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Abstract

Diffusion processes which are widely used in low level
vision are presented as a result of an underlying stochastic
process. The short-time non-linear diffusion is interpreted
as a Fokker-Planck equation which governs the evolution in
time of a probability distribution for a Brownian motion on
a Riemannian surface. The non linearity of the diffusion has
a direct relation to the geometry of the surface. A short time
kernel to the diffusion as well as generalizations are found.

1. Introduction

There is a close and deep relation between partial differ-
ential equations (PDEs) and stochastic processes. We study
this relation in the context of the scale-space approach to
image processing and understanding.

The relation between Brownian motion on the plane and
the two-dimensional Laplacian is well known. It is directly
relevant to linear scale-space. Grey-levels are thought of as
particles. A given gray level at a point(x, y) on the plane is
interpreted as the number of particles at this point, or al-
ternatively the probability to find a particle at this point.
The particles perform Brownian motion on the plane and
the new distribution as a function of time, or the probability
to find a particle in a point, obeys the linear heat equation.

We generalize this relation and think about the non-linear
diffusion processes which are applied in image processing
as result of an underlying Brownian motion on a Rieman-
nian surface (or higher dimensional manifold for higher di-
mensional data). In this way we rediscover the Beltrami
flow which was advocated recently [5, 7, 2, 8]. It is further
generalized by the choice of more general stochastic pro-
cess and in particular by choosing a different drift term. An-
other benefit from this approach is the ability to construct a

short-time kernel for the non-linear diffusion equation. This
enables us to relate the geometric PDEs and the non-linear
filtering approach.

The methods we describe here are well known in the
mathematical literature (see [1] and references therein) and
in physics. We follow here J. Zinn-Justin [10] where the
subject goes under the name of stochastic quantization. We
bring it here in great detail with the belief that this point of
view and the techniques introduced may lead to new, inter-
esting and useful ways of image understanding and analysis.

2. The Differential Geometric framework

The Beltrami framework of image presentation and anal-
ysis is based on geometric ideas adopted from general rela-
tivity and high energy physics. The essence of the method
can be summarized as follows:

• An image is considered to be a Riemannian manifold
embedded in a higher dimensional Riemannian man-
ifold which is called the spatial-feature manifold. A
two-dimensional image is according to this viewpoint
a Riemannian surface. We introduce on the nonlin-
ear surface a local coordinate system(σ1, σ2). The
embedding of this surface in, for example, a three-
dimensional space with coordinates(X1, X2, X3), is
realized by specifying, for each point of the surface,
the three-dimensional coordinates, namely:

(X1(σ1, σ2), X2(σ1, σ2), X3(σ1, σ2)).

Grey-level image, for example, is represented from
this view point as the map

(Xi(σ1, σ2) = σi, X3(σ1, σ2) = I(σ1, σ2))

wherei = 1, 2.

Let M denote the higher dimensional spatial-feature
manifold. We introduce, in general, a one-parameter



family of embedded images(Xi(σ1, σ2; t))dim M
i=1 ,

wheret is the independent variable of the evolution,
called the scale or “time”. This parameter determines
the degree of blurring or denoising of the image.

• From a geometrical viewpoint this family of embed-
ded images describes a flow of a two-dimensional sur-
face within a higher dimensional space. The dynamics
of the surface flow is governed by a nonlinear heat-
type partial differential equation applied to this one-
parameter family of images. The equation is derived as
a gradient descent of a functional that weight embed-
ding maps in a geometric way. It gives a precise con-
trol on the direction and amount of diffusion at each
point of the image surface. This is to be compared
with linear scale-space that diffuses “blindly” or the
Perona-Malik equation that has a local control on the
amount of diffusion but not on its direction.

We turn now to a rigorous treatment of these ideas and
present the technical tools implemented in the sequel. A
precise definition of a manifold and its geometry are incor-
porated. Next a measure on the space of embedding maps is
introduced. The measure, or the energy functional, depends
on the geometry of the spaces involved and is independent
of the coordinate system selected to describe these mani-
folds.

2.1. The Induced Metric

Let X : Σ → M be an embedding of(Σ, (gµν)) in
(M, (hij)), whereΣ andM are Riemannian manifolds and
(gµν) and(hij) are their metrics respectively. We can use
the knowledge of the metric onM and the mapX to con-
struct the metric onΣ. This procedure, denoted formally
by (gµν)Σ = X∗(hij)M and called thepullback, is given
explicitly as follows:

gµν(σ1, σ2) = hij(X)∂µXi∂νXj , (1)

where i, j = 1, ...,dimM are being summed over, us-
ing the Einstein summation convention, and∂µXi ≡
∂Xi(σ1, σ2)/∂σµ.

For the grey-level image the induced metric is(
1 + I2

x IxIy

IxIy 1 + I2
y

)
(2)

2.2. The Measure On Maps

The diffusion equation to be used is derived as a gradi-
ent descent of an action functional. The functional in ques-
tion depends onboth the image manifold and the embed-
ding space. Denote by(Σ, (gµν)) the image manifold and
its metric, and by(M, (hij)) the spatial-feature manifold

and its metric. Then, the mappingX : Σ → M is assigned,
by the Polyakov action [4], the following real number:

S[Xi, gµν , hij ] =
∫

dmσ
√

ggµν∂µXi∂νXjhij(X), (3)

wherem is the dimension ofΣ, g is the determinant of the
image metric andgµν is the inverse of the image metric.
The range of indices isµ, ν = 1, . . . ,dim Σ, and i, j =
1, . . . ,dim M . The metric of the embedding space ishij .

Note that the volume element as well as the rest of the
expression is invariant under reparameterization, that is,
σµ → σ̃µ(σ1, σ2). The Polyakov action depends, actually,
on the geometry and not on the way we describe the objects
via our parameterization of the coordinates. In other words
the resultant value of the functional does not depend on the
choice of local coordinates.

2.3. The Gradient Descent Flow

Given the above functional, we have to choose the min-
imization criterion. We may choose, for example, to mini-
mize the functional only with respect to the embedding. In
this case the metricgµν is treated as a set of parameters that
can be selected with reference to the application. Another
choice is to minimize only with respect to the feature co-
ordinates of the embedding space, or one may choose to
minimize the image metric as well. Each of these choices
yields a different flow. Some flows are, in fact, identical to
existing methods like the heat flow, the Perona-Malik flow,
or the mean-curvature flow.

Another important point is the choice of the embedding
space and its geometry. In general, we need information
about the task at hand in order to fix the right geometry [8].

Using standard methods in calculus of variations the
Euler-Lagrange (EL) equations, with respect to the embed-
ding, are (see [7] for derivation):

− 1
2
√

g
hil δS

δX l
=

1
√

g
∂µ(

√
ggµν∂νXi)+Γi

jk∂µXj∂νXkgµν ,

(4)
whereΓi

jk are the Levi-Civita connection coefficients, with
respect to the spatial-feature metrichij defined as

Γi
jk =

1
2

hil(∂jhlk + ∂khjl − ∂lhjk). (5)

The second term in Eq. (4) is due to the non-linear geometry
of the embedding space.

We view the scale-space as a gradient descent:

Xi
t ≡

∂Xi

∂t
= − 1

2
√

g
hil δS

δX l
. (6)



A few remarks are in order. First, note that we took the
freedom to multiply the EL equations by a strictly positive
function and a positive definite matrix.

This factor is the simplest one that does not change the
minimization solution, while giving a reparameterization
invariant expression. This choice guarantees geometric flow
and does not depend on the parameterization. The operator
acting onXi in the first term of Eq. (4) is the natural gen-
eralization of the Laplacian from flat spaces to manifolds,
called the Laplace-Beltrami operator, or in shortBeltrami
operator, denoted by∆g. When the embedding is in a Eu-
clidean space with a Cartesian coordinate system, the con-
nection elements are zero. If the embedding space is not
Euclidean, we have to include the Levi-Civita connection
term since it is not identically zero any more.

3. Stochastic process on Riemannian manifold

3.1 Linear scale-space

We show in this subsection that the diffusion equation
(6) that results from the gradient descent minimization of
the Polyakov action Eq. (3) can be derived and interpreted
in the framework of stochastic calculus. This new interpre-
tation enables us to generalize and propose other flows. It
is also possible in this new viewpoint to derive a short time
kernel that gives us a link between PDEs based denoising
and non-linear filtering techniques.

we opt in this subsection to give motivation and intuition
and to refer the reader to the appendices and to textbooks
for the mathematical details.

Imagen we have a particle at the origin at timet = 0.
This particle start to move randomly performing what is
called Brownian motion. Its dynamics is fixed by the equa-
tion

∂~q(t)
∂t

= ~ν(t)

where~q(t) are the coordinates of the particle at timet and
~ν(t) is a random variable drown at any timet from a multi-
dimensional normal distribution:

dρ(ν(t)) =
dν(t)√
2πΩ

exp
(
−||ν||

2

2Ω

)
These equations mean that our particle has at each time a
bigger chance to stay where it is or move a little. It has a
small probability to have a large change in its place. It is
no surprise, thus, that the probability of finding the particle
at point~q = ~σ at timet is the normal distribution. We also
expect that the probability to find the particle far from the
origin increases with time. Given that the particle starts at
the origin at timet = 0, i.e. p(q, t = 0) = δ(q), The

probability distribution is found to be a Gaussian

1√
2πt

exp
(
−||~q||

2

2t

)
whose variance increases with time.

This Gaussian is the Kernel (or Green function) of the
PDE

Pt = ∆P

that governs the time evolution ofP (q, t) with the initial
conditionP (q, t = 0) = P0(q).

Under the identificationI(q, t) = P (q, t) this is ex-
actly the linear scale-space theory for images[witkin, Koen-
derink]. This identification gives the image a probabilistic
interpretation. We can think about the (normalized) gray-
level as the probability to find a random particle given an
initial probability distribution at timet = 0.

3.2 Random walk on a manifold

In section 2 we reviewed the Beltrami framework that
put forward the idea that the non-linearity in various PDE
approaches to low and middle level vision can be under-
stood as the affect of the low level vision objects being Rie-
mannian manifolds. The non-linearity is encoded in this
approach in the Riemannian structure i.e. the metric.

we follow the same logic here and derive a non-linear
diffusion for the probability distribution by generalizing the
random walk process in a geometric way. We introduce a
random walk on a Riemannian manifold. The probability
distribution obeys the Beltrami flow.

In order to be more explicit we introduce the vielbiens.
The vielbiens are the matrices that rotate the basis vectors
from the cartesian coordinates in the parametric space to the
coordinate basis of the tangent space of the manifold. Letx̂i

be a unit vector in the cartesiani direction and̂σµ the unit
tangent vector which is tangent to theµ coordinate curve on
the manifold then

x̂i = ei
µσ̂µ (7)

Clearly the vielbiens rotate the unit matrics to the mani-
fold’s metric:

gµν = ei
µδije

i
ν ; gµν = eµ

iδ
ijeν

i ; δµ
λ = δj

i e
µ
je

i
λ

(8)
wheregµν is the inverse of the metric:

gµνgνλ = δµ
λ , (9)

alsoei
µ is the inverse vielbien and summation over repeated

indices is assumed.
There is a family of solutions for the gray level induced

metric Eq. (2). One simple choice is:

(ei
µ) =

1√
1 + I2

x

(
1 + I2

x IxIy

0
√

1 + I2
x + I2

y

)
.



Suppose that we are given that the coordinatesqµ on Σ
satisfy the Langevin equation:

q̇µ(t) =
1
2

eµ
i∇ρe

ρ
i(q) + eµ

i(q)νi (10)

whereqµ = qµ(t) and q̇µ(t) = ∂
∂tq

µ(t). Note that we
use below the It̂o calculus. In the case of the Stratanovich
calculus the Langevin equation has no drift term i.e.

q̇µ(t) = eµ
i(q)νi.

Definition 1 The probability distributionP (~σ, t) is defined
as

P (~σ, t) = 〈
∏
µ

δ(qµ(t)− σµ)〉

σµ are time independent coordinates on the manifoldΣ.

The meaning ofP is the probability for finding the particle,
which satisfies the stocahstic Langevin equation, at pointσ
at timet. If, thus, our particle is located at the origin at time
t = 0 it is clear that the probability to find him very far from
the origin after a very short time is zero. In fact the highest
probability is to find him at the origin and the probability
drops as we go further from the origin.

We are interested in the evolution in time of this proba-
bility distribution given an initial probability distrobution at
time t = 0.

The time evolution of the probability distribution is given
by:

Theorem 1

Ṗ (~σ, t) =
1
2

∂ν

(
√

ggνµ∂µ

(
1
√

g
P

))
. (11)

whereṖ (~σ, t) = ∂P (~σ, t)/∂t.
We interpret the gray level intensity as a probability dis-

tribution up to a multiplicative factor. Define:

I(~σ, t) =
1√
g(~σ)

P (~σ, t) (12)

then

It(~σ, t) =
1

2
√

g
∂µ(

√
ggµν∂νI). (13)

Polyakov action.
We can use a more general Langevin equation with a

genuine drift term (the drift term that we have in the above
computation is a compensation term needed in order to
work with the It̂o calculus instead of the Stratanovich cal-
culus). The Langevin equation, in this case, is

q̇µ(t) = −1
2

Aµ(q(t)) +
1
2

eµ
i∇ρe

µ
i(q) + eρ

i(q)νi. (14)

The computation of the Fokker-Planck equation is similar
to the one we detailed above and the result is

It(~σ, t) =
1

2
√

g
∂µ

(√
g(gµν∂νI + AµI)

)
. (15)

The effect of this term on the image smoothing process is
under study both from a theoretical and a practical point of
views [?]. We notice that it gives an effective connection on
the manifold which is different from the Levi-Civita one.

One should be aware that the differential operator de-
pends itself on the intensityI, which makes the the operator
non-linear. This means that our analysis holds for short time
interval under the assumption the metric changes smoothly
and in a controlled way. This non-linearity prevents the ex-
istence of a global (in time) kernel. A kernel for a short time
evolution is possible to obtain. A first approximation of this
kernel is derived in the next section.

4. The Short Time Kernel

We discretize the timet − t0 = nε and the Langevin
equation is:

qµ(t + ε) = qµ(t) +
1
2

eµ
i∇νeν

i(q) + eµ
i(q)νi . (16)

The measure on the noiseν is

dρ(ν) =
dν√
2πεΩ

exp
(
− ν2

2εΩ

)
.

From the definition:

P (q, t) =

〈∏
µ

δ(qµ(t)− qµ)

〉

it follows that

P (q, t + ε) =

〈∏
µ

δ
(
qµ(t + ε)− qµ

)〉
.

Using Eq. 16, the following property of the Dirac delta
function ∏

µ

δ(eµ
iA

i) =
1

det(eµ
i)

∏
i

δ(Ai),

and the fact that(det(eµ
i)) = 1/

√
g we obtain by averaging

once more (see details in the Apprndix):

P (q, t + ε) = 〈P (q, t + ε)〉 =
∫

dDq
√

gH(σ, q)P (q, t)

where

H(σ, q) =
1

(2πεΩ)
D
2

exp(− 1
2εΩ

gµνQµQν). (17)



Here

Qµ = σµ − qµ +
1
2

eµ
i∇λeλ

i. (18)

The final result reads

P (~σ, t + ε) =
∫

dDσ
√

g

(2πεΩ)
D
2

exp(− 1
2εΩ

gµνQµQν)P (~σ, t)

(19)
The meaning of this expression is clear. Take for example
the case wheregµν = Id i.e. a flat space. In this case
the Laplace-Beltrami is simply the Laplacian and the well
known solution which is a convolution with a Gaussian is
reproduced here by our short time kernel. In the Perona-
Malik equation [3] the spatial metric is locally proportional
to the identity, where the proportionality depends on the ab-
solute value of the gradient at the point. The short time ker-
nel means in this case that there is a local decision on the
radius of diffusion. Technically the variance of the Gaus-
sian depends locally on|∇P | and is equal for the two local
coordinates. For the Beltrami flow with the induced met-
ric the Gaussian is not symmetric and the diffusion is not
symmetric in the two directions. We can think of it as if
the diffusion is done according to ellipses whose direction ,
size and eccentricity is decided locally according to the par-
tial derivatives. It is reasonable to expect, from this point
of view, that the Beltrami flow performs a better adaptive
smoothing processing.

The analysis presented in this section gives an approx-
imation to the full short time kernel. The exact kernel for
the 1D case is derived in [6]. The derivation of the 2D exact
short time kernel is beyond the scope of this paper and will
be presented elsewhere.

Yet another representation to the solution of the Fokker-
Planck equation exists. The Feynman-Kac Path integral so-
lution. The Probability distribution is given in this case as

P (~q′′, t) =
∫ q(t′′)=q′′

q(t′)=q′

∏
t

(
dq(t)

√
g(q(t))

)
exp(−S(q))

(20)
where

S(q) =
1
2

∫ t′′

t′
dt
[
q̇µgµν q̇ν − eλ

µ(∂µeρ
λ)q̇ρ

]
. (21)

A more general process that involves a drift term can be
analyzed. The exact form can be find in [?]. These expres-
sion are not practical from a computational point of view but
they are valuable in that they open the way to a refined anal-
ysis of correlations on the image by the method of Feynman
diagrams.

5. summary and conclusions

We derive the Beltrami flow from a stochastic point of
view. Given a Brownian motion (a Langevin equation) on

the image manifold we can calculate the equation that gov-
erns the time evolution of the probability distribution of
finding a “particle” that obeys the Langevin equation at a
specific point on the manifold after timet. This equation is
the Fokker-Planck equation associated with the given Brow-
nian motion on the image manifold. Interpreting the gray-
level intensity as proportional to the probability distribution
we obtain the Beltrami flow.

The importance of this new point of view is in the ability
in one hand to generalize in a systematic way by introducing
drift term and on the other to derive a short time kernel to
this highly non-linear equation. Note that the non-linearity
enters the diffusion equation through the dependence of the
metric on the intensity. The non-linear diffusion in its ex-
plicit form is therefore, strictly speaking, not derivable as a
Fokker-Planck equation. The analysis presented in this pa-
per gives an approximation to the full short time kernel. The
exact kernel for the 1D case is derived in [6]. The derivation
of the 2D exact short time kernel is beyond the scope of this
paper and will be presented elsewhere.

The stochastic viewpoint enables us also to envisage new
and exiting possibilities: Can we relate the stochastic nature
of the of image formation process to the stochastic process
which underlie the image manifold evolution? Can we have
an efficient tool to study correlation between different parts
of the image, or between different images of the same scene,
using the path integral to compute Feynman diagrams?

These directions of research may lead to new under-
standing and new techniques in image processing and anal-
ysis.

Appendix

The noiseνi(t) satisfies

〈νi(t)〉 = 0 (22)

〈νi(t)νj(t)〉ε = Kij(t, t′) = δijηε(t− t′) (23)

whereηε(t) is an even function which peaked aroundt = 0
and normalized according to

∫∞
−∞ η(t)dt = 1. In the limit

ε → 0 the functionηε approaches the Dirac delta “func-
tion”. the angle brackets denotes average with respect to
the noise. The measure on the noise is given by

dρ(ν) =
dν√
2πΩ

exp
(
− 1

2Ω

∫
dtdt′νi(t)(K−1)ij(t, t′)νj(t′)

)
,

and the average for any function ofν is

〈F (ν)〉ε =
∫

dρ(ν)F (ν).

and we denote by a bracket with no subscript the limit of
ε → 0:

〈F (ν)〉 = lim
ε→0

〈F (ν)〉ε



Discretized Langevin equation:We discretize the timet−
t0 = nε and the Langevin equation is:

qµ(t + ε) = qµ(t) +
1
2

eµ
i∇νeν

i(q) + eµ
i(q)νi .

The measure on the noiseν is

dρ(ν) =
dν√
2πεΩ

exp
(
− ν2

2εΩ

)
.

From the definition:

P (q, t) =

〈∏
µ

δ(qµ(t)− qµ)

〉

and therefore

P (q, t + ε) =

〈∏
µ

δ
(
qµ(t + ε)− qµ

)〉

=
∫

dDν

(2πεΩ)
D
2

exp(− ν2

2εΩ
)

×
∏
µ

δ(qµ(t) +
1
2

eµ
i∇νeν

i + eµ
iνi − qµ)

=
∫

dDνdDσ

(2πεΩ)
D
2

∏
µ

δ(qµ(t)− σµ)
∫

dDν exp(− ν2

2εΩ )

(2πεΩ)
D
2

×
∏
µ

δ
(
eµ

i

(
ei

ν(σν +
1
2

eν
j∇λeλ

j − qν) + νi

))
Averaging once more we obtain

P (q, t + ε) = 〈P (q, t + ε)〉

=
∫

dDνdDσ

(2πεΩ)
D
2

P (σ, t) exp(− ν2

2εΩ
)

×
∏
µ

δ
(
eµ

i

(
ei

ν(σν +
1
2

eν
j∇λeλ

j − qν) + νi

))
=
∫

dDνdDσ

(2πεΩ)
D
2

P (σ, t)
(det(eµ

i))
exp(− ν2

2εΩ
)

×
∏

i

δ
(
ei

ν(σν +
1
2

eν
j∇λeλ

j − qν) + νi

)
=
∫

dDσ
√

gH(q, σ)P (σ, t)

where we used the following property of the Dirac delta
function ∏

µ

δ(eµ
iA

i) =
1

det(eµ
i)

∏
i

δ(Ai),

the fact that(det(eµ
i)) = 1/

√
g and we define

H(σ, q) =
1

(2πεΩ)
D
2

exp(− 1
2εΩ

gµνdµdν) (24)

where

Qµ = σµ − qµ +
1
2

eµ
i∇λeλ

i. (25)

The final result reads

P (~σ, t+ε) =
∫

dDσ

(2πεΩ)
D
2

√
g exp(− 1

2εΩ
gµνQµQν)P (~σ, t)

(26)
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