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Abstract. This paper addresses the problem of feature enhancement in noisy images, when
the feature is known to be constrained to a manifold. As an example, we approach the direction
denoising problem in a general dimension via the geometric Beltrami framework for image processing.
The spatial-direction space is a fiber bundle in which the spatial part is the base manifold and the
direction space is the fiber. The feature (direction) field is represented accordingly as a section of
the spatial-feature fiber bundle. The resulting Beltrami flow is a selective smoothing process that
respects the bundle’s structure i.e. the feature constraint. Direction diffusion is treated as a canonical
example of a non-Euclidean feature space. The structure of the fiber spaces of interest in this paper
is the unit circle S1, the unit sphere S2, and the unit hyper-sphere Sn. Applications to color analysis
are discussed and numerical experiments demonstrate again the benefits of the Beltrami framework
in comparison to other feature enhancement schemes for non-trivial geometries in image processing.
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1. Introduction. Many objects of low-level vision are vector fields of various
types. This is the case for gray-value images, color images, movies, 3D volumetric
images and disparity in stereo vision to name just a few examples. These vector
fields are traditionally considered as taking value in IRn. Various operations on these
fields such as denoising, enhancement, sharpening and segmentation are done using
a variety of algorithms. Several types of vector fields are constrained in a non-trivial
way. When the constraint can be expressed via the vanishing of a smooth function,
e.g. a polynomial, the vector fields take their values in a non-Euclidean space. One
notable example is the direction vector field which assigns a local direction to each
pixel in the image. These directions are unit length vectors that span the unit n-
dimensional sphere Sn. Other classes of non-Euclidean vector fields are perceptually
treated color images [20] and the regularization of frames [23]. We study in this paper
the n-dimensional direction vector fields and spherically constrained color models via
the Beltrami framework [19].

The basic objects in the Beltrami framework are embedding maps of Riemannian
manifolds. These maps embed the image manifold (a surface for a 2D image) in a fiber
bundle whose base is the spatial manifold e.g. IR2, and the fiber is the feature manifold
e.g. IR1 for the intensity feature alone. If we denote by F the feature manifold and
assume that the image is given on a flat surface then the spatial-feature manifold M is
given locally as M = IR2⊗F . In all the examples below the fiber bundle is trivial, yet
our local treatment extends to non-trivial bundles as well. Global issues of non-trivial
fiber bundles are beyond the scope of this paper.

Another important ingredient of the Beltrami framework is a geometrical func-
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tional, known as the Polyakov action (or harmonic energy [1]), which is defined over
the space of embedding maps. The minimization of the Polyakov action is done by an
Euler-Lagrange operator that drives, through a gradient descent equation, the initial
noisy feature vector fields towards a minimum of the Polyakov action. The special
form of this functional favorites piecewise smooth images. Jumps in the feature space
(feature edges) are consequently preserved [4, 5].

Almost all works that try to minimize a functional with respect to a constraint
quantity embed the constrained feature in a higher dimensional Euclidean space and
perform the minimization for the coordinates of this unconstrained space. The com-
mon wisdom is to combine a minimization of an unconstrained function and a pro-
jection on the constraint variety/manifold. The treatment of direction diffusion was
recently addressed, along these lines, in the low-level vision community. These studies
follow the well established literature in the liquid crystal community [3]. The har-
monic energy functional and its minimization are subjects to intensive mathematical
study as well [6, 7]. Two approaches for this problem are known: in a paper that
first addresses directly this issue Perona [13] uses a single parameter θ as an inter-
nal coordinate in S1. The second approach [21, 22, 2] embeds the unit circle S1 in
IR2 (the sphere S2 in IR3) and works with the external coordinates. See also [24]
for a related effort. The first approach is problematic because of the periodicity of
S1. Averaging small angles around zero such as θ = ε and θ = 2π − ε leads to the
erroneous conclusion that the average angle is θ = π. Perona solved this problem by
exponentiating the angle so that V = eiθ. This is actually the embedding of S1 in
IC which is isometric to IR2. This method is specific to a two-dimensional embedding
space where complex numbers can be used. The problem in using only one internal
coordinate manifests itself in the numerical implementation of the PDE through the
breaking of rotation invariance. In the second approach we have to make sure that we
always stay on S1 along the flow. This problem is known as the projection problem.
It is solved in the continuum by adding a projection term. Tang, Sapiro and Casseles
[21, 22] propose the formalism of p-harmonic maps applied to the case of direction
and color diffusion and present experiments in the case p = 2, which corresponds to
the Dirichlet integral. Moreover, they also present experiments for the case p = 1
as the immediate extension of Rudin-Osher-Fatemi’s Total Variation (TV) denoising
algorithm [14] to the case of general maps with values on manifolds. Nevertheless,
they did not study in detail the algorithm for the p = 1 case. The algorithmic study
for the case p = 1 was done by Chan and Shen [2], who also use external coordinates
with a projection term and a TV measure in order to better preserve discontinuities
in the vector field. This works well for the case where the codimension is one, like a
circle. Yet, it is difficult to generalize this approach to higher codimensions like the
sphere. Moreover, the flow of the external coordinates is difficult to numerically con-
trol since numerical errors should be projected on S1 and no well-defined projection
exists. Recently an implicit way to define manifolds is used in this context [1]. We
concentrate in this paper on the explicit methods. A comparison between the implicit
harmonic energy method and the implicit Beltrami framework can be found in [16].

We propose to work directly on the constrained Manifold and to avoid the projec-
tion problem altogether. Our solution produces an adaptive smoothing process, which
preserves direction discontinuities. The proposed solution works for all dimensions and
codimensions, and overcomes possible parameterization singularities by introducing
several internal coordinates on different patches (charts) such that the union of the
patches is the feature manifold i.e. Sn. Adaptive smoothness is achieved by the
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description of the vector field as a two-dimensional section of the n + 2-dimensional
spatial-feature fiber bundle manifold with Sn fibers.

The problem is formulated, in the Beltrami framework [19, 9] in terms of the
embedding map

Y : (Σ, g) → (M,h)

where Σ is the two-dimensional image manifold, and M , in this case, is IRn⊗S1 with
n = 2 (n = 4) for gray-level (color) images. The key point is the choice of local
coordinate systems for both manifolds1. The image manifold Σ (with metric g),
and the embedding manifold M (with metric h). At the same time we should verify
that the geometric filter (i.e the denoising PDE) does not depend on the specific choice
of coordinates we make.

Once a local coordinate system is chosen for the embedding space and the op-
timization is done directly in this local coordinate system, we can never leave M
and avoid the problem of projection. The difficulty represented in the problem of
projection is transformed to the problem of the choice of a local coordinate system
as we describe below. Other examples of enhancement by the Beltrami framework
of non-flat feature spaces, like the color perceptual space and the derivatives vector
field, can be found in [20, 17].

An important issue in this approach is the numerical consideration in the choice of
local coordinates. While all coordinates are equally good from analytic and geometric
points of view, they are different from a numeric stand point. A comparative study
on the numerical and algorithmic accuracies of different schemes is presented here and
shows that for a range of parameters one can get a better numerical accuracy while
maintaining the edge preserving quality of the anisotropic diffusions.

This paper is organized as follows: We review the Beltrami framework and point
to the relation with harmonic maps in Section 2. We analyze the case of the general
n-dimensional direction diffusion with hemispheric coordinate system in Section 3.
A stereographic coordinate system is introduced in Section 4 and the appropriate
equations are derived. Section 5 deals with the numerical implementation of the ideas
presented in the previous sections for color image processing. Section 6 presents results
on various vector fields and color images. We compare in Section 7 different direction
diffusion schemes from numerical and algorithmic points of view. We summarize and
conclude in Section 8.

2. The Beltrami Framework. Let us briefly review the Beltrami geometric
framework for non-linear diffusion in computer vision [19].

2.1. Representation and Riemannian Structure. An image, and many
other quantities of interest in computer vision, are naturally represented via the con-
cept of a fiber bundle. The image domain is the base manifold. In the present study
it is taken as a subset of IR2 with the canonical Cartesian coordinate system (Y 1, Y 2).
It is denoted by Ω. At each point in the base manifold we attach a feature space - the
fiber. The fibers at different points of the base manifold are isomorphic. The fiber
space is denoted by F . The feature space, or fiber, may be a linear vector space or
more interestingly a Riemannian manifold. An image (or other quantity of interest)
is a choice of a particular point in the fiber for every point in the base manifold. Such
a particular choice is called a section of the (trivial) fiber bundle Ω⊗ F .

1Note the difference between this approach and the one presented in [21, 22, 2], where the image
metric is flat.
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In general an n-dimensional (Riemannian) manifold is defined by a collection of
maps from charts of the manifold to IRn. Each chart covers part of the manifold.
Their union covers the whole manifold and the transformation of the coordinates
on the intersection between any two charts is smooth. The Riemannian structure
transforms in a proper way (as a tensor) under any change of the coordinate system.
We denote the coordinates on the two-dimensional section by (x1, x2), the coordinates
on a chart of the embedding space (the fiber bundle) by (Y 1, . . . , Y n). The embedding
space is a hybrid spatial-feature space. The first two coordinates (Y 1, Y 2) are the
spatial coordinates on Ω (the base manifold) and the rest (Y 3, . . . , Y n) are the feature
coordinates (the fiber’s coordinates). The simplest example is a gray-value image
which is represented as a 2D surface embedded in IR3. We denote the map by Y :
Σ → IR3. Where Σ is a two-dimensional section. The map Y is given in our example
by (Y 1 = x1, Y 2 = x2, Y 3 = I(x1, x2)). We choose on this surface a Riemannian
structure, namely, a metric. Note that this differs from the harmonic energy functional
where the metric is taken from the base manifold and not from the section. The metric
is a positive definite and a symmetric 2-tensor that may be defined through the local
distance measurements

ds2 = g11(dx1)2 + 2g12dx1dx2 + g22(dx2)2.(2.1)

We use below the Einstein summation convention in which the above equation reads
ds2 = gµνdxµdxν where repeated indices are summed over. We denote the inverse of
the metric by gµν .

2.2. Image metric selection: The induced metric. A reasonable assump-
tion is that distances measured in the embedding spatial-feature fiber bundle, such
as distances between pixels and differences between grey-levels, correspond directly
to distances measured on the image manifold i.e. the section. This is the assump-
tion of isometric embedding under which we can calculate the image metric in terms
of the embedding maps Y i and the embedding space metric hij . This follows di-
rectly from the fact that the length of infinitesimal distances on the manifold can be
calculated on the manifold and on the embedding space with the same result. For-
mally, ds2 = gµνdxµdxν = hijdY idY j . By the chain rule, dY i = ∂µY idxµ, we get
ds2 = gµνdxµdxν = hij∂µY i∂νY idxµdxν . ¿From which we have

gµν = hij∂µY i∂νY j .(2.2)

As an example we take the gray-level image as a two-dimensional image manifold
embedded in the three dimensional Euclidean space IR3. The embedding maps are

(Y 1(x1, x2) = x1, Y 2(x1, x2) = x2, Y 3(x1, x2) = βI(x1, x2)).(2.3)

The scaling factor β defines the ratio between distances in gray-values and distances in
the spatial space. It is a free parameter of the framework that interpolates between the
Euclidean L2 and L1 types of flows as we will see below. We choose to parameterize
the image manifold by the canonical coordinate system x1 = x and x2 = y. The
embedding, by abuse of notation, is (x, y, βI(x, y)). The induced metric g11 element
is calculated as follows

g11 = hij∂x1Y i∂x1Y j = δij∂xY i∂xY j = ∂xx∂xx+∂xy∂xy+∂xβI∂xβI = 1+β2I2
x.

(2.4)
Other elements are calculated in the same manner. The result is

G = (gµν) =
(

1 + β2I2
x β2IxIy

β2IxIy 1 + β2I2
y

)
.(2.5)
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2.3. Polyakov Action: A measure on the space of embedding maps.
Denote by (Σ, g) the image manifold and its metric, and by (M,h) the space-feature
manifold and its metric. Then the functional S[·, ·, ·] attaches a real number to a map
Y : Σ → M

S[Y i, gµν , hij ] =
∫

dV ||∇~Y ||2h,g(2.6)

where dV is a volume element and the integration is over the Riemannian Frobenius
norm2 of the tangent map dY . In a local coordinate system the volume element is
expressed by dV = dx1dx2√g and ||∇~Y ||2h,g = 〈∇Y i,∇Y j〉ghij = gµν∂µY i∂νY jhij .
The Polyakov action is expressed in this local system of coordinates as

S[Y i, gµν , hij ] =
∫

dx1dx2√ggµν∂µY i∂νY jhij ,(2.7)

This functional, for m = 2 (a two-dimensional image manifold) and hij = δij , was
proposed by Polyakov [12] in the context of high energy physics, and the theory known
as string theory. It is important to note that the image metric and the feature coor-
dinates i.e. intensity, color, direction etc. are independent variables. This functional
is the natural generalization of the L2 norm from Euclidean domains to Riemannian
manifolds. The minimization of the functional with respect to the image metric can
be solved analytically in the two-dimensional case (see for example [18]). The mini-
mizer is the induced metric. If we choose, a-priory, the image metric induced from the
metric of the embedding spatial-feature space M , then the Polyakov action is reduced
to the area (volume) of the image manifold:

S[Y i, hij ] = 2
∫

dV = 2
∫

dx1dx2√g = 2
∫

dx1dx2
√

det(∂µY i∂νY jhij)(2.8)

This follows from the form of the induced metric:
〈∇Y i,∇Y j〉ghij = gµν∂µY i∂νY jhij = gµνgµν , and the identity

gµνgµν = Tr(G−1GT ) = Tr(G−1G) = Tr(Id) = 2 ,(2.9)

where Tr(X) denotes the trace of the matrix X.
Using standard methods in the calculus of variations (see [18]), the Euler-Lagrange

equations with respect to the embedding are

− 1
2
√

g
hil δS

δY l
=

1√
g
∂µ(

√
ggµν∂νY i) + Γi

jk〈∇Y j ,∇Y k〉g.(2.10)

Since (gµν) is positive definite, g ≡ det(gµν) > 0 for all xµ. This factor is the simplest
one that does not change the minimization solution while giving a reparameterization
invariant expression. The operator that is acting on Y i in the first term is the natural
generalization of the Laplacian from flat spaces to manifolds and is called the second
order differential operator of Beltrami [10], or for short Beltrami operator, and is de-
noted by ∆g. The second term involves the Levi-Civita connection whose coefficients
are the Christoffel symbols. The coefficients are given in terms of the metric of the
embedding space

Γi
jk =

1
2
hil (∂jhlk + ∂khjl − ∂lhjk) .(2.11)

2By Riemannian Frobenius norm we mean that the square of the elements are with respect to
the Riemannian structures of the corresponding Riemannian manifolds
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This is the term that takes into account the fact that the image surface flows in a
non-Euclidean manifold and not in IRn.

A map that satisfies the Euler-Lagrange equations− 1
2
√

g hil δS
δY l = 0 is a harmonic

map. The one- and two-dimensional examples are a geodesic curve on a manifold
and a minimal surface.

The non-linear diffusion or scale-space equation emerges as the gradient descent
minimization flow

Y i
t =

∂

∂t
Y i = − 1

2
√

g
hil δS

δY l
= ∆gY

i + Γi
jk〈∇Y j ,∇Y k〉g.(2.12)

This flow evolves a given surface towards a minimal surface, and in general it contin-
uously changes a map towards a harmonic map.

Before closing this review of the Beltrami framework we would like to point on
few similarities and differences between this flow and those suggested in [14, 13, 21, 2]:

1. For flat fibers:
• We use the induced metric while in other flows the image metric is flat.

The difference comes from the fact that in our framework the image
manifold is a section of the fiber bundle while in the harmonic map
formulation it is the base manifold.

• In the case of flat and one-dimensional fiber we get the ”regularized total
variation” functional. In the limit of large β the evolution equation is
identical (up to

√
g) to the TV one. In the limit β → 0 we get the linear

diffusion case. In intermediate values we find a good compromise such
that over smoothing on one hand and stair-casing on the other hand can
be avoided. The Beltrami framework, in this case, is a one-parameter
generalization of the Total Variation scheme.

• The multi channel functional, in the Beltrami framework, is another gen-
eralization of the TV functional. A term that depends on the direction
of the gradients is added to the term that depends on their magnitude
only. This provides a better adaptation of the process to the image
features.

• The Beltrami flow is degenerate (at ∇I → ∞). One can prove that
discontinuities are preserved for a finite time [5].

2. For non-flat fibers:
• The coordinates Y i are the local coordinates of the feature space while

in the above mentioned flows they are coordinates of a third manifold
i.e. IRn+1 in which the feature space Sn is embedded. In other words
the fiber in the harmonic map approach is embedded in IRn+1. This is
not possible in general (see Nash embedding theorem [11]).

• The Polyakov functional is different in this case from the TV functional
due to the different weighting of the magnitude of the gradients.

• The flow Eq. (2.12) has a clear geometric meaning. It is a mean curva-
ture flow projected (analytically) on the fiber. This projection is an edge
preserving operation [19]. It depends on ∇I in the general multi-channel
case and not on |∇I| as in the harmonic map approach.

3. Hemispheric direction diffusion.

3.1. Fiber geometry. We are interested in the case where the fiber feature
space is the hypersurface Sn. We choose to represent the hyper-sphere Sn as an n-
dimensional manifold embedded in IRn+1, with Cartesian coordinate system {U i}n+3

i=3 ,
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as the constrained hyper-surface

n+3∑

i=3

(U i)2 = 1.(3.1)

We work in the chart, where {Y i}n+2
i=3 are local coordinates. On this chart U i =

Y i i = 3, . . . , n + 2 and Un+3 =
√

1−∑n+2
i=3 (Y i)2. Denote the metric elements for

the feature space only by h̃ij . The metric elements, and the inverse metric elements,
are given by

h̃ij = δij +
Y iY j

1−∑n+2
k=3(Y k)2

(h̃−1)ij = δij − Y iY j .(3.2)

3.2. The induced metric. The induced metric, and its inverse, are accordingly

gµν = δµν +
n+2∑

i,j=3

h̃ij∂µY i∂νY j

gµν =
1
g


δµν + εµσενρ

n+3∑

i,j=3

h̃ij∂σY i∂ρY
j




g = det(gµν)

= 1 +
n+3∑

i,j=3

h̃ij(Y i
xY j

x + Y i
y Y j

y )

+
1
2
εµσενρ

n+3∑

i,j,k,l=3

h̃ij h̃kl∂µY i∂ρY
j∂νY k∂σY l(3.3)

where (gµν) is the inverse of (gµν), g is the determinant, and εµν is the two-dimensional
anti-symmetric tensor

(εµν) =
(

0 1
−1 0

)
.

An implicit summation on all repeated Greek indices is assumed.

3.3. The Flow equations. The Levi-Civita coefficients are calculated in Ap-
pendix B with the simple result

Γi
jk = Y ih̃jk.(3.4)

The minimization of the Polyakov action leads to the following evolution equations

Y i
t = ∆gY

i + 2Y i − Y iTr(gµν) i = 1, . . . , n.(3.5)
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3.4. The one-dimensional hemispheric direction diffusion.

3.4.1. The S1 Beltrami operator. The S1 manifold can be described as the
solution to U2 +V 2 = 1. We will work with two charts. One is (Y 1 = x, Y 2 = y, Y 3 =
βU) and the other is (Y 1 = x, Y 2 = y, Y 3 = βV ). By abuse of notation we denote
the map by (x, y, βY ). The parameter β is a scaling factor. Each one of the charts
will be used in the range Y 2 ≤ 1/2. The line element on each of the charts of image
manifold is

ds2 = ds2
IR2 + ds2

S1 = dx2 + dy2 +
β2

1− Y 2
dY 2 .(3.6)

By using the chain rule we find

ds2 = (1 + A(Y )Y 2
x )dx2 + 2A(Y )YxYydxdy + (1 + A(Y )Y 2

y )dy2,(3.7)

where A(Y ) = β2

1−Y 2 .
The induced metric is therefore

(gµν) =
(

1 + A(Y )Y 2
x A(Y )YxYy

A(Y )YxYy 1 + A(Y )Y 2
y

)
,(3.8)

and the Beltrami operator acting on Y is ∆gY = 1√
g ∂µ(

√
ggµν∂νY ), where g =

1 + A(Y )(Y 2
x + Y 2

y ) is the determinant of (gµν), and (gµν) is the inverse matrix of
(gµν).

3.4.2. The Levi-Civita connection. Since the embedding space is non-Euclidean
we have to calculate the Levi-Civita connection. Remember that the metric of the
embedding space is

(hij) =




1 0 0
0 1 0
0 0 A(Y )


 .(3.9)

The Levi-Civita connection coefficients are given by the fundamental theorem of
Riemannian geometry in the following formula Γi

jk = 1
2hil (∂jhlk + ∂khjl − ∂lhjk) ,

where the derivatives are taken with respect to Y i for i = 1, 2, 3.
The only non-vanishing term is Γ3

33 that reads

Γ3
33 =

1
2A(Y )

∂Y (A(Y )) =
Y

1− Y 2
= Y h33.(3.10)

The second term in the EL equations in this case reads Y h33||∇Y ||2g. We can
rewrite this expression using the following identities

h33||∇Y ||2g = (h11g
11 + h22g

22 + h33∂µY ∂νY gµν)− (h11g
11 + h22g

22)

= gµνgµν − (g11 + g22) = 2− 1
g
(g11 + g22) = 2− 1

g
(1 + g),(3.11)

where we used the induced metric identity Eq. (2.2), and the identity Eq. (2.9), in
order to rewrite

2 = Tr
(

1 0
0 1

)
= gµνgµν = h11g

11 + h22g
22 + h33∂µY ∂νY gµν .(3.12)
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3.4.3. The flow and the switches. The Beltrami flow is

Y i
t = ∆gY

i + Γi
jk(Y 1, Y 2, Y 3)〈∇Y j ,∇Y k〉g,(3.13)

for i = 3. Only modifying the fiber values while keeping the case manifold constant
is a projection in the direction of the fiber. This projection slows the diffusion around
edges. The Beltrami flow on the two charts reads finally:

Ut = ∆gU + U
g − 1

g

Vt = ∆gV + V
g − 1

g
.(3.14)

In the implementation we compute the diffusion for U and V simultaneously and take
the values (U, sign(V )

√
1− U2) for the range U2 ≤ V 2, and the values (sign(U)

√
1− V 2, V )

for the range V 2 ≤ U2.

4. Stereographic direction diffusion.

4.1. Fiber geometry. The hemispheric parameterization requires more charts
as n increases. As a result we have to work closer and closer to the singularity. As
a cure for that we switch to stereographic parameterization that demands only two
charts independent of the dimension of the sphere. Moreover, we always work on the
furthest point from the singularity, that is, on the equator.

Every hypersphere Sn can be isometricaly embedded in IRn+1. The hyper-
sphere is realized as the place of all the points in IRn+1 that satisfy the constraint∑n+1

i=1 U iU i = 1. We denote by Y i for i = 1, . . . , n the cartesian coordinate system on
the subspace IRn that passes through the equator of Sn i.e {~U ∈ IRn+1|Un+1 = 0}.
The stereographic transformation gives the values of Y i as functions of the points on
the north (south) hemispheres of the hypersphere. Explicitly it is given (after shifting
the indices by two for a coherent notation with the next sections) as

Y i =
U i

1− Un+3
i = 3, . . . , n + 2.

Inverting these relations we find

U i =
2Y i

1 +
∑n

i=1 Y i
i = 3, . . . , n + 2

Un+3 =
−1 +

∑n+2
i=3 Y i

1 +
∑n+2

i=3 Y i
(4.1)

4.2. The induced metric. Now we can compute the induced metric of our
feature space

hij =
n+3∑

k=3

∂Uk∂Uk

∂Y i∂Y j
=

4
(1 + A)2

δij i, j = 3, . . . , n + 2,(4.2)

where A =
∑n+2

k=3(Y k)2.
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4.3. The Flow equations. The Levi-Civita connection can be obtained by Eq.
(2.11) and Eq. (4.2). The result is

Γi
jk =

4
1 + A

(
Y iδjk − Y kδij − Y jδki

)
.

The resulting diffusion equations are

Y i
t = ∆gY

i +
∑

jk

4
1 + A

(
Y iδjk − Y kδij − Y jδki

)
∂µY j∂νY kgµν ,(4.3)

where i = 3, . . . , n + 2. This can be rearranged to

Y i
t = ∆gY

i − 4gµν(∂µ log(1 + A))(∂νY i) + (1 + A)(2− g11 − g22)Y i.(4.4)

4.4. One- and two-dimensional directions. We denote our coordinate sys-
tem by the subscripts s (for south) and n (for north). The equations for the one-
dimensional case read

(Ys)t = ∆gYs − 4gµν(∂µ log(1 + A))(∂νYs) + (1 + A)(2− g11 − g22)Ys,(4.5)

where A = Y 2
s and the induced metric is a function of Ys. Identical equation is

written for Yn. We solve the north and south equations simultaneously for values
smaller than 1. At each iteration we update the values which are greater than 1 by
the simple relation Ys = 1/Yn. Note that the problematic zone(s), i.e. ±1, are as far
as possible from the singularities, i.e. the poles.

The two-dimensional case is managed similarly via

(Y 1
s )t = ∆gY

1
s − 4gµν(∂µ log(1 + As))(∂νY 1

s ) + (1 + As)(2− g11 − g22)Y 1
s

(Y 2
s )t = ∆gY

2
s − 4gµν(∂µ log(1 + As))(∂νY 2

s ) + (1 + As)(2− g11 − g22)Y 2
s ,(4.6)

where As = (Y 1
s )2 + (Y 2

s )2 and the induced metric depends on Y 1
s and Y 2

s . As in the
one-dimensional case we solve simultaneously for the south and north patches and
work with Y is which are smaller than 1. The update for values who are greater than
1 after the diffusion (in each iteration) is done by Y i

s = AsY
i
n. Again the decision zone

i.e. the equator, is the most numerically stable region since it is the furthest from the
poles where singularities may appear.

5. Color diffusion. There are many coordinate systems and models of color
space which try to be as close as possible to the human color perception. One of
the popular coordinate systems is the HSV system [15]. In this system, color is
characterized by the Hue, Saturation and Value. The Saturation and Value take their
value in IR+, while the Hue is an angle that parameterizes S1.

In order to denoise and enhance color images by a non-linear diffusion process
which is more adapted to human perception we use here the HSV system. We need a
special treatment of the Hue coordinate in the lines of Section 3.

Let us represent the image as a mapping Y : Σ → IR4 × S1 where Σ is the
two-dimensional image surface and IR4 × S1 is parameterized by the coordinates
(x, y, H, S, V ). As mentioned above, a diffusion process in this coordinate system
is problematic. We define therefore two coordinates

U = cos H ; W = sin H
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and continue in a similar way to Section 3. The metric of IR4×S1 on the patch where
U parameterizes S1 and W (U) is non-singular is

hij =




1 0 0 0 0
0 1 0 0 0
0 0 A(U) 0 0
0 0 0 1 0
0 0 0 0 1


 ,(5.1)

where A(U) = 1/(1− U2).
The induced metric is therefore

ds2 = dx2 + dy2 + A(U)dU2 + dS2 + dV 2

= dx2 + dy2 + A(U)(Uxdx + Uydy)2 + (Sxdx + Sydy)2 + (Vxdx + Vydy)2

= (1 + A(U)U2
x + S2

x + V 2
x )dx2+

2(A(U)UxUy + SxSy + VxVy)dxdy + (1 + A(U)U2
y + S2

y + V 2
y )dy2.(5.2)

Similar expressions are obtained on the other dual patch.
The only non-vanishing Levi-Civita connection’s coefficient is Γ3

33 = Uh33. The
resulting flow is

Ut = ∆gU + 2U − U(g11 + g22)
Wt = ∆gW + 2W −W (g11 + g22)
St = ∆gS
Vt = ∆gV.(5.3)

Note that the switch between U and W should be applied not only to the U and W
equations but also to the S and V evolution equations where, at each point, one needs
to work with the metric that is defined on one of the patches.

6. Experimental results. Our first example deals with the gradient direction
flow via the Beltrami framework. Figure 6.1 shows a vector field before and after the
application of the flow for a given evolution time. The normalized gradient vector
field extracted from the image is presented before and after the flow and shows the
way the field flows into a new smooth direction transactions field.

Our second example deals with color diffusion using different color spaces. We
use machine color space as our spectral model, where we first restrict the colors to
one quarter of the upper hemisphere defined around the black point in the RGB space
as shown in Figure 6.2. In this example we use the Hemispheric direction diffusion.
The intensity, or more accurately the magnitude, is handled separately. This is a
simple example since a single chart can be used as a parameterization, and indeed
this simplified version was often used by others as an example.

Next, we explore a popular model that captures some of our color perception. The
HSV (hue, saturation, value) model proposed in [15] is often used as a ‘user oriented’
color model, rather than the RGB ‘machine-oriented’ model.

Figure 6.3 shows the classical representation of the HSV color space, in which the
hue is measured as an angle, while the value (sometimes referred to as brightness)
and the color saturation are mapped onto finite non-periodic intervals. This model
lands itself into a filter that operates on the spatial x, y coordinates, the value and
saturation coordinates, and the hue periodic variable. Our image is now embedded in
IR4×S1. We use the Hemispheric direction diffusion for the results shown in figure 6.3
and the Stereographic direction diffusion for the results shown in figure 6.4. For the
complete set of full size color images follow the link:
http : //www.math.tau.ac.il/ ∼ sochen/Porcupine/porcupine.html
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Fig. 6.1. Two vector fields before (left) and after (right) the flow on S1.
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Fig. 6.2. The colors are restricted to one quarter of the upper hemisphere defined around the
black point in the RGB space.

V 

S H 

Fig. 6.3. The HSV color model captures human color perception better than the RGB model
which is the common way our machines represent colors. The original image (left), the noisy image
(middle) and the filtered image (right) demonstrate the effect of the flow as a denoising filter in the
HSV color space when using hemispheric coordinates.
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Fig. 6.4. An example for stereographic direction diffusion used in the HSV color space. The
original image (left), the noisy image (middle) and the filtered image (right) demonstrate the effect
of the flow as a denoising filter in the HSV color space when using stereographic coordinates.

7. Comparison to other schemes. Several schemes have been suggested to
handle direction diffusion. The first to directly address this issue was Perona [13] who
uses a single parameter θ as an internal coordinate. However, the periodicity of S1

leads to erroneous values of θ. Another approach, the linear approach, was offered
by Tang, Sapiro and Casseles [21], in which the unit circle S1 is embedded in R2 and
external coordinates are used. However, in this flow we have to actively keep our
coordinates on S1, which means that we have to project the results on the unit circle.
Chan and Shen [2] studied in detail another scheme in which the evolution equation
is derived according to the Total Variation (TV) measure.

Kimmel and Sochen [8] have proposed an adaptive hemispheric smoothing scheme
which is edge preserving based on the Beltrami framework [19]. Throughout this
Section this scheme is referred to as HP (Hemispheric Porcupine). The direction vector
field is described as a two dimensional manifold embedded in a higher dimensional
space M = R2 × S1. The key point in the HP scheme is the selection of local
coordinate systems on the manifold, so that their union is S1. On the other hand,
the local coordinates selection is done so that the numerical error is minimized. The
advantage of this scheme is that throughout the flow the coordinates are constrained
to S1. Thus, there is no need in a supplementary projection stage. We address
in this work the issue of selecting the right charts to cover S1, and an alternative
stereographic coordinate system is proposed. We refer in this manuscript to this
scheme as SP (Stereographic Porcupine).

In this study we compare the numerical behavior of the above mentioned schemes,
evaluate their algorithmic performance and examine their edge preserving quality.

7.1. The evolution equations. In this subsection we mention the evolution
equations for each scheme. The interested reader is referred to the original articles.

As a first step, the direction θ is embedded in R2 via the map θ → ω =
[cos(θ), sin(θ)]. The plane is then diffused for some time t and the result is pro-
jected back to the unit circle via the map ωt = [x, y] → arctan( y

x ). This is if (x, y)
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(0,0)

(U1,V1)

(U,V)

Ep

Fig. 7.1. The projection error in the Linear and Total Variation schemes.

are still a one unit vector. If not, then the phase of the vector is used to determine
the appropriate projection, see Fig. (7.1) .

Tang, Sapiro and Casseles [21] use the following flow for a L2 energy (which results
in a linear scheme):

ft = ∆f +
∥∥5 f

∥∥2
f.(7.1)

where f stands for the pair (U, V ).
Chan and Shen [2] use the following flow for the Total Variation energy:

ft = div

(
5f∥∥f

∥∥

)
+

∥∥5 f
∥∥f.(7.2)

where f stands for the pair (U, V ).
Kimmel and Sochen [8] use the following equation for the HP scheme

ut = ∆gU + U · g − 1
g

,(7.3)

vt = ∆gV + V · g − 1
g

,(7.4)

where g = 1 + A(U)
(
(Ux)2 + (Uy)2

)
, and A(U) = 1

1−U2 . The SP scheme is given by
the following equation

Zt = ∆gZ − 4gµν(∂µlog(1 + A))(∂νZ) + (1 + A)(2− g11 − g22)Z,(7.5)

where a stereographic coordinate system is used. A = Z2, and Z stands for both
north and south coordinates.

A remark about the HP and SP schemes; According to the Beltrami framework,
images are considered as surfaces rather than functions. The related diffusion scheme
minimizes the area of the image surface. Thus, a basic concept in the Beltrami frame-
work is the manifold’s metric. In order to construct a valuable geometric measure
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Fig. 7.2. Artificial error in the Hemispheric Porcupine scheme. In regions 1 and 3 the U
coordinate is selected, and therefore the numerical error results from the difference between V 1
which is independently calculated, and V which is derived from the coordinate U . In regions 2 and
4 the V coordinate is selected, and therefore the numerical error results from the difference between
U1 which is independently calculated, and U which is derived from the coordinate V .

for an direction image we have to combine the spatial coordinates with the direction
information. The simplest combination is done by introducing a scaling parameter β,
so that

ds2 = dx2 + dy2 + β2 1
1− U2

dU2.

The parameter β has dimensions [ distance
direction ] and it fixes the relative scale between

the size of direction information and spatial distances. The parameter β plays an
important role in this study. It is a measure of the degree of coupling between the
different channels in the diffusion flow. Higher values of β draw the scheme to a
behavior similar to that of the TV scheme [2], and smaller values of β cause a behavior
similar to that of the linear scheme [21].

Therefore, we expect both HP and SP schemes to have a numerical error and an
edge preserving quality which depend on this parameter β.

7.2. Evaluation of the direction diffusion schemes. The evaluation of the
different schemes offered for direction diffusion is based on two main attributes of these
schemes. The first is their numerical and algorithmic accuracy, which is presented by
their degree of error. The second, is the edge preserving quality of the scheme. We use
direction information which is synthetic. Then, random noise chosen from a uniform
distribution on a pre-defined interval is added to the direction data, and each scheme
is used to de-noise the image. The numerical error of each scheme is calculated. The
algorithmic error is also defined, as the deviation of the resultant direction from the
original noise-free direction data. The edge preserving quality of each algorithm is
examined on an artificial image which is composed of two different directions, and also
on an image which combines a slowly varying direction and a large direction edge.
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7.3. Definition of the numerical error. The numerical error is differently
defined and calculated for each scheme. In the linear and TV schemes, the numerical
error is defined as the amount of the projection needed, so that the direction informa-
tion is on the unit circle. Thus, if the flow has resulted with some coordinates (U1,V1)
which are not necessarily on the unit circle, we take as the projected coordinates the
intersection of the unit circle with the line connecting (U1,V1) to the origin of axes,
see Fig. (7.1). The point (U,V) is given by

U =
U1√

U12 + V 12
, V =

V 1√
U12 + V 12

.(7.6)

Thus, the error is clearly:

error =
√

(U1− U)2 + (V 1− V )2.(7.7)

In the HP and SP schemes, the evaluation of the error is not straightforward, as
there is no projection error; the evolving coordinates never leave the unit circle. The
numerical error is therefore defined relative to the results of a similar flow in which
there is no selection of a local coordinate system. Thus, when the coordinates (u, v) are
not coupled and are not constrained to the unit circle. For the HP we denote this error
by HEuv and expect it to obtain a sharp maximum at (−π, −π

2 , 0, π
2 , π) because one of

the internal coordinates approaches 1 there and the denominator approaches infinity
(see Fig. (7.2)). It is important to notice that it is not an error of the hemispheric
scheme. In its minimum value, obtained between the sharp maxima points it provides
a maximum bound on the error in the hemispheric porcupine scheme.

For SP the definition of an error is even more complicated. Not only that there
is no projection error, but there are more variables for which an error term may be
defined. First u and v are obtained using the embedding θ → (u, v) = [cos(θ), sin(θ)].
Next, the stereographic coordinates Zn and Zs are derived, as the intersection of the
line between the north (south) pole and the south (north) hemisphere. Thus, we may
look at the error in Zs and Zn as well as in u and v. Following are the error terms
used:

• SEzn and SEzs – Error terms for the stereographic coordinates: We
let Zn and Zs evolve independently. Then, we compare the stand alone Zn

to the one calculated using the coupled Zn and Zs (where we select the local
appropriate chart according to the direction). We do the same for Zs (see Fig.
(7.3)). We expect the error for Zn to have a singularity at π

2 and the error
for Zs to have a singularity at −π

2 . Note that SEzn as defined is expected
to be zero in the range [−π, 0], and SEzs as defined is expected to be zero
in the range [0, π]. Since this is an error for the values of Zn and Zs, we
need another error definition which measures the degree of error in the (u, v)
coordinates.

• SEUV – Error terms for U and V : It is important to evaluate the error
for the (U, V ) variables. We define the error term as the distance between the
vector (U, V ) when evaluated using the coupled Zn and Zs, and the vector
(U, V ) when using the independently calculated Zn and Zs (see Fig. (7.4)).

It is important to note that SEz and SEUV are not errors of the Beltrami
porcupine methods. They give an indication on the actual error by noticing that the
minimum of SEz and SEUV is the upper bound for the Beltrami Porcupine
algorithm. This is so since the most unreliable numeric regions are exactly the
regions where the minimum in the SEZ,UV is obtained. The actual error in other
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Fig. 7.3. Artificial error in the Zn (left) and Zs (right) variables in the Stereographic porcupine
scheme.

(0,0)
SEuv

SEuv

Fig. 7.4. Artificial error in the (U, V ) coordinates in the Stereographic Porcupine scheme.
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areas is smaller since we do not trust one of the components that leads to a greater
error. Thus, a small value of an error may indicate that using the appropriate local
chart is not as important as it is when the error is larger. The higher the error, the
more important it is to use the right local chart.

7.3.1. Definition of the algorithmic error. The definition of the algorithmic
error is the same for all schemes. It is simply the deviation of the direction following
diffusion from the noise-free direction which is originally given. While the numerical
error gives an indication of the stability of the method, the algorithmic error deals with
performance: how close the resultant direction is to the actual one. The algorithmic
error is defined as follows:

E =
√

(cos(θ)− cos(θ1))2 + (sin(θ)− sin(θ1))2,

where θ is the original noise free angle, and θ1 is the resultant angle following the
diffusion scheme.

7.3.2. Definition of an edge preservation quality. An important quality
of any diffusion scheme is its edge preserving ability. The first test image used to
examine edge preservation is composed of two different directions. We apply each
tested scheme to this image. We expect that the TV based method will preserve
edges better than the linear based approach. As for the porcupine methods, we
expect edge preservation quality to depend on the parameter β. The second test
image is composed of two significantly different directions, where each direction is
slowly varying. Using this test image we may compare the edge preserving quality
with the handling of the slowly varying data.

7.4. Comparison results and discussion. In this section we present the re-
sults of the numerical errors, algorithmic errors and edge preserving performance.

In the test we go over S1 from −π to π using an equal step size. For each angle,
random noise entries, chosen from a uniform distribution, are added to the vector
field.

In figure (7.5(a)) we present the algorithmic error for the four schemes using a
time step dt = 0.00001. All errors lie within the same range. However, the best
performance is presented by the TV scheme, while the linear, HP and SP approaches
seem to have the same performance. In figure (7.5(b)) we used a larger time step,
dt = 0.001, to observe the different behavior of the linear, HP and SP schemes. The
linear scheme has the smallest algorithmic error among the three schemes, and the
HP and SP schemes seem to have the same algorithmic performance.

Figure (7.6) compares the numerical errors of the HP, TV and Linear schemes.
A logarithmic scale is used, as the error of the TV scheme is two orders of magnitude
higher than the error of the linear and HP schemes ! The HP error term has a periodic
behavior, and it is very large at the singular points, (−π, −π

2 , 0, π
2 , π). Away from the

singular points the HP error is slightly smaller than the linear scheme error, and the
TV error is significantly higher than the HP error. However, as we approach the
singularities, the HP error increases, and there the linear scheme’s error is smaller.

In figure (7.7) we show the numerical errors of Zn and Zs in the SP scheme. As
expected, the errors have sharp maxima at π

2 and −π
2 respectively.

Another definition for the numerical error of the SP scheme was given, SEUV , in
which we refer to the (U, V ) variables rather than the (Zn, Zs) variables. In Figure
(7.8) this error is presented: The differences between the values of (U, V ), when calcu-
lated using a coupled scheme for (Zn, Zs), and when calculated using an independent
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Fig. 7.5. Algorithmic error for the Linear, TV, HP and SP schemes. a. The four schemes
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larger time step, dt = 0.001 (right).
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Fig. 7.6. Numerical error for the TV, Linear and HP schemes. In this test we go over S1 from
−π to π using an equal step size of π
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.

scheme for (Zn, Zs), are shown. It is interesting to note that this error has a periodic
behavior, with maxima values at (−π

2 , π
2 ), as can be expected.

The next step is to examine the dependence of the numerical error in the HP and
SP schemes on the scaling parameter β. Figure (7.9) shows the numerical error for
the HP scheme for a larger value of β (left) and for a smaller value of β (right). The
scale used for presenting these results is again logarithmic. Away from the singular
points larger values of β produce smaller errors. In the vicinity of the singular points,
the error increases when β increases.

The same goes for the SP scheme. In Figures (7.10) and (7.11) we present the
results with respect to the three error measures we have defined for the Stereographic
Porcupine scheme. The scale used for presenting the results is logarithmic. In Figure
(7.10) the results for a larger value of β are presented and in Figure (7.11) the results
for a smaller value of β are presented.

When β = 100, the values of SEzn in the range [0, π] and away from the singularity
at π

2 , lie between the numerical errors of the Linear and TV schemes. The error
decreases as we move away from π

2 and is even smaller than the linear scheme error as
we move closer to 0 and π. In the range [−π, 0] SEzn is equal to zero. SEzs presents
a mirror behavior. SEUV is smaller than the numerical errors of the TV and Linear
schemes. It obtains maxima values at ±π

2 . When β = 0, the values of SEzn in the
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Fig. 7.10. Numerical errors of the SP scheme for a large value of β = 100. a. The numerical
error of Zn (top left). b. The numerical error of Zs (top right). c. The numerical error of the
(U, V ) variables (bottom).

range [0, π] and away from the singularity at π
2 , are a little bigger than those obtained

for β = 100. Again, SEzs presents a mirror behavior. In this case, SEUV , away from
the singular points ±π

2 , is higher than the one obtained for β = 100. Note that the
error values in the vicinity of the singularities is much higher for the lower value of β.

Next, we examine the edge preserving quality of each direction diffusion scheme.
The following synthetic data was generated so that there is a difference of π

2 radians
between the left and right sides of the noise free image. Random noise entries, chosen
from a uniform distribution in the range [−π

9 , π
9 ], are added to the noise free data,

and each scheme is applied to the image. The noise-free and noisy initial images are
shown in Figure (7.12). The diffusion results are presented for all schemes, where for
the HP and SP approaches we show the results for both smaller and higher values of
the parameter β. In Figure (7.13) the results for the Linear and the TV schemes are
presented. It is interesting to note that the Linear scheme is less edge preserving than
the TV scheme, as can be expected. In figures (7.14),(7.15) the results for the HP and
SP schemes are also presented. Here, we note the dependence of the results on the
value of the parameter β. We can go from Linear to TV behavior simply by adjusting
the value of β. If we examine the relationship between the numerical errors of the TV
and Linear schemes (see figure (7.6)), and their edge preserving quality, we note that
while the Linear scheme offers a low numerical error, it is less edge preserving, and
while the TV scheme better preserves edges, it has a significantly higher numerical
error. For the HP and SP schemes, both the numerical errors (see figures (7.9), (7.10),
(7.11)) and the edge preserving quality, depend on the parameter β. We may find a
value of β in the HP and SP schemes respectively, so that we obtain a numerical error
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Fig. 7.11. Numerical errors for the SP scheme for a small value of β = 0. a. The numerical
error of Zn (top left). b. The numerical error of Zs (top right). c. The numerical error of the
(U, V ) variables (bottom).

Fig. 7.12. a. The original noise-free image (left). b. The image after random noise was added
(right).

which is in the order of the Linear scheme’s error, and an edge preserving quality
which is comparable to that of the TV scheme.

Another example to explore the edge preserving quality of each scheme is the
direction fan example. The test image (fig. 7.15) is composed of a major gradient in
directions in the image’s center, and a slowly varying angle as we move away from the
center. The direction information is presented both by arrows (fig. 7.16 (left)) and
by a color image, representing the angles (fig. 7.16 (right)). Random noise entries,
chosen from a uniform distribution in the range [−π

9 , π
9 ], are added to the noise free
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Fig. 7.13. a. The result of Linear diffusion, with 10, 000 iterations and a time step equal to
0.0001 (left). b. The result of TV diffusion, with 100, 000 iterations and a time step equal to 0.00001
(right).

Fig. 7.14. a. The result of HP diffusion for β = 0 (left). b. The result of HP diffusion for
β = 10 (right). These results were obtained following 10, 000 iterations with time step equal to 0.001.

data, and a noisy direction image is obtained (fig. 7.17). Next, each scheme is applied
to the image with time step, number of iterations and value of β (for the HP and SP
schemes), which produce the best results. When applying the linear scheme, the edge
is blurred while the amount of noise is still significant (fig. 7.18). The TV approach
results in a sharper boundary, relative to the linear scheme, but if we examine the
smoothed direction, we note a stair-casing effect, thus the smaller changes in direction
are ignored (fig. 7.19).

The HP scheme produces good results, as it keeps a sharp boundary, and restores
the original slowly changing behavior of the original direction data (fig. 7.20). The
SP scheme produces similar results to that of the HP scheme, but as can be seen,
some noise is still present (fig. 7.21).

8. Concluding remarks. There are some important issues in the process of
denoising a constrained feature field. The first is to make the process compatible with
the constraint in such a way that the latter is never violated along the flow. The
second is the type of regularization which is applied in order to preserve significant
discontinuities of the feature field while removing noise. The third is the numeric and
algorithmic accuracy of the algorithms.
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Fig. 7.15. a. The result of SP diffusion for β = 0(left). b. The result of SP diffusion for
β = 100 (right). These results were obtained following 10, 000 iterations with time step equal to
0.0001.

Fig. 7.16. The noise free direction fan image. a. Represented by arrows (left). b. Represented
as a color image (right).

These issues are treated in this paper via the Beltrami framework. First a Rie-
mannian structure, i.e. a metric, is introduced on the feature manifold and several
local coordinate systems are chosen to intrinsically describe the constrained feature
manifold. The diffusion process acts on these coordinates and the compatibility with
the constraint is achieved through the intrinsic nature of the coordinate system. The
difficulty in working on a non-Euclidean space transforms itself to the need to locally
choose the best coordinate system to work with.

A preservation of significant discontinuities is dealt with by using the induced
metric and the corresponding Laplace-Beltrami operator acting on feature coordinates
only. This operation is in fact a projection of the mean curvature, in the normal(s)
direction(s) to the surface, to the feature direction(s). This projection slows the
diffusion process along significant (supported) discontinuities while letting the process
proceed in the homogeneous regions in a normal speed.

The result of this algorithm is an adaptive smoothing process for a constrained
feature space in every dimension and codimension. As an example we have shown
how our geometric model coupled with a proper choice of charts handles the direction
diffusion problem. This is a new application of the Beltrami framework proposed in
[18]. We tested the new model on vector fields restricted to the unit circle S1, and
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Fig. 7.17. The noisy direction fan image. a. Represented by arrows (left). b. Represented as
a color image (right).

Fig. 7.18. The result of linear diffusion following 10, 000 iterations with time step 0.0001. a.
Represented by arrows (left). b. Represented as a color image (right).

hybrid spaces like the HSV color space. The integration of the spatial coordinates
with the color coordinates yields a selective smoothing filter for images in which some
of the coordinates are restricted to a circle.

Moreover, it is shown that even when algorithms are analytically equivalent, they
may differ in their accuracy (numerical and algorithmic). It is shown that the Hemi-
spheric and Stereographic coordinate systems present an advantage in the sense that a
parameter β can be found, i.e β = 10, 100 respectively, such that the edge preserving
quality is as good as it is in the TV algorithm while the numerical error is of two
orders magnitude smaller !
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Appendix A: Levi-Civita for S2. Using Eq. (3.9) and the general formula

Γi
jk =

1
2
hil (∂jhlk + ∂khjl − ∂lhjk)(8.1)
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Fig. 7.19. The result of TV diffusion following 100, 000 iterations with time step 0.00001. a.
Represented by arrows (left). b. Represented as a color image (right).

Fig. 7.20. The result of HP diffusion following 1, 000 iterations with time step 0.01. The value
of β is 1.5. a. Represented by arrows (left). b. Represented as a color image (right).

we get for example

Γ3
33 =

1
2
h3l (2∂3hl3 − ∂lh33) =

1
2

(
h33∂3h33 + 2h34∂3h34 − h34∂4h33

)

=
1
2

[
(1− U2)

∂

∂U
(

1− V 2

1− U2 − V 2
)− 2UV

∂

∂U
(

UV

1− U2 − V 2
) + UV

∂

∂V
(

1− V 2

1− U2 − V 2
)
]

and a straightforward calculation gives

Γ3
33 =

U(1− V 2)
1− U2 − V 2

= Uh33(8.2)

Appendix B: The Sn diffusion flow. The hyper-sphere Sn is presented as an
n-dimensional manifold embedded in IRn+1 as the constrained hyper-surface

n+1∑

i=1

(U i)2 = 1.

We work in the chart where {U i}n
i=1 are local coordinates. On this chart Un+1 =√

1−∑n
i=1(U i)2.
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Fig. 7.21. The result of SP diffusion following 1, 000 iterations with time step 0.01. The value
of β is 10. a. Represented by arrows (left). b. Represented as a color image (right).

Theorem: The local Sn metric elements are

h̃ij = δij +
U iU j

1−∑n
s=1(Us)2

.

Proof: The hyper-sphere is embedded isometrically in IRn+1. We use the induced
metric technique as follows

ds2 =
n∑

i=1

(dU i)2 + (dUn+1)2.(8.3)

The Un+1 coordinate is a function of all other, and as such we can apply the chain
rule to get

dUn+1 =
n∑

i=1

∂Un+1

∂U i
dU i = −

n∑

i=1

U i

√
1−∑n

s=1(Us)2
dU i.

Using this expression in Eq. (8.3) we get

ds2 =
n∑

i,j=1

h̃ijdU idU j

=
n∑

i=1

(dU i)2 + (−
n∑

i=1

U i

√
1−∑n

s=1(Us)2
dU i)(−

n∑

j=1

U j

√
1−∑n

s=1(Us)2
dU j)

=
n∑

i,j=1

δijdU idU j +
n∑

i,j=1

U iU j

1−∑n
s=1(Us)2

dU idU j

=
n∑

i,j=1

(
δij +

U iU j

1−∑n
s=1(Us)2

)
dU idU j(8.4)

from which the assertion follows.
Theorem: The local Sn inverse metric elements are

h̃−1
ij = δij − U iU j
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Proof: By direct calculation

n∑

j=1

h̃ij h̃
−1
jk =

n∑

j=1

(
δij +

U iU j

1−∑n
s=1(Us)2

) (
δjk − U jUk

)

= δik − U iUk +
U iUk

1−∑n
s=1(Us)2

−
n∑

j=1

U i(U j)2Uk

1−∑n
s=1(Us)2

= δik.(8.5)

One can check similarly that

n∑

j=1

h̃−1
ij h̃jk = δik.

Theorem: The induced metric, and its inverse, are accordingly

gµν = δµν +
n∑

i,j=1

h̃ijU
i
µU j

ν

gµν =
1
g


δµν + εµσενρ

n∑

i,j=1

h̃ijU
i
σU j

ρ




g = det(gµν) =

1 +
n∑

i,j=1

h̃ij(U i
xU j

x + U i
yU j

y ) +
1
2
εµσενρ

n∑

i,j,k,l=1

h̃ij h̃klU
i
µU j

νUk
ρ U l

σ(8.6)

where (gµν) is the inverse of (gµν), g is the determinant, and εµν is the two-dimensional
anti-symmetric tensor

(εµν) =
(

0 1
−1 0

)
.

An implicit summation on all repeated Greek indices is assumed.
Proof: The calculation of the metric element is done directly by the induced

metric identity

ds2 = gµνdxµdxν = dx2 + dy2 +
n∑

i,j=1

h̃ijdU idU j

= δµνdxµdxν +
∑

ij

h̃ijU
i
µU j

νdxµdxν(8.7)

from which we extract the metric coefficients. The metric is a 2 × 2 matrix whose
determinant is g = g11g22− g2

12 = εµνg1µg2ν . Using the explicit form of the metric we
get

g =


1 +

∑

ij

h̃ijU
i
xU j

x




(
1 +

∑

kl

h̃klU
k
y U l

y

)
−


∑

ij

h̃ijU
i
xU j

y




(∑

kl

h̃klU
k
x U l

y

)
=

1 +
∑

ij

h̃ij(U i
xU j

x + U i
yU j

y ) +
∑

ijkl

h̃ij h̃klU
i
x(U j

xUk
y − U j

yUk
x )U l

y =
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1 +
∑

ij

h̃ij(U i
xU j

x + U i
yU j

y ) + εµν
∑

ijkl

h̃ij h̃klU
i
xU j

µUk
ν U l

y =

1 +
∑

ij

h̃ij(U i
xU j

x + U i
yU j

y )

+
1
2
εµν

∑

ijkl

h̃ij h̃klU
i
xU j

µUk
ν U l

y −
1
2
εµν

∑

ijkl

h̃ij h̃klU
i
yU j

µUk
ν U l

x =

1 +
∑

ij

h̃ij(U i
xU j

x + U i
yU j

y ) +
1
2
εµνεσρ

∑

ijkl

h̃ij h̃klU
i
σU j

µUk
ν U l

ρ.

Finally, we prove the formula for the inverse metric

gµνgνλ =
1
g


δµν + εµσενρ

n∑

i,j=1

h̃ijU
i
σU j

ρ





δνλ +

n∑

i,j=1

h̃ijU
i
νU j

λ




=
1
g


δµ

λ + εµσελρ
n∑

i,j=1

h̃ijU
i
σU j

ρ +
n∑

k,l=1

h̃klU
k
µU l

λ + εµσενρ
n∑

i,j,k,l=1

h̃ij h̃klU
i
σU j

ρUk
ν U l

λ




=
1
g


δµ

λ +
n∑

i,j=1

h̃ij(U i
xU j

x + U i
yU j

y )δµ
λ + εµσενρ

n∑

i,j,k,l=1

h̃ij h̃klU
i
σU j

ρUk
ν U l

λ


 ,

where the last equality comes from a case by case analysis. Remember that
λ, ν ∈ {1, 2} and take for example µ = λ− 1 = 1. In this case we get

2∑
σ,ρ=1

ε1σε2ρ
n∑

i,j=1

h̃ijU
i
σU j

ρ +
n∑

k,l=1

h̃klU
k
x U l

y = ε12ε21
n∑

i,j=1

h̃ijU
i
yU j

x +
n∑

i,j=1

h̃ijU
i
xUa

y

= −
n∑

i,j=1

h̃ijU
i
yU j

x +
n∑

i,j=1

h̃ijU
j
xU i

y = 0,

where we used the fact that the metric is a symmetric tensor. Other cases are analyzed
in a similar manner.The third term is also analyzed on a case by case basis and the
result, as the reader can verify, is

εµσενρ
n∑

i,j,k,l=1

h̃ij h̃klU
i
σU j

ρUk
ν U l

λ =
1
2
δµ
λεαβενρ

n∑

i,j,k,l=1

h̃ij h̃klU
i
αU j

νUk
ρ U l

β .

The whole expression in the parenthesis is, therefore, δµ
λg which completes our proof.

The last piece of information needed for our machinery is the explicit form of the
Levi-Civita coefficients.

Theorem: The Levi-Civita coefficients are

Γi
jk = U ih̃jk(8.8)

Proof: From the formula (2.11) we get

Γi
jk =

1
2

∑

l

h−1
il (∂jhlk + ∂khjl − ∂lhjk)

=
1
2

∑

l

(δil − U iU l)
(

∂j(
U lUk

1−∑
s(Us)2

) + ∂k(
U jU l

1−∑
s(Us)2

)− ∂l(
U jUk

1−∑
s(Us)2

)
)

.
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Let us compute the first term for example

∂j(
U lUk

1−∑
s(Us)2

) =
δjlUk

1−∑
s(Us)2

+
δjkU l

1−∑
s(Us)2

+
2U jU lUk

(1−∑
s(Us)2)2

.(8.9)

Summing up the three terms we get

Γi
jk =

1
2

∑

l

(δil − U iU l)
(

δjlUk

1−∑
s(Us)2

+
δkjU l

1−∑
s(Us)2

+
2U jU lUk

(1−∑
s(Us)2)2

+

δkjU l

1−∑
s(Us)2

+
δlkU j

1−∑
s(Us)2

+
2U jU lUk

(1−∑
s(Us)2)2

−
δlkU j

1−∑
s(Us)2

− δjlUk

1−∑
s(Us)2

− 2U jU lUk

(1−∑
s(Us)2)2

)

simple algebra gives

Γi
jk =

1
1−∑

s(Us)2
∑

l

(δil − U iU l)(δkjU l +
U jU lUk

1−∑
s(Us)2

)

=
1

1−∑
s(Us)2

(
U i − U i

∑

l

(U lU l)

) (
δkj +

U jUk

1−∑
s(Us)2

)
= U ih̃jk.
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