 = (Gψf)(ω, b) =
∫

f(x)ψ(x− b)e−iωxdx (5)

The Fourier transform is a profound tool in signal processing. The Gaussian
window function ψ(x) = e−

x2
2 has an important role in the windowed Fourier

analysis as it minimizes the Weyl-Heisenberg uncertainty principle. Next, we
review the derivation of the uncertainty principles for the Weyl-Heisenberg group
in one and two dimensions using the uncertainty principle theorem. The reader
may find the classical proofs of the uncertainty principle for the Weyl-Heisenberg
group in the work of Gabor [5] for one-dimensional signals and in the work of
Daugman [2] for two-dimensional signals.

3.1 The one dimensional case

The unitary irreducible representation of the Weyl-Heisenberg group in L2(R)
can be defined by: [U(ω, b)f ](x) := eiωxf(x − b). The following infinitesimal
generators of the group are then given by:

(Tωf)(x) := i
∂

∂ω
[U(ω, b)f ](x)|ω=0,b=0 = −xf (6)

(Tbf)(x) := i
∂

∂b
[U(ω, b)f ](x)|ω=0,b=0 = −i

d

dx
f (7)

The one-dimensional uncertainty principle for the Weyl-Heisenberg group can
be derived using the general uncertainty principle.
Corollary:[4] Let A = Tω and B = Tb be the infinitesimal operators of the
Weyl-Heisenberg group: A = −x, B = −i ∂

∂x . If f ∈ L2(R) and a = µA, b =
µB ∈ R we have: ‖(A−a)f‖2‖(B−b)f‖2 ≥ 1

4‖f‖2, with equality being obtained
iff

f(x) = ce2πibxe−πr(x−a)2 (8)

for some c ∈ IC, r ∈ IR+.

3.2 The two-dimensional case

The unitary irreducible representation of the Weyl-Heisenberg group in L2(R2)
in two dimensions is given by: [Ũ(ω1, ω2, b1, b2, τ)f ](x, y) = τei(ω1x+iω2y)f(−→u −−→
b ), where −→u = (x, y),−→b = (b1, b2). The following infinitesimal generators of
the group can be defined as:

(T−→ω f)(−→u ) := i
∂

∂−→ω [Uf ](−→u )|−→ω =0,
−→
b =0

= −−→u f (9)

(T−→
b

f)(−→u ) := i
∂

∂
−→
b

[Uf ](−→u )|−→ω =0,
−→
b =0

= −i∇f (10)
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The only non-vanishing commutators of these four operators are:

[Twk
, Tbk

] = −i , k = 1, 2 . (11)

Thus, an uncertainty principle can be obtained for translations in the space
and frequency domains. This can be solved for each dimension separately. It is
interesting to note that using the Weyl-Heisenberg group, there is no coupling
between the x and y components. Thus attaining a certain accuracy in the x
component does not affect the degree of accuracy of the y component. If we
derive the minimization equation, we simply get the same result for the one-
dimensional analysis for both x and y. The separability of the Weyl-Heisenberg
group results in separable gaussian functions as the minimizers of the combined
uncertainty. This is, in fact, an inherent property of the Gaussian functions.

4 The Affine Group

Let G be the affine group, and let U be its canonical left action on L2(R); the
coefficients generated by 〈f, U(x)ψ〉 are known, in the one-dimensional case, as
the wavelet transform of a function f , with ψ as a mother wavelet, or template.
The wavelet transform is defined by:

(Wψf)(a, b) =
∫

R

f(x)|a|− 1
2 ψ(

x− b

a
)dx (12)

4.1 The one-dimensional case

Let A be the affine group,

A :=
{
(a, b)|(a, b) ∈ R2, a 6= 0

}
(13)

with group law
(a, b) ◦ (a′, b′) = (aa′, ab′ + b). (14)

A unitary group representation obtained by the action of U(A) on f(x) is given
by:

[U(a, b)f ](x) = |a|− 1
2 f

(
x− b

a

)
(15)

In preparation for our extension to two dimensions and other groups, we
quote the main results presented in the work of Dahlke and Maass [3] for the
one dimensional affine group. First, the self-adjoint infinitesimal operators are
calculated by computing the derivatives of the representation at the identity
element:

Ta = −i(
1
2
− x

∂

∂x
)

Tb = −i
∂

∂x
. (16)
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Using these operators, the affine uncertainty principle is given, and the fol-
lowing differential equation can be solved to obtain the uncertainty minimizer:

(Ta − µa)f = λ(Tb − µb)f, (17)

which reads:
−1

2
if − ixf ′ − µaf = −iλf ′ − λµbf. (18)

The solution to this equation is: f(x) = c(x− λ)α, where α = − 1
2 − iλµa + iµb.

Dahlke and Maass [3] provide constraints on α, so that the obtained solution is
in L2(R).

4.2 The two-dimensional case

In the studies of Dahlke and Maass [3], and of Ali, Antoine and Gazeau [1], the
uncertainty principle is derived for a subgroup of the affine group which includes
translations, rotations and a uniform scaling in the x and y directions. Let us
begin by briefly quoting their main findings before extending them to the affine
group itself.

The 2D similitude group of IR2, SIM(2) = IR2 × (IR+ × SO(2)) Con-
sider the group B = IR+ × IR2 × SO(2) with group law (a, b, τθ) ◦ (a′, b′, τθ′) =
(aa′, b + aτθb

′, τθ+θ′). The unitary representation of B in L2(IR2) is given by:

[U(a, b, θ)f ](x, y) =
1
a
f

(
τ−θ

(
x− b1

a
,
y − b2

a

))
, (19)

where the rotation τθ ∈ SO(2) acts on a vector (x, y) in the following way:

τθ(x, y) = (xcos(θ)− ysin(θ), xsin(θ) + ycos(θ)), (20)

and θ ∈ [0, 2π). The self-adjoint infinitesimal operators are given by:

Tθ = i(−→u ⊥)t · ∇, Ta = −i(1 +−→u t · ∇),
T−→

b
= −i∇.

where (−→u ⊥)t = (−y, x) The only non-vanishing commutation relations are:

[Ta, Tbk
] = −iTbk

, [Tθ, Tbk
] = iε3klTbl

,

where εijk is the full anti-symmetric tensor and summation is implied on repeated
indices. These four non-zero uncertainty relations lead to a set of four partial
differential equations:

i
∂f

∂x
y − i

∂f

∂y
x− µθf = −iλ1

∂f

∂x
− λ1µb1f

i
∂f

∂x
y − i

∂f

∂y
x− µθf = −iλ2

∂f

∂y
− λ2µb2f

−if − i
∂f

∂x
x− i

∂f

∂y
y − µaf = −iλ3

∂f

∂x
− λ3µb1f

−if − i
∂f

∂x
x− i

∂f

∂y
y − µaf = −iλ4

∂f

∂y
− λ4µb2f (21)
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It turns out that there does not exist a non-zero solution to this system of
PDEs. It is not clear wether the theoretical bounds given by the uncertainty the-
orem are tight in the sense that they are the infimum value over the L2 functional
space or that better bounds are possible. Research on these questions is ongoing.
Here we try to modify our quest in two different manners. One approach is to
find a subset of generators which have mutually minimized relations. The gen-
erators span a linear space, the Lie algebra. We look for the possibly maximal
subspace for which a non-trivial function minimizes the related uncertainties.
This is the approach taken by Ali, Antoine and Gazeau [1]. They observe that
the relationships between Ta and Tb1 , and Tθ and Tb2 can be transformed into
the relationships between Ta and Tb2 , and Tθ and Tb1 by a π

2 rotation. Thus,
they define a new translation operator Tb = Tb1cos(γ) + Tb2sin(γ), so that a
minimizing function can be obtained for this new operator as well as for Ta

and Tθ with respect to a fixed direction γ. The minimizer they obtain in the
frequency space kx, ky is a function which vanishes outside some convex cone in
the half-plane kx > 0 and is exponentially decreasing inside:

ˆ
ψ(k̂) = c|k|se−λkx , (22)

where s > 0 and λ > 0.
Another approach is to replace few of the generators by elements of the uni-

versal enveloping algebra. Dahlke and Maass [3] followed this path. The solution
they find is a minimizer to the operators: Ta, Tθ and Tb := T 2

b1 + T 2
b2. A pos-

sible solution is the Mexican hat function: ψ(x, y) = [2 − 2βr2]e−βr2
, where

r :=
√

x2 + y2.
Note that in the first approach the subspace chosen is not a sub-algebra. It

is closed under summation but not under the multiplication (defined as com-
mutation relation). The latter operation can take an element in the subspace
of the Lie algebra out of it. In the second approach we build a minimizer for a
full algebra. Here we simply changed the underline symmetry, namely we do not
allow uncorrelated translations in the x and y directions.

The Affine Group in 2D Let us explore the most straight forwards repre-

sentation of the Affine group. Let define s =
[

s11 s12

s21 s22

]
, D = s11s22 − s21s12,

−→
b = (b1, b2) and −→x = (x, y). We restrict our discussion to the case D ≥ 0.
A similar derivation can be obtained for the case D ≤ 0. The representation
corresponding to the action of the Affine group is accordingly given by:

[U(s,−→b )f ](−→x ) =
√

Df
(
s
(−→x −−→b

))
. (23)

Let us calculate the infinitesimal operators associated with: s11, s12, s21, s22, b1, b2:

Ts11(x, y) = i(
1
2

+ x
∂

∂x
), Ts22(x, y) = i(

1
2

+ y
∂

∂y
),



8 Sagiv,Sochen,& Zeevi

Ts12(x, y) = iy
∂

∂x
, Ts21(x, y) = ix

∂

∂y
,

Tb1(x, y) = −i
∂

∂x
, Tb2(x, y) = −i

∂

∂y
. (24)

As these operators were derived from a unitary representation, they are self-
adjoint. The non-vanishing commutation relations are:

[Ts11 , Ts12 ] = iTs12 , [Ts11 , Ts21 ] = −iTs21 , [Ts11 , Tb1 ] = iTb1

[Ts12 , Ts22 ] = iTs12 , [Ts12 , Tb2 ] = iTb1 , [Ts21 , Ts22 ] = −iTs21

[Ts21 , Tb1 ] = iTb2 , [Ts22 , Tb2 ] = iTb2 , [Ts12 , Ts21 ] = −i(Ts11 − Ts22)

Thus, of the fifteen possible commutation relations we obtain nine uncer-
tainty principles. It is interesting to note that the scaling in the x direction (s11)
is not constrained by the scaling in the y direction (s22). The same goes for the x
and y translations. Using the uncertainty theorem for self-adjoint operators, we
obtain a set of differential equations whose solution is the function which attains
the minimal uncertainty relations. A simultaneous solution for all equations nec-
essarily imposes: f ≡ 0. No function attains the minimality of uncertainty in L2

for all the relations. Facing this situation we have several options: We may look
for a function that minimizes the uncertainty relations of subgroups of the affine
group. We may be satisfied with an algebraic subspace (which is not necessarily
an algebra of a subgroup), we may find a subspace of the universal enveloping
algebra (the polynomials in the generators), or finally we can limit ourself to
a subset of the non-commuting pairs of generators. For example, we take the
following linear combinations of the generators: Tθ = Ts12 − Ts21 = i(yfx − xfy)
and Tscale = Ts11 + Ts22 = i(f + xfx + yfy). We may consider these new opera-
tors as representing the total orientation and scale changes due to the operation
of the affine group. Moreover, these operators, along with the translation oper-
ators are identical to those obtained for the SIM(2) group, and thus, we can
easily implement the derivations of the minimizer of Ali, Antoine and Gazeau
[1] to these operators. Another immediate possibility is to follow the derivation
of Dahlke and Maass [3] by using rotation invariant functions which can be pre-
sented by: f(x, y) = g(

√
x2 + y2). These are the minimizers of the following

three operators, which are defined as polynomials in the existing six operators:

Tθ = Ts12 − Ts12,

Tscale = Ts11 + Ts22 = i(1 + r
∂

∂r
),

Tr = T 2
b1 + T 2

b2 =
1
r
− ∂2

∂r2

The equations to be solved are:

(Tθ − µθ)g(r) = λ1(Tr − µr)g(r) (25)
(Tθ − µθ)g(r) = λ2(Tscale − µscale)g(r) (26)
(Tr − µr)g(r) = λ3(Tscale − µscale)g(r). (27)
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Naturally, the motivation for defining these new operators is the rotation in-
variance property of Tθ, i.e. Tθg(r) = 0. Thus, instead of seven equations to be
solved we are left with only three. We can simply select λ1 = λ2 = 0 to obtain:

−g′′(r)− 1
r
g′(r)− µrg = λ3i(g(r) + rg′(r))− λ3µscaleg. (28)

As can be seen, we have obtained the exact equation obtained by Dhalke and
Maass for which a Mexican hat solution can be found.

Ali, Antoine and Gazeau have divided the four commutators they obtained
for the similitude group generators into two groups which are transformed into
each other by π

2 rotation. We apply this approach to the fifteen commutators
obtained. Thus, the set of commutators:

[Ts11 , Ts12 ], [Ts11 , Ts21 ], [Ts11 , Tb1 ], [Ts12 , Ts21 ], [Ts12 , Tb2 ]

transforms under rotation of π
2 into the complementary set of commutators:

[Ts22 , Ts21 ], [Ts22 , Ts12 ], [Ts22 , Tb2 ], [Ts21 , Ts12 ], [Ts21 , Tb1 ].

If the commutator between Ts21 and Ts12 is omitted, we may obtain the following
set of differential equations:

i(
f

2
+ xfx)− µ11f = λ1(iyfx − µ12f)

i(
f

2
+ xfx)− µ11f = λ2(ixfy − µ21f)

i(
f

2
+ xfx)− µ11f = λ3(−ifx − µb1f)

−ify − µb2f = λ4(iyfx − µ12f) (29)

where µij = µf (Tsij ). Selecting all λ’s to be zeros, a possible solution for this
system is: f(x, y) = x−iµ11− 1

2 eiµb2y. This solution, however, does not belong
to L2. If we allow λ3 to be non-zero, we may obtain a solution of the form
f(x, y) = (λ3+x)−

1
2−iµ11+iλ3µb1 . The L2 constraint can be obtained by selecting:

|λ3| ≥ 1
2µb1

.

5 Scale-Space Nature of the Uncertainty Principle
Minimizers

It is well known that the Gaussian function has an important role in the scale-
space framework. When a Gaussian is convolved with an image, the result is a
smoother version of the original image. The degree of smoothness is determined
by the standard deviation of the Gaussian in either the x, y or both directions.
In the latter case, the spread does not have to be identical in both dimensions.

The Gaussian function is also the minimizer of the uncertainty related to
the Weyl-Heisenberg group. In fact, we obtain as the minimizer a one-parameter
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family of functions: The Gaussian with parameter t = σ2/2. This one-parameter
family is a semi-group with respect to the convolution, i.e. the convolution of
two Gaussians with different values of t1 and t2 is equivalent to a Gaussian with
parameter t1 + t2. This is all very well known of course. The interesting question
is whether the minimizer of the uncertainty relations of other groups depends
on parameters such that it forms a semi-group with respect to convolution. We
consider here the minimizers of the uncertainties related to the SIM(2) group
and to the affine group.

The solution offered by Dahlke and Maass is scale-space by nature. The min-
imizer that they found is the Mexican hat function: ψ(x, y) = β(1− βr2)e−βr2

,

where r :=
√

x2 + y2. Its Fourier transform is π2k2e−
π2k2

β . Clearly, if we de-
fine β = 1/t then the semi-group property is trivially satisfied, with t as the
semi-group parameter. Note that this is a scale-space of edge detector and not
of the image as usual. It is in fact an element of the jet-space of the traditional
Gaussian scale-space.

The rest of this section is devoted to exploring the scale-space nature of the
minimizer given by Ali, Antoine and Gazeau for the uncertainty related to the
SIM(2) group [1]. Their solution is given in the frequency space (kx, ky). It is a
function which vanishes outside some convex cone in the half-plane kx > 0 and
is exponentially decreasing inside:

ψ̂sλ(k) = c|k|se−λkx , (30)

where s > 0 and λ > 0. It is quite obvious, from the mere definition of the
function, that successive applications of the filters with two values of either s
or λ correspond to a single application of an effective parameter: ψ̂s1λ1 ψ̂s2λ2 =
ψ̂(s1+s2)(λ1+λ2). Moreover, this function has the following properties: The portion
|k|s = (k2

x + k2
y)

s
2 in frequency space is the transformation (up to a sign) of the

Laplacian operator in the spatial space :∆
s
2 , and thus can be considered as an

edge enhancement operator. The portion e−λkx can be considered as a directional
smoothing operator.

We look first at the one-dimensional equivalent of the solution of Ali, Antoine
and Gazeau [1], which is known as the Cauchy wavelets [7, 8]: ψ̂(ξ) = cξse−λξ

for ξ ≥ 0 and ψ̂(ξ) = 0 for ξ < 0, and s > 0. Their application to a rectangular
pulse function (Fig. 1) provides the following results: as s increases, the edges
become more evident, thus the edge is enhanced, while as λ increases, the signal
becomes smoother (Fig. 2).

Fig. 1. A one-dimensional rectangular pulse function.
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Fig. 2. When the 1D Cauchy wavelets are applied to a rectangular pulse, the larger s
is the more noticeable the edges are (left to right). The larger λ is the smoother the
edges become (up to bottom).

We next apply the two-dimensional minimizer filter to a test image of a clown,
symmetrizing the filters as follows: ψ̂(k̂) = c|k|se−λ|kx|. When the value of λ is
kept constant, increasing s results in a progressive edge enhancement (Fig. 3 1st
row). When the value of s is kept constant and the value of λ is increased, there
is a motion blurring effect in the x-direction (Fig. 3 2nd row).

6 Discussion and Conclusions

In this work we study the possibility of designing a window shape that is op-
timal with respect to all the possible parameters of the two-dimensional affine
transform. The study is based on minimizing the uncertainty relations that are
inherent in the non-commutative affine symmetry. We generalized ideas and tech-
niques that were used by Dahlke and Maass [3] and Ali, Antoine and Gazeau [1]
for lower dimensional groups.

Our study shows that there is no function that minimizes the uncertainty
with respect to all parameters of the affine transformations. We were able to
show, though, the existence of an L2 window that minimizes a subset of the
commutation relations.

Moreover, the scale-space properties of the minimizer offered by Ali, Antoine
and Gazeau, are considered. We find that the two-parameter minimizer family is
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Fig. 3. 1st row: For a constant value of λ = 0.00001, increasing the value of s,
0.01, 0.2, 0.5, 1 (left to right), results in edge enhancement. 2nd row: For a constant
value of s = 0.2, increasing the value of λ is increased: 0.001, 0.01, 0.05, 0.1 (left to
right) results in a effect of motion-blurring in the x-direction.

a semi-group with respect to each parameter and that modifying the function’s
parameters results in either edge enhancement or motion-like blurring.

Our preliminary results point to the need to further explore the scale-space
attributes of uncertainty minimizers.
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