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1. Introduction

1.1. Image segmentation—the problem

For a long time now the vision problems have been subdivided into
three classes: low-, intermediate- and high-level, each concerned with
it’s own level of image description. On the low level we seek description
in terms of edges, ridges, specularities, fragments of lines or circles; on
the intermediate level—in terms of objects, their geometry, background,
occlusions, etc; on the high level we expect to recognize the objects
and give a full three-dimensional scene description. Typical problems
on each level are edge detection, segmentation, and object recognition,
respectively. This subdivision probably stems from David Marr’s model
of vision [53].

The vision process, especially at the lower levels, is usually con-
sidered to be bottom-up. The importance of top-down feedbacks both
within the same level and between levels is recognized sometimes, but
is usually neglected in practice. Nevertheless, a thoughtful look at a few
pictures readily convinces that in many cases edge detection, segmen-
tation, three-dimensional reconstruction and image understanding are
impossible without each other. Neuroanatomical [43] and psychophys-
ical [48] evidence suggests that in primates these processes influence
each other, and take place simultaneously or at least overlap in time.

A “neighbor” field of image processing poses other problems: image
enhancement, restoration, compression—that may seem different and
even unrelated. However in reality, when we have to deal with noisy,
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blurred, distorted images, some restoration and enhancement are nec-
essary before we can extract information from the image even at the
low level. And vice versa: information obtained from vision algorithms
(edges, segmentation) can help enormously to achieve good restoration
and compression.

All this suggests that a segmentation or edge detection algorithm
that incorporates as much of vision levels as possible and attempts res-
toration concurrently with segmentation should be worthwhile. Sadly,
object recognition or full 3-dimensional description from a single image
are very difficult without some a priori knowledge. So, we are left with
edge detection, segmentation, and restoration. Variational formulation
provides a framework that can integrate these problems and suggest
algorithms for their solution.

1.2. Is it worth it?

The vast amount of existing algorithms for edge detection and segmen-
tation compels to provide some justification, in addition to the general
ideas above, before embarking upon developing yet another algorithm.
Here we demonstrate how the most basic version of the Mumford-Shah
functional (that will be the main theme of this work) can be used to
improve drastically the performance of the Sobel edge detector.

Let us consider a circle (a color image in the range [0, 1]3) and add to
it Gaussian noise with zero mean and standard deviation 0.8 (Fig. 1b).
The gradient magnitude (c) does not show clear maximum at the edge,
and of course the edge detector performance is very poor (d). On the
other hand, if we take the edge function produced by the implementa-
tion of the Mumford-Shah functional described in Section 4.1 (e), we
see a clear edge, and the same edge detector performs very well (f).

1.3. This work

This work is an attempt to provide a general variational framework
for color (or general vectorial) images, generalizing the Mumford-Shah
functional. We also give a review of the variational methods of segmen-
tation and edge detection. The initial intent was to provide a theoretical
background for the model proposed and implemented in [45]. These
plans, however, changed due to the need to find the right balance of
model plausibility, quality of numerical results and theoretical validity.

One important issue is absent from this work, in spite of it being
closely related to the theme and often leading to similar formulations
and results. We do not consider at all the Markov Random Fields point
of view on the segmentation problem. It should be noted that a great
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Figure 1. The noisy circle experiment.

deal of research was done in this field, and there are some promising
results (see, e.g., [51]).

Another omission that we have to mention is the functionals de-
pending on the second-order derivatives, as the weak plate model of
[12]. These functionals were recently studied in [3], where elliptic ap-
proximations are provided and implemented numerically.

This work is organized as follows: in Section 2 we review the relevant
work on variational segmentation and color edge detection. Section 3
offers a summary of the theory of the Mumford-Shah functional and of
numerical minimization methods devised for this functional. We pro-
pose some generalizations of the Mumford-Shah functional in Section 4,
discuss them and show some numerical results. Our conclusions and
some directions for further research are presented in Section 5.

A few words on the notation. When a sentence defines a new term,
this term is shown slanted. The norm | · | is the usual Euclidean norm of
any object: a number, a vector, or a matrix. In particular, for a function
u : Rn → Rm we put |∇u| = (∑

( ∂ui

∂xj
)2

)1/2 (also called Hilbert-Schmidt
or Frobenius norm of the ∇u matrix). Ln is the Lebesgue measure on
Rn.
Hn−1 is the (n− 1)-dimensional Hausdorff measure, which is a gen-

eralization of the area of a submanifold. For any A ⊂ Rn we take a
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covering {Sj} of A (that is, A ⊂ ∪Sj); the diameter of the covering is
defined to be λ({Sj}) = supj diamSj . Then

Hm(A) = lim
δ→0

inf
λ({Sj})<δ

∑

j

ωm

(
diamSj

2

)m

,

where ωm is the (Lebesgue) volume of a unit ball in Rm.

2. Image segmentation—a biased review

2.1. Variational segmentation

We consider images as functions from a domain in R2 into some set,
that will be called the feature space. When needed, we suppose that
the domain is [0, 1]2. Some examples of feature spaces are

− an interval, e.g. [0, 255] or [0,∞), for gray-level images;

− a subset of R3, e.g. [0, 1]3 or S1 × [0, 1]2, for color images in RGB
or HSV;

− R2 or S1 × R+ for a movement field.

2.1.1. Regularization
Regularization is among the well-established techniques of image res-
toration. A standard model of image acquisition is given by

g = Lf + e. (1)

Here

− L is a linear operator representing the influence of the optical sys-
tem, usually a Hilbert-Schmidt operator Lf(x) =

∫
K(x, y)f(y)dy.1

The effect of L is a blur; when it is space-independent we have
K(x, y) = K̄(x− y), meaning L is a convolution.

− e is an additive noise introduced by the recording system, which is
usually assumed to be random, sometimes with known mean value
and variance σ2.

In order to restore the image we have to solve Eq. (1) for f , which
is usually an ill-posed problem; the main reason for the ill-posedness

1 This assumption makes (1) a Fredholm integral equation of the first kind.
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is that L is compact, and so L−1 is unbounded even when it exists.
Another problem is that e is unknown.

We expect from (1) that ‖Lf − g‖2 ≈ σ2. To compensate for the
loss of information in (1) we must use our a priori knowledge about
the image, usually in the form of a smoothness assumption. That is,
we assume that

∫ |∇f |2, or
∫ ‖Df‖2 (for some differential operator D)

is small. So, we arrive at the problem

min
f

∫
‖Df‖2 subject to ‖Lf − g‖2 = σ2.

Using Lagrange multipliers, we arrive at an equivalent problem of

min
f

(
‖Lf − g‖2 + α

∫
‖Df‖2

)
.

The mathematical framework for this kind of argument was provided
by Tikhonov in 1963 (see [8]). Consider an operator L : F → G on
Hilbert spaces, and a closed convex subset E ⊂ F representing a priori
constraints. Given Lh and gδ such that ‖L−Lh‖ 6 h and ‖g−gδ‖ 6 δ,
the problem is to construct an approximate solution of Lf = g, f ∈ E.
Tikhonov proposed to do it by minimizing the functional ‖Lhf−gδ‖2

G+
α‖f‖2

F , where α > 0 is a parameter (to be chosen separately). This
problem is well-posed. Applying this to our problem, we might set F =
W 1,2, G = L2, δ = σ and α can be chosen to ensure ‖Lf − gδ‖2

G = δ2.
Frequently in applications Lh = I, thus the functional becomes ‖f−

gδ‖2
G + α‖f‖2

F , in our case
∫
((f − g)2 + α|∇f |2).

2.1.2. Total variation methods
The presence of the term ‖f‖2

F = |∇f |2 in Tikhonov regularization
often leads to smoothing and blurring of the edges; the Dirichlet func-
tional

∫ |∇f |2 “prefers” smooth gradients and “punishes” steep edges
(e.g. the characteristic function of a unit ball in Rn is not in W 1,2(Rn)).
However, most images contain steep edges, which provide very im-
portant perceptional clues, and we would like to recover these steep
edges during the reconstruction. The problem is that these edges are
represented by discontinuities in the corresponding functions.

A solution was proposed in [60, 63], based on shock capturing nu-
merical methods from fluid mechanics, and suggesting to minimize∫
((f − g)2 + α|∇f |); the term

∫ |∇f | is called total variation of f .2

This functional allows discontinuities in the object function, and is

2 This is only one of the many possible generalizations of total variation to the
functions of several variables. It is sometimes referred to as total variation in the
Tonelli’s sense.
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Figure 2. An example of total variation restoration. Note the good restoration of
sharp edges and appearance of staircasing.

usually minimized over the space of functions of bounded variation (to
be defined later). Total variation methods were extensively studied dur-
ing the last ten years, both theoretically and practically; in particular,
well-posedness is shown in [22]. An extensive bibliography can be found
in [78, ch. 1.7].

The main drawbacks of the total variation reconstruction are

1. The integrand |∇f | is not differentiable. The standard method to
overcome this is to replace it with

√|∇f |2 + β, where β > 0 is a
small parameter. Even then the resulting Euler-Lagrange equation
is nonlinear and demands sophisticated numerical methods.

2. Although allowing discontinuities in the object function, total varia-
tion functional still “punishes” each discontinuity, proportionally to
the height of the jump. An ideal image restoration functional should
not punish large jumps (probable edges), definitely not more than
small ones (probable noise). In this respect, total variation exhibits
behavior which is opposite to our expectations.

3. Very strong “straicasing” effect on noisy images which are far from
being piecewise constant. To overcome this, we can use total vari-
ation restoration near edges and W 1,1 restoration in the smooth
regions; two different methods based on this idea were suggested
and implemented in [22] and [14].

2.1.3. Mumford-Shah functional
In [57] Mumford and Shah suggested segmenting an image by mini-
mizing a functional of the form

∫
Ω\K(|∇f |2 +α|f − g|2)+β length(K),
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where K is the union of edges in the image. This choice is suggested by
modeling images as piecewise smooth functions. The image is supposed
to consist of a number of regions with slow and smooth changes within
each region. Across the boundaries between these regions the changes
may be abrupt. Of course, we must also suppose that these boundaries
are “nice” (a union of smooth curves of small length, for example).

The functional consists of three terms:

− the smoothing term
∫
Ω\K |∇f |2, which should be small, if f is

changing slowly within regions;

− the fidelity term
∫
Ω\K |f−g|2, that controls how close the smoothed

image should be to the input;

− the length of the edges length(K), that must be kept small to
prevent the edges from filling up the whole image.

A justification of this model from the statistical point of view is
given in [56]. Morel and Solimini in their book [55] show that many
other segmentation models are particular cases of the Mumford-Shah
functional or are closely related to it.

The minimization of the Mumford-Shah functional poses a difficult
problem, both theoretical and numerical, because it contains both area
and length terms and is minimized with respect to two variables: a
function f : Ω → R and a set K ⊂ Ω. This kind of functionals
was introduced in [33]. In [32] De Giorgi introduced the name “free
discontinuity problems”, referring to his idea of representing K as the
set of jump points of f .

2.2. Color image segmentation

There are numerous sources of vectorial images, i.e., those with feature
space of dimension higher than one. The most obvious, widespread
and important are color images. Other examples include multi-modal
medical images, satellite images taken at a set of wavelengths, spectral
imaging and others. Sometimes vectorial images are derived from scalar
images, e.g. decompositions of texture data with respect to some basis
or a collection of image derivatives of some orders. Optical flow is yet
another source of vectorial images.

We will work with the usual color images, for simplicity in the RGB
color space. The easiest way to extend image processing methods onto
color images is the channel-by-channel processing. Unfortunately, it is
frequently inadequate for segmentation purposes. Some edges may be
strong only in one channel and remain undetected. Since any smoothing
unavoidably shifts the edges slightly, edges that are strong in two or
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Figure 3. Channel-by-channel color image restoration. The restoration was per-
formed by a convolution with a Gaussian. Note the appearance of a green stripe,
though there is no green in the original image.

three channels will produce thin stripes of spurious colors (see Figure 3).
Thus, some coupling between the channels is needed.

The usual mean of providing coupling is by defining a suitable edge
indicator function e, that is supposed to be small in the smooth parts
of the image and large in the vicinity of an edge. A typical example is
e(x) = |∇f(x)|2, and the integral

∫
e usually constitutes the smoothing

term.

2.2.1. Images as manifolds
One of the promising frameworks to derive and justify edge indicators is
to consider images as embedded manifolds and to look at the induced
metric for qualitative measurements of image smoothness. This idea
first appeared in [36]. In this article images are considered as functions
f : R2 → Rm, thus defining a two-dimensional manifold in Rm with
induced metric gij =

〈
∂f
∂xi

, ∂f
∂xj

〉
(under the assumption that rank ∂fi

∂xj
=

2 everywhere). The case m = 1 of a usual grey-level image makes no
sense in this setting, however.

In the work [29] an edge indicator based on g is proposed and im-
plemented: edges are where the greater eigenvalue of g has a maximum
in the direction of the corresponding eigenvector. Also, noticing the
problem when m = 1, the author suggests representing an image as
a surface embedded in Rm+2 given by (x1, x2, f1, . . . , fm) as a “more
consistent geometric interpretation”.

This interpretation was formulated in the most general way and
implemented in [72]. The n-dimensional m-valued image is considered
as an n-dimensional manifold in (Rn+m, h) given by

(x1, . . . , xn, f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

and
√

det g, where g is the metric on the manifold induced by the
metric h from Rn+m, is taken to be the edge indicator function. The
integral

∫ √
det g gives the n-dimensional volume of the manifold, and
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Figure 4. Examples of Beltrami flow restoration.

its minimization brings on a kind of non-isotropic diffusion, which the
authors called the Beltrami flow. A similar flow was also independently
suggested in [80].

As pointed out in [72, 80, 73], when implementing such a diffusion,
one must decide what is the relationship between unit lengths along
the xi axes and along the fj axes. It seems that no general principle
exists to help in this decision. The significance of the ratio of the scales
is discussed in detail in [72]. We will denote this coefficient by γ.

The simplest example of this framework is f : R → R. The cor-
responding energy is just the length of the graph (x, f(x)), and its
minimization is by the curvature flow.

In the case of gray-level images this framework was first introduced
in [38]. Here the image is a surface in R3, the edge indicator is the area
element (1 + f2

x + f2
y )1/2, and the flow is closely related to the mean

curvature flow.
In a number of works (e.g. [23, 75, 46]) another problem is consid-

ered, leading to very similar equations. It is the problem of smoothing,
scaling and segmenting an image in a “non-flat” feature space, like a
circle, a sphere or a projective line.

2.2.2. Related work
Segmentation and restoration of vectorial images are not always a
straightforward generalization of grey-level image segmentation, and
different possibilities were offered and explored.

In [49] a texture image is decomposed using Gabor wavelets and rep-
resented as a scalar function f(σ, θ, x, y) depending (besides position)
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on the frequency (σ) and direction (θ) of the wavelet. This function
then serves as the argument for a Mumford-Shah type functional, but
with quadruple integrals. It seems impossible to use this continuous
formulation for cases where the feature space is finite-dimensional (like
in color images) but the computer implementation (which uses 24-
dimensional sampling, 3 frequencies and 8 orientations, of the feature
space) can be used for all cases. An essential point in this paper is
that the right choice of a norm on the feature space is important; the
authors argue convincingly in favor of using L2 and not the L∞.

The representation in [9] is again a Mumford-Shah type functional
used to segment texture, but here the images are vectorial (texture
decomposition using Zernike polynomials). The approximating function
is supposed to be piecewise constant, which eliminates the smoothing
term from the functional. Instead of the length of the discontinuity
set its affine total variation is taken, thus making the segmentation
affine-invariant. The implementation is by region growing.

Mumford-Shah functional is the model in [24], again with piecewise
constant approximation. The coupling between channels is by the com-
mon edge set. Implementation is very different, though, using level sets
to represent the edge.

The work [79] is concerned with diffusion rather than segmentation,
but the framework is very similar. The Hilbert-Schmidt norm of the
Jacobian squared (|∇f |2) is proposed as diffusion coefficient, common
for all channels. Also, a metric on the feature space is introduced:
feature space of normalized image gradient is equipped with the S1

metric.
Color images are regarded as functions Φ : R2 → R3 in [67, 66],

carrying on the ideas from [29]: use the metric induced from the feature
space to extract information on edges. In these works the expression
f(λ+ − λ−), where λ+, λ− are the eigenvalues of the metric, is used as
a diffusion coefficient. CIELAB is used as a metric on the feature space
(color).

Color TV (total variation) method, introduced in [13], proposes the
use of the norm

TVn,m(Φ) =

(
m∑

i=1

[∫

Ω
|∇Φi|

]2
)1/2

as a smoothing term for color image Φ : Ω ⊂ Rn → Rm, which is a
generalization of total variation. This method performs very well for
images with crisp edges, but has strong staircasing effect on smooth
gradients. Besides, any TV method, given a “step” as an input will
reduce its height; generally, we would like the opposite, so that the
edges are enhanced.
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A similar approach is taken in [71]: in a variational formulation for
scalar image segmentation, the smoothing term is replaced by the |∇f |.
The values are transformed to CIELAB.

A more general approach is adopted in [15]. The feature space is
taken to be [0, 1]3 with a Riemannian metric ϕij . A distance d(f(x), g(x))
between the points of the two images is taken to be the geodesic
distance, and the energy is

∫

Ω\K

(
d(f(x), g(x)) +

∑

i,j

ϕij

〈
∇f i,∇f j

〉)
+H1(K).

3. Mumford-Shah functional

3.1. Theory

3.1.1. Weak formulation
Initial formulation in [58] suggested minimizing

E(u,K) =
∫

Ω\K
(|∇u|2 + α|u− w|2) + β length(K)

over u ∈ C1(Ω \ K) and K a finite union of smooth arcs. Mumford
and Shah conjectured that minimizers exists, and that there are three
possible configurations for endpoints and crossings in K:

1. triple points, where three arcs meet at 120◦,

2. boundary points, where a curve meets the boundary perpendicu-
larly,

3. crack tips, where a single arc ends without meeting others.

The core difficulty in proving this conjecture is that the functional is
a sum of an area and a curvilinear integrals, and the curve of integration
is one of the variables.

There is yet another problem, namely that the proposed domain
of u and K is too restrictive and lacks some convenient properties
(compactness, lower semicontinuity of the functionals in question). This
one, however, is ordinary; instead of imposing that K is a finite union
of smooth arcs, we should drop this requirement, and prove later that a
minimizing K must be smooth. This also necessitates replacing length(K)
with something defined on non-smooth sets; the most natural replace-
ment is H1(K), the one-dimensional Hausdorff measure of K.
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The crucial idea in overcoming the difficulties of interaction between
the area and the length terms is to use a weak formulation of the
problem. First, we let K be the set of jump points of u: K = Su. The
functional thus depends on u only. Second, we relax the functional in
L2, that is, we consider

Ē(u) = inf
{
lim inf
k→∞

E(uk, Suk
) : uk → u in L2, uk ∈ C1(Ω \ Suk

),H1(Suk
\ Suk

) = 0
}
.

It turns out (see [7]) that this functional has an integral representation

Ē(u) =
∫

Ω
(|∇u|2 + α|u− w|2) + βH1(Su)

and if Ē(u) is finite then u ∈ SBV, the space of special functions of
bounded variation.

In this weak setting it was shown in [34] that Ē indeed has minimiz-
ers and that at least some of them are regular enough (with K closed
and u ∈ C1(Ω \K)). Actually, it was proven for the more general case
of Ω ⊂ Rn, n > 2, and

F (u) =
∫

Ω
(|∇u|2 + α|u− w|2) + βHn−1(Su).

3.1.2. BV functions
The question arises of the space on which to consider the functional F ,
in particular, how should Su be defined. A class of functions is needed
that is sufficiently regular for ∇u to exist a.e., but if we take too regular
a class (like W 1,1) jump sets will be too small (of zero “length”). If we
take a class too general, the jump set will be irregular, and we need
it to be reasonably similar to a closed subset of finite length. It seems
that the natural habitat for F is the space of functions of bounded
variation. We will now define it and present some of its properties. The
books [5, 39] can be consulted for a full treatment of the subject.

A function u ∈ L1(Ω,Rm) (for an open Ω ⊂ Rn) is of bounded
variation, if

|Du|(Ω) = sup

{
m∑

k=1

∫

Ω
uk div gk | gk ∈ C1

0 (Ω,Rn), ‖gk‖∞ 6 1

}
< +∞.

Here |Du|(Ω) is the (total) variation of u in Ω. This definition agrees
with one in Section 2.1.2 for smooth real functions.

We will say that u0 is an approximate limit of u at x, and write
ap limy→x u(y) = u0, if

lim
ρ→0

ρ−n
∫

Bρ(x)
|u(y)− u0|dy = 0.
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A function of bounded variation has an approximate limit Ln-a.e.
The approximate discontinuity set Su is the set of all points in Ω
where u does not have an approximate limit. The set Su is countably
Hn−1-rectifiable, that is, it is (up to a Hn−1-negligible set) a union
of countably many C1 hypersurfaces. Hence, Hn−1-everywhere we can
define a unit normal νu to Su and traces of u on Su by

u±(x) = ap lim
y→x

±〈y−x,νu(x)〉>0

u(y).

Functions of bounded variation are also Ln-a.e. approximately dif-
ferentiable, that is, for Ln-a.e. x ∈ Ω there is a vector ∇u(x) such
that

ap lim
y→x

|u(y)− u(x)− 〈∇u(x), y − x〉 |
|y − x| = 0.

So, we see that all the elements of F are well defined, and have their
intended meaning.

3.1.3. SBV functions
However, it turns out that BV is too large for our purpose, since it
contains function like the Cantor-Vitali function (Cantor’s ladder), and
every w ∈ L2 can be approximated by such a function that has zero
derivative and is continuous. Thus, infBV F = 0, but this infimum is
never reached.

The following result is classical for functions in BV(R,R): f = fa +
f j + f c, where fa is absolutely continuous, f j consists of a finite or
a countable number of jumps, f c is continuous and d

dxf c(x) = 0 a.e.
(in f c ‘c’ if for Cantor). Sometimes this result is formulated in terms
of measures: by the Radon-Nikodym theorem, Du = Dau + Dsu, with
Dau = ∇uL1 being the absolutely continuous part and Ds the singular
part (with respect to L1). Dsu can be further decomposed into the
part supported on Su (the jump part) and the rest (the Cantor part):
Dsu = Dju + Dcu, and thus Du = Dau + Dju + Dcu.

The latter decomposition generalizes to BV(Rn,Rm). The functions
without the Cantor part in their derivatives are the special functions
of bounded variation and this space is denoted by SBV(Rn,Rm). It is
well suited for the study of functionals of the Mumford-Shah type.

We also note that Dau = ∇uLn (here ∇u is the approximate gradi-
ent) and Dju = (u+ − u−)⊗ νuHn−1|Su .

For technical reasons, we will also need the following spaces: gen-
eralized BV (GBV) and generalized SBV (GSBV). A function u is in
GBV(GSBV) if its truncations min(T, max(T, u)) are in BV(SBV) for
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any T > 0. For the practical applications to images, where all functions
are bounded, these distinctions are irrelevant.

3.1.4. Known theoretical results
Presently, the Mumford-Shah conjecture in its original form stands
unproven, yet there are interesting and meaningful advancements (see
the review [54] and the book [5]). For example, in [15] the conjecture is
proved under the assumption that the number of connected components
of K is bounded. A more general but less complete result appears in
[5]: there exists a closed set Σ ⊂ K, Hn−1(Σ) = 0 such that K \ Σ
is locally C1,ν hypersurface for any ν < 1 (in the case n = 2 also for
ν = 1).

Another result proved in [4], that is important for numerical approx-
imations, is that a minimizer (u,K) of the Mumford-Shah functional
can be approximated by pairs (uε,Kε) where Kε is piecewise-smooth
and uε ∈ C∞(Ω\K), and such that E(u, K) < E(uε,Kε)+ε. A similar
result was proved in [37].

Besides the question of the regularity of minimizers, it has to be
proven that the conjectured configuration are, indeed, minimizers (and
the only ones). Considerable progress was made and is also reviewed in
[5]. In a recent preprint [16] crack tip is shown to be a global minimizer.

An interesting and important limiting case of the Mumford-Shah
functional is the problem

F̄ =
∫

Ω
α|u− w|2 + βHn−1(Su), ∇u = 0 on Ω \ Su (2)

of approximating g by a piecewise-constant function. For this func-
tional, the Mumford-Shah conjecture was proved already in the original
paper [58]; an elementary constructive proof can be found in [55].
Existence of minimizers for any n > 2 was shown in [28].

3.2. Numerical approximation

The main difficulty that hampers attempts to minimize the Mumford-
Shah functional E(u,K) numerically is the necessity to somehow store
the set K, keep track of possible changes of its topology, and calculate
its length. Also, the number of possible discontinuity sets is enormous
even on a small grid.

We can, however, try to find another functional approximating the
Mumford-Shah functional that will also be more amenable to numer-
ical minimization. The framework for this kind of approximation is
Γ-convergence, introduced in [35] (also see the book [31]).
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3.2.1. Γ-convergence
A precursor of Γ-convergence was G-convergence, which was an attempt
to invent a convergence for a certain type of differential equations that
would imply convergence of their solutions. An example by De Giorgi
showed that pointwise convergence was inappropriate for this pur-
pose. Treating the differential equations as Euler-Lagrange equations
of appropriate functionals, we can reformulate the problem as “find
a convergence of functionals that implies convergence of minimizers”.
Γ-convergence has this very nice property.

Consider a metric space (X, d). A sequence of functionals Fi : X →
R+ is said to Γ-converge to F : X → R+ (Γ-limFi = F ) if for any
f ∈ X

1. ∀fi → f : lim inf Fi(fi) > F (f) (lower inequality);

2. ∃fi → f : lim supFi(fi) 6 F (f) (upper inequality, or existence of
recovery sequence).

We can extend this definition to families of functionals depending on a
continuous (real) parameter ε ↓ 0, requiring convergence of Fεi to F (x)
on every sequence εi ↓ 0.

It is important to notice that Γ-limit depends on what kind of
convergence we have on X. Sometimes, to avoid ambiguities, it is
designated as Γ(X)- or Γ(d)-limit.

We can take X = R to construct simple examples of Γ-convergence
[31, 42]. For example (see Figure 5), Γ-limn→∞ sinnx = −1, and Γ-limn→∞ fn =
f , where

fn(x) =





−nx 0 6 x 6 1/n,

nx− 2 1/n 6 x 6 2/n,

0 otherwise,
f(x) =

{
−1 x = 0,

0 otherwise.

Note that in the first case there is no pointwise convergence and in
the second case the pointwise limit of fn is 0. In the first case every
point is a limit point of a sequence of minimizers of sinnx, and indeed,
the limiting function has a minimum at every point. In the second case,
arg min fn = 1/n → 0, and Γ-limit has a minimum at 0 with the correct
value of −1.

Some important properties of Γ-convergence:

− Γ-limit (if exists) is unique and lower semicontinuous. In particular,
if Fi ≡ F is a constant sequence, then Γ-limFi equals the lower
semicontinuous envelope of F .

− If Γ-limFi = F and G : X → R+ is continuous, then Γ-lim(Fi +
G) = F + G.
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Figure 5. Examples of Γ-convergence: (a) sin nx, (b) fn.

− If Γ-lim Fi = F , fi minimizes Fi and fi → f , f minimizes F . More
than that, it is enough to have Fi(fi) 6 inf Fi + εi for some εi ↓ 0.

− Suppose that Γ-limFi = F and that there is a compact set K ⊂
X such that ∀i infX Fi = infK Fi. Then there exists minX F =
limi infX Fi. Moreover, if fi is a minimizer of Fi and fi → f , then
f is a minimizer of F .

3.2.2. The approximations
We come back to the task of approximating the Mumford-Shah func-
tional by a nicer functional. However, we can not approximate F (u)
with functionals of the usual local integral form Fε(u) =

∫
Ω fε(∇u, u)

for u ∈ W 1,1 (see [19, p. 56]). One of the possibilities to overcome this
is to introduce a second auxiliary variable, which was done in [6, 7].
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The approximation proposed in [7] is

Fε(u, v) =
∫

Ω

[
v2|∇u|2 + β

(
(v − 1)2

4ε
+ ε|∇v|2

)
+ α|u− w|2

]
dx.

(3)

The meaning of v in this functional is clear—it approximates 1 −
χSu , being close to 0 when |∇u| is large and 1 otherwise. This func-
tional is elliptic and is relatively easy to minimize numerically, for an
implementation see [61].

A finite-element discretization was proposed in [10], with a proof
that the discretized functionals also Γ-converge to F (u) if the mesh-size
is o(ε). This discretization was improved and implemented in [17].

Other possible approximations of F can be found in [19]. Some
of these approximating functionals are easier to minimize using finite
elements and not finite differences. It should be taken into account,
though, that the geometry of the mesh is important and in general can
introduce anisotropy to the limiting functional [59, 18]. On the other
hand, finite elements implementations with adaptive mesh based on
non-local approximations have less parameters to take care of compared
to finite differences.

A different approach is taken in [77], which represents Su as a curve
using level sets, and the curve evolves together with the image itself to
minimize the Mumford-Shah functional by steepest descent.

The piecewise-constant approximation F̄ , Eq. (2), has also been
a subject of numerical implementations. A region-merging algorithm
was proposed in [47] (also described in [55]); it creates a scale-space-
like pyramidal structure with respect to the parameter β. Another
implementation using level-set methods to represent Su is described
in [25] and then extended in [26]. In these works, however, the number
of different values u can assume must be prescribed a priori.

3.3. Related formulations

In [12] Blake and Zisserman describe models of piecewise-continuous
images. One of these models—the weak membrane—is the Mumford-
Shah functional. The discretization of the functional they suggest is

∑
W (|fi+1,j − fi,j |) + W (|fi,j+1 − fi,j |) + |fi,j − gi,j |2

where W is given by

W = min{µ2x2, ν}, µ, ν parameters.

They also suggest an algorithm (the graduated non-convexity) to min-
imize the discretized functional. In [20, 21] the relationship between
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the Mumford-Shah and Blake-Zisserman formulations is clarified: the
Blake-Zisserman discrete formulation Γ-converges to a functional close
to the Mumford-Shah functional. However, the distinction is important:
in the limiting case of Blake-Zisserman functional the edge length is
replaced by the sum of it’s projections on the axes. Another similar
discrete model, due to Geman and McClure, also Γ-converges to the
same functional [62].

In [68] the functional
∫
Ω(f −g)2 +λ(|∇f |) is proposed, where λ(t) is

quadratic for t < cρ and linear for t > cρ (cρ is a parameter determining
the coarseness and amount of edges to be detected).

The authors of [27] propose a discrete segmentation model, based
upon certain conditions that guarantee that the model is edge-pre-
serving. They then represent this model as the infimum of quadratic
functionals by introducing an auxiliary variable that “plays the role
of a discontinuity marker” (half-quadratic regularization). In a subse-
quent paper [76] they add a smoothing constraint for this variable, thus
arriving at a functional almost identical to Eq. (3).

In [65] the authors propose the functional

Jε =
∫

Ω
|f − g|2 + ελ2

∫

Ω
ϕ(|∇f |) +

η2

ε

∫

Ω
W (f),

where ϕ(|∇f |) is an edge-preserving smoothing term (similar to those
discussed in Section 4.4.2), and W is a multi-well potential, for segmen-
tation of images consisting of patches belonging to a few classes (many
satellite images belong to this category). The number and the charac-
teristics of these classes (mean brightness and standard deviation) are
known beforehand. As in the above two works, the authors introduce
an auxiliary variable based on the half-quadratic regularization, and
arrive at

J∗ε (f, b) =
∫

Ω
|f − g|2 + ελ2

∫

Ω
[b|∇f |+ ψ(b)] +

η2

ε

∫

Ω
W (f),

which they minimize numerically. The authors mention some Γ-conver-
gence results to justify their model, but do not prove the Γ-convergence
of Jε or of J∗ε . In [64] this model is extended to the vectorial case.

A term penalizing for curvature (
∫
K κ2) is added to the Mumford-

Shah functional in [52]. The authors show Γ-convergence and give
numerical examples.

The author of [70] modified the Ambrosio-Tortorelli construction to
be

Gε =
∫

Ω

[
v2|∇u|+ α|u− w|+ β

(
ε|∇v|2 +

(1− v)2

4ε

)]
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and conjectured that it approximates in the sense of Γ-convergence the
functional

∫

Ω\K
(|∇u|+ α|u− w|) dx + β

∫

K

|u+ − u−|
1 + |u+ − u−| dH

1.

This result is proved in [1].

4. Generalizing Mumford-Shah functional to color

4.1. The straightforward generalization

The most obvious way to generalize the Mumford-Shah functional to
color images u : Ω → R3 is to use

F (u) =
∫

Ω
(|∇u|2 + α|u− w|2) + βHn−1(Su). (4)

In this case the only coupling between the channels is through the com-
mon jump set Su. The approximation results from Section 3.2 translate
to this case without change (as noted in [7]) and we can use the elliptic
approximation

Fε(u, v) =
∫

Ω

[
v2|∇u|2 + β

(
(v − 1)2

4ε
+ ε|∇v|2

)
+ α|u− w|2

]
dx,

(5)

to find minimizers of F (u). We minimize Fε by steepest descent,

ut = −Cu[2α(u− w)− div(2v2∇u)]

= −2Cu[α(u− w)− v2∆u− 2v 〈∇v,∇u〉],
vt = −Cv

[
2v|∇u|2 + β

(v − 1
2ε

− 2ε∆v
)]

.

A result of numerical minimization is shown in Figure 6. The original
image is shown in Figure 7.

4.2. The geometrical generalizations

We want to generalize the Mumford-Shah functional
∫

Ω
(|∇u|2 + α|u− w|2) + βHn−1(Su)

to color images, using the “image as a manifold” interpretation, while
the length term Hn−1(Su) remains the same.
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Figure 6. Results of numerical minimization of F , with ε = 0.04, α = 0.6, β = 0.015.

Figure 7. The original image.

The fidelity term that is most consistent with the geometric ap-
proach would be the Hausdorff distance between the two surfaces, or
at least

∫
Ω d(u(x), w(x)), where d(·, ·) is the geodesic distance in the fea-

ture space, as in [15]. Yet, both these approaches seem computationally
intractable. The suggestion of

∫
Ω ‖u − w‖2

h, made in [45], (here hij is
the metric on the feature space, and ‖ · ‖h is the corresponding norm
on the tangent space) is easy to implement, but lacks mathematical
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validity: u − w is not in the tangent space. We will use the simplest
reasonable alternative,

∫
Ω |u− w|2.

The smoothing term is the area
∫
Ω

√
det g or the energy

∫
Ω det g,

where g is the metric induced on the manifold by h—the metric on the
feature space. In the case where

h =




γ 0 0 0 0
0 γ 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




is a Euclidean metric on Ω× [0, 1]3 and

U(x, y) = (x, y, R, G, B) = (x, y, u1(x, y), u2(x, y), u3(x, y))

is the embedding, we get

det g = det(dU∗ ◦ h ◦ dU)
= γ2 + γ

∑

i

|∇ui|2 +
∑

i,j

|∇ui ×∇uj |2

= γ2 + γ(|ux|2 + |uy|2) + |ux × uy|2
= γ2 + γ|∇u|2 + |ux × uy|2.

Thus, we have two models:

F 1(u) =
∫

Ω

√
γ2 + γ|∇u|2 + |ux × uy|2 + α

∫

Ω
|u− w|2 + βHn−1(Su),

F 2(u) =
∫

Ω
(γ|∇u|2 + |ux × uy|2) + α

∫

Ω
|u− w|2 + βHn−1(Su).

Note that γ2 was dropped in the second functional, since in this case
it merely adds a constant to the functional.

However, the theory of functionals on SBV or GSBV seems to be
unable to deal with these models at the moment. It is necessary to es-
tablish lower semicontinuity of the functionals, both to ensure existence
of minimizers, and as an important component in the Γ-convergence
proofs. Though, theorems on lower semicontinuity of functionals on
SBV exist only for isotropic functionals (depending only on |∇u| and
not on ∇u itself), or at least functionals with constant rate of growth,
i.e.

c|∇u|r 6 f(∇u) 6 C(1 + |∇u|)r for some C > c > 0 and r > 1.

The term |ux×uy|2 is of order |∇u|4, yet we can not bound it from below
by c|∇u|4 for some c > 0, therefore we can not use these theorems.

article.tex; 6/01/2002; 10:56; p.21



22

The role of the term |ux × uy|2 is explored in [44]. If we assume the
Lambertian light reflection model, then u(x, y) = 〈n(x, y), l〉 ρ(x, y),
where n(x, y) is the unit normal to the surface, l is the light source
direction, and ρ(x, y) captures the characteristics of the material. As-
suming that for any given object ρ(x, y) = ρ = const we have u(x, y) =
〈n(x, y), l〉 ρ, hence Imu ⊂ span{ρ} and rank du 6 1. This is equivalent
to ux × uy = 0.

Thus, the term |ux × uy|2 in the edge indicator enforces the Lam-
bertian model on every smooth surface patch. It also means that taking
rather small γ makes sense, since we expect |ux × uy|2 to be (almost)
0, and |∇u|2 to be just small.

4.3. The proposed generalizations

A generalization of the Mumford-Shah functional proposed here is an
attempt to combine the nice smoothing-segmenting features of the
geometric model with the existing Γ-convergence results for the elliptic
approximation of the original Mumford-Shah functional. We pay for
that by the loss of some of the geometric intuition behind the manifold
interpretation. First, we replace |ux × uy|2 by |ux × uy| in F 1 and F 2:

G1(u) =
∫

Ω
(γ|∇u|2 + |ux × uy|) + α

∫

Ω
|u− w|2 + βHn−1(Su),

G2(u) =
∫

Ω

√
γ2 + γ|∇u|2 + |ux × uy|+ α

∫

Ω
|u− w|2 + βHn−1(Su).

Note that |ux × uy| enforces the Lambertian model, just as |ux × uy|2.
The new functional G2 seems to violate another important require-

ment, necessary for lower semicontinuity with respect to L1 conver-
gence: being quasiconvex (see the definition and discussion in Sec-
tion 4.3.1). Besides, since the smoothing term is of linear growth,
approximation similar to those in Section 3.2 will converge to a func-
tional with more interaction between the area and the length terms, and
depending on the Cantor part of Du. We thus propose the functional

G3(u) =
∫

Ω

√
γ + |∇u|2 + α

∫

Ω
|u− w|2 + β

∫

Su

|u+ − u−|
1 + |u+ − u−| dH

n−1 + |Dcu|(Ω).

Although lacking the term |ux×uy|, it nevertheless enforces quite strong
coupling between the different channels, definitely stronger than F (u),
Eq. (4) (in F (u) the coupling is only through the common edges, and
in G3 the smoothing term introduces additional coupling).

4.3.1. Analysis and implementation of G1

The elliptic approximation for G1 is provided in [40]. Actually, a much
more general result is proven, but what we need is the following
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Theorem. Let f : Rn×m → [0, +∞) be quasiconvex and satisfy
c1|z|p 6 f(z) 6 c2|z|p with p > 1, c1, c2 positive constants. Let the
functionals Gε(u, v) be defined by

Gε(u, v) =
∫

Ω

[
(|v|2 + ηε)f(∇u) +

εp−1

p
|∇v|p +

(v − 1)p

aεp′

]
dx,

if u, v ∈ W 1,p, 0 6 v 6 1, and Gε(u, v) = +∞ otherwise. Here p′ = p
p−1 ,

a =
(
2

∫ 1
0 (1−s)p−1ds

)p′ , ηε = o(εp−1), ηε > 0. Then Gε(u, v) Γ-converge
to G(u, v) defined by

G(u, v) =
∫

Ω
f(∇u)dx +Hn−1(S(u))

if u ∈ GSBV(Ω,Rm) and v = 1 a.e. and G(u, v) = +∞ otherwise. The
Γ-convergence is with respect to the convergence in measure.

We will now check that all the conditions of the theorem are satisfied.
A function f : Rn×m → [0,+∞) is said to be quasiconvex if for every

a ∈ Rn×m and for every ϕ ∈ W 1,∞
0 (D,Rm) and for every bounded

domain D ⊂ Rn we have

f(A) 6
∫

D
f(A +∇ϕ(x)) dx

/ ∫

D
dx.

This condition is very difficult to verify. We will use another property,
polyconvexity, which is easier to check and which implies quasiconvex-
ity. A function f is called polyconvex if there exists a convex function
g such that

f(A) = g(A, adj2 A, ..., adjmin{m,n}A).

Here adjk A is the matrix of all k×k minors of the matrix A. The book
[30] can be used as a reference on this topic. In our case

f = γ|∇u|2 + |ux × uy| = γ|∇u|2 + | adj2∇u|,
so f is polyconvex and thus quasiconex.

The growth estimate holds with p = p′ = 2 since

γ|∇u|2 6 γ|∇u|2 + |ux × uy| = γ|∇u|2 + |ux||uy|| sin θ|
6 γ|∇u|2 +

| sin θ|
2

|∇u|2 6
(
γ +

1
2

)
|∇u|2.

Thus a = 1, and we have the approximation

Gε(u, v) =
∫

Ω

[
(v2 + ηε)(γ|∇u|2 + |ux × uy|) +

ε

2
|∇v|2 +

(v − 1)2

2ε
+ α|u− w|2

]
dx.
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Figure 8. Minimization of G1 with ε = 0.3, α = 0.05, β = 0.0025, γ = 0.01.

We will neglect ηε = o(ε) (as in [61, 74] and other works). As noted in
[69], the function of ηε is to ensure regularity of minimizers and not the
convergence of the functionals. We will also change slightly the part
that approximates the edges: ε

2 |∇v|2 + (v−1)2

2ε ; we will multiply the first
term by 2 and divide the second by the same factor, to stay closer
to the original approximation (5). We also have to multiply this part
by β. These changes do not affect the Γ-convergence proof, and the
approximation of G1 is

G1
ε(u, v) =

∫

Ω

[
v2(γ|∇u|2 + |ux × uy|) + β

(
ε|∇v|2 +

(v − 1)2

4ε

)
+ α|u− w|2

]
dx.

The steepest descent equations are

ut = −Cu

[
2α(u− w)− div

{
v2

(
2γux +

uy × (ux × uy)
|ux × uy| , 2γuy − ux × (ux × uy)

|ux × uy|
)}]

vt = −Cv

[
2v(γ|∇u|2 + |ux × uy|) + β

(v − 1
2ε

− 2ε∆v
)]

.

Results of a numerical minimization of G1 are shown in Figure 8.

4.3.2. Analysis and implementation of G3

A functional similar to the Mumford-Shah functional, but with linear
growth in the gradient is examined in [1], and it is proved in particular
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that Γ-limGε = G (with respect to L1 convergence), where

Gε(u, v) =
∫

Ω

[
v2f(|∇u|) + β

(
ε|∇v|2 +

(1− v)2

4ε

)]

if u, v ∈ H1(Ω) and 0 6 v 6 1 a.e., and +∞ otherwise,

G(u, v) =
∫

Ω
f(|∇u|) + β

∫

Su

|u+ − u−|
1 + |u+ − u−| dH

1 + |Dcu|(Ω)

if u ∈ GBV(Ω) and v = 1 a.e., and +∞ otherwise,

and f : [0,+∞) → [0, +∞) is convex, increasing, and limz→∞ f(z)/z =
1. With the aim of generalizing this result to color images we define
f(z) =

√
γ + z2,

G3(u) =
∫

Ω

√
γ + |∇u|2 + α

∫

Ω
|u− w|2 + β

∫

Su

|u+ − u−|
1 + |u+ − u−| dH

n−1 + |Dcu|(Ω),

G3
ε(u, v) =

∫

Ω

[
v2

√
γ + |∇u|2 + α|u− w|2 + β

(
ε|∇v|2 +

(1− v)2

4ε

)]
,

with domains as above.
Upon inspection of the proofs in [1], it seems that everything remains

valid for the vectorial case, except one part, that establishes the lower
inequality for the one-dimensional case (n = 1) in a small neighborhood
of a jump point. We will now provide a “replacement” for this part (the
second part of Proposition 4.3 in [1], beginning with Eq. (4.4)). We will
need the Jensen’s inequality in integral form for a function of several
variables (see e.g. [41]): if ϕ : Rm → R is convex, and (u1, . . . , um) :
R→ Rm are integrable, then

ϕ

(
1

b− a

∫ b

a
u1, . . . ,

1
b− a

∫ b

a
um

)
6 1

b− a

∫ b

a
ϕ(u1, . . . , um). (6)

Proof. We consider Gεj (uj , vj , (t − η, t + η)). For any δ > 0 we can
find x1, x2 ∈ (t− η, t + η) such that

lim |uj(x1)− uj(x2)| > ess sup
τ1,τ2∈(t−η,t+η)

|u(τ1)− u(τ2)| − δ,

lim vj(x1) = lim vj(x2) = 1.
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Take x̄j ∈ [x1, x2] such that vj(x̄j) = inf [x1,x2] vj < 1. Then we obtain
the following estimate:

Gεj (uj , vj ,(t− η, t + η)) > Gεj (uj , vj , (x1, x2))

=
∫ x2

x1

v2f(|∇uj |) + β

(
ε|∇vj |2 +

(1− vj)2

4ε

)

> vj(x̄j)2
∫ x2

x1

f(|∇uj |) + β

∫ x2

x1

(
ε|∇vj |2 +

(1− vj)2

4ε

)

> vj(x̄j)2|x2 − x1|f
( |u(x2)− u(x1)|

|x2 − x1|
)

+ β

∫ x2

x1

(1− vj)|v′j | dt

> vj(x̄j)2|x2 − x1| |u(x2)− u(x1)|
|x2 − x1| + β

∫ vj(x1)

vj(x̄j)
(1− s) ds + β

∫ vj(x2)

vj(x̄j)
(1− s) ds

> inf
τ∈[0,1]

{
τ2|u(x2)− u(x1)|+ β

∫ vj(x1)

τ
(1− s) ds + β

∫ vj(x2)

τ
(1− s) ds

}
.

We have used Eq. (6) for the function ϕ(z) = f(|z|) to establish

∫ x2

x1

f(|∇uj |) =
∫ x2

x1

ϕ(∇uj) > |x1 − x2|ϕ



∫ x2
x1

du1

dx

x2 − x1
, . . . ,

∫ x2
x1

dum

dx

x2 − x1




= |x1 − x2|ϕ
(

u1(x2)− u1(x1)
x2 − x1

, . . . ,
um(x2)− um(x1)

x2 − x1

)

= |x1 − x2|f
(

1
|x2−x1| |u(x2)− u(x1)|

)
.

We have also used the inequality µ2 + ν2 > 2µν with µ =
√

ε|∇vj | and
ν = 1−vj

2
√

ε
, and in the next line—the fact that in our case f(z) > z.3

Letting j →∞, we get

lim inf Gεj (uj , vj , (t− η, t + η))

> inf
τ∈[0,1]

{
τ2

∣∣∣ ess sup
τ1,τ2∈(t−η,t+η)

|u(τ1)− u(τ2)| − δ
∣∣∣ + 2β

∫ 1

τ
(1− s) ds

}
.

From here we can proceed as in [1].

Recently, [2] provided a more general result for linear-growth func-
tionals, which also implies our convergence result for G3. The proofs in
[2] are much more technical than in [1].

3 The condition f(z) > z is not necessary to establish this result, but makes
it a bit easier. We could alternatively use limz→∞ f(z)/z = 1, infer that f(z) >
z(1 − θ(z)), limz→∞ θ(z) = 0, and wait until we let η → 0 (and thus x2 → x1) for
θ(z) to disappear.
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Figure 9. Minimization of G3 with ε = 0.3, α = 0.05, β = 0.0025, γ = 0.01.

The steepest descent equations for G3
ε are

ut = −Cu

[
2α(u− w)− div

(
v2(ux, uy)√
γ + |∇u|2

)]
,

vt = −Cv

[
2v

√
γ + |∇u|2 + β

(v − 1
2ε

− 2ε∆v
)]

.

Results of a numerical minimization of G3 are shown in Figure 9.

4.4. General considerations

4.4.1. Details of numerics
All the implementations demonstrated here are very straightforward.
The steepest descent equations are discretized, and Euler method (for-
ward derivative in time) is used with timestep small enough to ensure
stability. Neumann (natural) boundary conditions are used. Typical
running time for the implementations shown here were 1 to 5 minutes
(depending on the functional and the parameters) in Matlab on a
Pentium-500.

The only non-trivial detail is that the terms of the form div(C∇u)
should be discretized with forward derivatives for the gradient and
backwards derivatives for the divergence, or vice versa, to provide tight
numerical support.

Another aspect of the numerics is the selection of ε. Consider the
simplest one-dimensional case

Fε(u, v) =
∫

Ω

[
v2|∇u|2 + β

(
(v − 1)2

4ε
+ ε|∇v|2

)
+ α|u− w|2

]
dx.

On one hand, we want ε to be small to have the best possible approxi-
mation of the original functional; on the other hand, taking ε too small
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Figure 10. The simplest one-dimensional case: a jump.

will give too much weight to the (v−1)2

4ε term, thus preventing edge
detection.

Let us consider a case when w is a “pure jump” from 0 to 1, and α is
high enough to force a jump in u. In this case, we expect the resulting
u and v to be as in Figure 10, u being (almost) equal to w, and v
being not equal to 1 at one point (the situation will be as shown, if all
derivatives are backwards).

Let v̄ be the value of v at the jump point 0 6 v̄ < 1. If we dis-
cretize the functional Fε(u, v) (using backward derivatives) the only
significantly different from zero terms will be

f(v̄) =
v̄2

h2
+ β

[
(1− v̄)2

4ε
+ 2ε

(
1− v̄

h

)2
]

.

The minimal value of f(v̄) is at v̄ = B
A+B , where A = 1/h2 and B =

β
[

1
4ε + 2ε

h2

]
. If we want the jump to be detected, that is, to have v̄ ¿ 1,

we must have B ¿ A. This means that βh2 ¿ ε and εβ ¿ 1 must
hold. These are indeed true for the results shown in Section 4.1 and
Section 4.3.1 (in our implementations we always took h = 1).

4.4.2. On one common theme in image processing
Many modern algorithms for image restoration have one detail in com-
mon. It is introduced by different authors, based on different assump-
tions or observations, and in some cases without noticing that the same
idea has guided other researchers. It is the desire to have a smoothing
term that will be the W 1,1 norm near the edges, and the W 1,2 norm
far from them.
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Many different techniques were employed to achieve this purpose. In
[81] the authors introduce an edge indicator function f(|∇u|) and set

f ′(x) =
√

x2 + b2 −√
(x− a)2 + b2 − b +

√
a2 + b2

2a
.

For small b (the values a = 5, b = 0.01 were used) f(x) is very close to
a quadratic function on [0, a] and to a linear function on [a,+∞).

It is pointed out in [11] that the f(x) is known in statistics as the
Huber’s minimax estimator, designed to be an error measure not too
sensitive to outliers.

A similar function appears in [22], in an approximation to the total
variation. To overcome staircasing (see Section 2.1.2) the same article
also suggests minimizing

1
2ε

∫

|∇u|<ε
|∇u|2 +

∫

|∇u|>ε
|∇u| − ε

2
,

which is actually the same approximation (compare Eq. (16) and Eq. (31)
in [22]), but here ε is taken to be rather large.

The model proposed in [14] is
∫

Ω
|∇u|p(|∇u|),

where p(t) is a smooth monotone function, descending from 2 to 1 as t
grows.

In [68] we see again a smoothing term of the from
∫
Ω λ(|∇f |), where

λ(t) is quadratic for t < cρ and linear for t > cρ. Here cρ is a parameter
determining the coarseness and amount of edges to be detected, and is
to be set by the user.

Finally, we studied in this work edge indicators like
√

γ2 + γ|∇u|2 + |ux × uy|2
(after [72]) and

√
γ + |∇u|2. It is noted in [72, 73] that for |∇u| ¿ √

γ

we have
√

γ + |∇u|2 ≈ √
γ + |∇u|2

2
√

γ , and for |∇u| À √
γ we have√

γ + |∇u|2 ≈ |∇u|. Thus, we again have a quadratic function in the
smooth regions, and a linear one near the edges, with

√
γ being the

threshold. In [73] the parameter γ is changed locally, depending on the
image.

To the best of our knowledge, there were no attempts to unify these
approaches into one mathematically solid framework. Hopefully, it will
become a topic of future research.
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5. Summary and future research

5.1. Summary

In this work we suggested, analyzed and implemented some possible
generalizations of the Mumford-Shah functional to the color images,
based on a geometric model of images as manifolds.

It seems that if we want to have a Γ-convergence of a numerical
approximation to the suggested models, the models must be simplified,
at least at the present state of the theory of the Γ-convergence for the
free-discontinuity problems.

Some of the numerical results are quite satisfactory. It is easy to
see how different models accentuate different features in edge detection
and restoration. It seems that none of the suggested models is the best,
but rather that a model should be selected depending on the task at
hand.

5.2. Unanswered questions and unexplored possibilities

In spite of all theoretical difficulties we encountered, we can write “ap-
proximations” modeled after Eq. (3) for any reasonable edge indicator
function, and minimize them numerically. Since the intuition behind the
approximation is clear, we can give a fairly good (albeit not rigorous)
qualitative prediction of the result, the way it was done in [45, 76]. We
present in Figure 11 as an example a result of numerical minimization
of

F 2
ε (u, v) =

∫

Ω

[
v2(γ|∇u|2 + |ux × uy|2) + β

(
ε|∇v|2 +

(v − 1)2

4ε

)
+ α|u− w|2

]
dx.

Since the results are good, it is rasonable to expect that we can prove
convergence for F 2

ε . At the moment, we can only show that F 2 is lower
semicontinuous. Also, we do not know, if anything interesting can be
shown about F 1 and G2.

Some other questions and possible improvements:

− We do not have convergence results for the numerical method we
currently use. For some other method of minimization it might be
possible to prove convergence and give an error estimate.

− The current numerical method is also rather slow and definitely
can be improved. One simple possibility is to vary the time step
in a kind of a secant method.

− We could have had “edge focusing” like in [61].
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Figure 11. Minimization of F 2 with ε = 0.3, α = 0.1, β = 0.01, γ = 0.2.

− Setting the problem in other color spaces—HSV (see [50]), YCC,
CB, CIELAB—may improve the results.
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