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Abstract

These are lecture notes for a mini-course given at the St. Petersburg Summer
School in Probability and Statistical Physics (June, 2012). Their theme was statis-
tics of the number of connected components of the zero sets of random functions
of several real variables.

The results presented in these lectures were obtained in joint works with Fedor
Nazarov.

Introduction

Statistics of the number of connected components of the zero sets of random
functions of several real variables is an area with a wealth of challenging and
difficult questions and with very few advances. The principal difficulty in
studying the number of connected components of a random set is a “non-
locality” of that number, in contrast to, say, the volume and the Euler char-
acteristics.

One of the reasons for the recent interest in this area is a remarkable bond
percolation model proposed by Bogomolny and Schmit [3] for the description
of the zero sets of smooth random functions of two variables that satisfy
the Helmholtz equation ∆F + κ2F = 0. Their model is very far from being
rigorous.
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1 THE EUCLIDEAN CASE

Another reason for the recent interest comes from the fact that the ques-
tion that we are studying can be viewed as a statistical version of the first
part of Hilbert’s 16th problem, see a letter of Sarnak [19] and recent works
of Gayet and Welschinger [7] and of Lerario and Lundberg [12].

These lectures are based on results obtained in recent joint works with
Fedor Nazarov [16, 17]. These results have two versions. The first one treats
zeroes of translation-invariant smooth Gaussian functions on the Euclidean
space restricted to domains of large volume. The second one deals with vari-
ous ensembles of real-valued algebraic and trigonometric polynomials of large
degree on the sphere and on the torus, and more generally, with ensembles of
smooth Gaussian functions on Riemannian manifolds. The Euclidean version
is free from many technical details related to geometry. For this reason, it is
easier to formulate and to prove. It is also one of the main ingredients in our
approach to the more complicated Riemannian version.
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1 The Euclidean case

1.1 Gaussian functions with translation-invariant
distribution

Suppose F : Rm → R1 is a smooth Gaussian random function with translation-
invariant distribution. Translation invariance means that for any k ∈ N, any
u1, ..., uk ∈ Rm, and any v ∈ Rm, the random vectors

(
F (u1), ..., F (uk)

)
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1.2 A result 1 THE EUCLIDEAN CASE

and
(
F (u1 + v), ..., F (uk + v)

)
have the same multivariate normal distribu-

tion. Then the covariance kernel of F depends only on the difference of the
variables, i.e., there exists a function k : Rm → R1 such that

E {F (u)F (v)} = k(u− v) ;

here and everywhere below, E denotes the expectation. Since the function k
is Hermitian positive definite and real valued, it is represented by the Fourier
integral

k(u) =

∫

Rm

e2πiu·λ dρ(λ) ,

where ρ is a positive finite measure symmetric with respect to the origin
is called the spectral measure of the function F . In principle, the spectral
measure contains all information about the random function F , and it is often
convenient to parameterize smooth translation-invariant Gaussian functions
by their spectral measures.

Usually, we tacitly assume that the function F is normalized, that is,
k(0) = E|F (u)|2 = 1. Then the measure ρ is a probability measure.

1.2 A result

For a smooth Gaussian function F , we denote by N(R; F ) the number of
connected components of the zero set Z(F ) = F−1{0} that are contained in
the open ball B(R) = {x : |x| < R}. We are interested in the asymptotic
behaviour of the random variable N(R; F ) as R →∞.

We say that a finite complex-valued measure µ on Rm is Hermitian if for
each bounded Borel set E ⊂ Rm, we have µ(−E) = µ(E). By µ̂ we denote
the Fourier integral of the measure µ, and by spt(µ) we denote the (closed)
support of µ.

The following theorem gives a version of the Law of Large Numbers for
the random variable N(R; F ).

Theorem 1. Suppose that the spectral measure ρ satisfies the following
conditions:

(ρ1) ρ has no atoms;

(ρ2) for some p > 4, ∫

Rm

|λ|p dρ(λ) < ∞ ;
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1.2 A result 1 THE EUCLIDEAN CASE

(ρ3) spt(ρ) does not lie in a linear hyperplane.

Then there exists a constant ν(ρ) > 0 such that

lim
R→∞

N(R; F )

vol B(R)
= ν(ρ) a.s. and in mean. (1)

Furthermore, the limiting constant ν(ρ) is positive provided that

(ρ4) there exist a finite compactly supported Hermitian measure µ with spt(µ) ⊂
spt(ρ) and a bounded domain D ⊂ Rm such that µ̂

∣∣
∂D

< 0 and µ̂(u0) > 0 for
some u0 ∈ D.

1.2.1 Role of conditions (ρ1)− (ρ3)

Condition (ρ1) yields ergodicity of the action of Rm by translations on
C2(Rm) endowed with the probability measure generated by F , which, in
turn, implies that the limit in (1) is non-random. Condition (ρ2) guaran-
tees C2-smoothness of the function F . At last, condition (ρ3) yields the
non-degeneracy of the distribution of the gradient ∇F .

1.2.2 How to check condition (ρ4)?

There are two simple and crude sufficient conditions, which hold in many
examples:

(ρ5a) spt(ρ) has a non-empty interior.

(ρ5b) spt(ρ) contains a sphere centered at the origin.

In the first case, using a duality argument, we see that finite exponential
sums ∑

λ∈spt(ρ)

cλe
2πiλ·x, c−λ = cλ ,

span the space C(B̄) for any ball B ⊂ Rm. Then one can find a finite linear
combination of point masses on spt(ρ), which satisfies condition (ρ4). In the
second case, we can take the Lebesgue measure on the sphere; its Fourier
integral is radially symmetric and vanishes on concentric spheres with radii
tending to infinity.

Combining these two ideas, one can show that condition

(ρ5c) spt(ρ) contains an open subset of a sphere centered at the origin

also ensures condition (ρ4).
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1.3 Proof of Theorem 1 1 THE EUCLIDEAN CASE

1.2.3 What can be said about the constant ν(ρ)?

Unfortunately, our proof of Theorem 1 does not specify the value of the
constant ν(ρ), and there is a huge discrepancy between the lower bounds
that can be extracted from the “barrier method” introduced in [16], and the
upper bounds obtained by computing the mean number of critical points, cf.
Nastasescu’s undergraduate thesis [15].

According to the Bogomolny and Schmit prediction [3], in the case when
m = 2 and ρ is the restriction of the Lebesgue measure to the unit circle,

ν =
3
√

3− 5

π
≈ 0.0624 .

Recent Konrad’s numerical thesis [10] gives a smaller value 0.0596 within 1%
of accuracy.

We do not have any clue to an answer to the following intriguing question:

Question 1. What can be said about the function ρ 7→ ν(ρ) in the case when
the spectral measure ρ is radial?

1.2.4 Malevich’s work

We are aware of one rigorous result that is directly related to Theorem 1.
This is a pioneering work of Malevich [13]. She considered a C2-smooth
translation-invariant Gaussian random function F on R2 with positive covari-
ance function with certain decay at infinity. She proved that EN(R; F )/R2

is bounded from below and from above by two positive constants. Her proof
uses Slepian’s inequality and probably cannot be immediately extended to
models with covariance functions that change their signs.

1.3 Proof of Theorem 1

First, assuming conditions (ρ1) − (ρ3), we show that the random variable
N(R; F )/ vol B(R) has a non-random limit ν(ρ) > 0 both a.s. and in the
mean. After that, we show that condition (ρ4) yields positivity of the limiting
value ν(ρ).
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1.3 Proof of Theorem 1 1 THE EUCLIDEAN CASE

1.3.1 Integral-geometric sandwich

As we already mentioned, the number of connected components is not a “local
characteristics”. Nevertheless, integral geometry is still helpful. For a closed
set Γ ⊂ Rm, we denote by N(x, r; Γ) the number of connected components of
Γ that are contained in the open ball B(x, r), and by N∗(x, r; Γ) the number
of components of Γ that intersect the closed ball B̄(x, r). For x = 0, we
denote the corresponding quantities simply by N(r; Γ) and N∗(r; Γ).

Lemma 1. For 0 < r < R,

∫

B(R−r)

N(u, r; Γ)

vol B(r)
du 6 N(R; Γ) 6

∫

B(R+r)

N∗(u, r; Γ)

vol B(r)
du .

Proof of Lemma 1: Let γ ⊂ B(R) be a connected component of Γ. Put

G∗(γ) =
⋂
v∈γ

B(v, r) =
{
u : γ ⊂ B(u, r)

}
,

G∗(γ) =
⋃
v∈γ

B̄(v, r) =
{
u : γ ∩ B̄(u, r) 6= ∅}

.

Therefore, vol G∗(γ) 6 vol B(r) 6 vol G∗(γ). Summing over all components
γ in B(R), we get

∑
γ

vol G∗(γ) 6 N(R; Γ) vol B(r) 6
∑

γ

vol G∗(γ) .

Changing the order of the sums and of the integrals representing the volumes,
and then dividing by vol B(r), we get the result. 2

1.3.2 Elaborating the sandwich estimate

Applying Lemma 1 to the zero set of F , we get

∫

B(R−r)

N(u, r; F )

vol B(r)
du 6 N(R; F ) 6

∫

B(R+r)

N∗(u, r; F )

vol B(r)
du .

We will use this two-sided estimate in the double limit when R → ∞ and
then r →∞.
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1.3 Proof of Theorem 1 1 THE EUCLIDEAN CASE

Denote by N(u, r; F ) the number of critical points of the restriction
F

∣∣
∂B(u,r)

of the function F to the sphere ∂B(u, r). Then

N∗(u, r; F )−N(u, r; F ) 6 N(u, r; F ) .

In dimension two, this is obvious since N∗(u, r; F )−N(u, r; F ) does not ex-
ceed the number of zeroes of the restriction of F to the circle ∂B(u, r), which,
in turn, does not exceed the number of critical points of this restriction. In
dimensions three and higher, a similar argument also works (though requires
some basic algebraic topology).

Now, let us introduce the notation (τvF )(u) = F (u + v) for the shift by
v ∈ Rm, and rewrite the sandwich estimate in the following form:

(
1− r

R

)m 1

vol B(R− r)

∫

B(R−r)

N(r; τuF )

vol B(r)
du 6 N(R; F )

vol B(R)

6
(
1 +

r

R

)m 1

vol B(R + r)

∫

B(R+r)

N(r; τuF ) + N(r; τuF )

vol B(r)
du .

The next idea is fairly straightforward: we let R →∞ and apply the ergodic
theorem to the LHS and RHS of this estimate.

1.3.3 Ergodicity

We will use Wiener’s multi-dimensional version of Birkhoff’s ergodic theo-
rem [24, Theorem II′′].

Theorem 2 (Wiener). Suppose
(
Ω,S,P)

is a probability space, on which
Rm acts by measure-preserving transformations

{
τv

}
v∈Rm. Suppose that Φ ∈

L1(P), and that the function (v, ω) 7→ τvΦ is measurable on the product space
Rm × Ω. Then the limit

lim
R→∞

1

vol B(R)

∫

B(R)

Φ(τvω) dv = Φ̄(ω)

exists with probability 1 and in L1(P). The limiting random variable Φ̄ is
τ -invariant, which means that for each v ∈ Rm, Φ̄ ◦ τv = Φ̄.

Recall that the action τ of Rm is called ergodic if for each τ -invariant set
A ∈ S, either P(A) = 0, or P(A) = 1. In this case, the limiting random
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1.3 Proof of Theorem 1 1 THE EUCLIDEAN CASE

variable Φ̄ is a constant function. Due to the L1(P)-convergence, the value
of this constant equals the expectation of Φ: Φ̄ = E{

Φ
}
.

Now, let F be a Gaussian function satisfying the assumptions of Theo-
rem 1. By the moment assumption (ρ2), F is C2-smooth with probability
1. Hence, it generates a measure γF on

(
C2(Rm),S

)
, where S is the Borel

σ-algebra generated by the bounded open sets in C2(Rm). That is, our prob-
ability space is

(
C2(Rm),S, γF

)
. Furthermore, Rm acts on

(
C2(Rm),S, γF

)
by shifts τv. Since the distribution of F is translation invariant, the action
is measure-preserving. Then our assumption (ρ1) (that is, continuity of the
spectral measure ρ) yields ergodicity. This follows from a theorem proved
independently by Fomin, by Grenander, and by Maruyama.

Theorem 3 (Grenander, Fomin, Mauryama). The action of the shifts on
the distribution-invariant continuous Gaussian function F is ergodic provided
that the spectral measure ρ has no atoms.

The proof given in [8, Section 5.10] after minor adjustments also works in
the multivariate case.

We conclude that under the assumptions (ρ1) − (ρ3) of Theorem 1, for
any random variable Φ ∈ L1(γF ) such that the function (v, ω) 7→ τvΦ is
measurable,

lim
R→∞

1

vol B(R)

∫

B(R)

Φ(τvω) d vol(v) = E{
Φ

}

with probability 1, as well as in L1(γF ).
Next, we fix r > 0 and apply1 this conclusion to the functions Φ(F ) =

N(r; F ) and Φ(F ) = N(r; F ) in the sandwich estimate given at the very end
of the previous section. We see that, for each r > 0,

EN(r; F )

vol B(r)
6 lim

R→∞

N(R; F )

vol B(R)
6 lim

R→∞
N(R; F )

vol B(R)
6 EN(r; F ) + EN(r; F )

vol B(r)

almost surely, and

EN(r; F )

vol B(r)
6 lim

R→∞

EN(R; F )

vol B(R)
6 lim

R→∞
EN(R; F )

vol B(R)
6 EN(r; F ) + EN(r; F )

vol B(r)
.

Our next step is to to get rid of the term EN(r; F ) on the RHS. This will
yield existence of the limit (1) in Theorem 1.

1 Here and in what follows, we skip verification of measurability.
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1.3 Proof of Theorem 1 1 THE EUCLIDEAN CASE

1.3.4 Kac-Rice premise

To show that EN(r; F ) = O(rm−1) as r →∞, we use a classical tool devised
by Kac and Rice [1, Chapter 11], [2, Chapter 6].

For Gaussian vectors X and Y , we denote by Cov[X, Y ] their covariance
matrix, that is, Cov[X,Y ]i,j = E {XiYj}. For a function g : B̄ → Rm, we
denote by n(B̄; g) the cardinality of its zero set Z(g) = g−1{0}. If g is a C1-
function, then |Dg(x)| denotes the Hilbert-Schmidt norm of its derivative
Dg(x), i.e., |Dg(x)|2 =

∑m
i,j=1 |∂xi

gj(x)|2.
Lemma 2. Suppose that B ⊂ Rm is a ball and g : B̄ → Rm is a Gaussian
C1(B̄)-function. Then

E {
n(B̄; g)

}
. sup

B̄

(E|Dg|2)m
2

√
det Cov[g, g]

· vol(B) .

Sketch of the proof of Lemma 2: Given a (non-random) C1-function g : B̄ →
Rm, and given ε > 0 and δ > 0, we put

X(ε, δ; g) =
{
x ∈ B̄ : |g(x)| < δ(|Dg(x)|+ ε)

}
.

It is easy to see that if the function g vanishes at the point z and δ < δ0 with
δ0(ε, g) sufficiently small, then B(z, δ) ∩ B̄ ⊂ X(ε, δ). We conclude that if
the zero set Z(g) contains n different points, then n . lim

δ→0

δ−m vol X(ε, δ; g).

That is,

E {
n(B̄; g)

}
. E{

lim
δ→0

δ−m vol X(ε, δ; g)
}

. lim
δ→0

δ−mE{
vol X(ε, δ; g)

}
(by Fatou’s lemma)

.
(
lim
δ→0

δ−m sup
x∈B̄

P{
x : |g(x)| < δ(|Dg(x)|+ ε)

})
· vol(B) .

Then we estimate the probability on the RHS using the orthogonal decom-
position2 Dg = Cov[Dg, g] (Cov[g, g])−1 g +h, where the Gaussian vector h is
independent of g. 2

Now, denote by xr(θ) spherical coordinates on the sphere Sr = ∂B(r),
and cover Sr by several closed coordinate patches parameterized by the closed

2 a.k.a. the Gaussian linear regression and the normal correlation theorem.
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1.4 Proof of Theorem 1 (continuation) 1 THE EUCLIDEAN CASE

unit ball B̄ ⊂ Rm−1. In each of these patches, we put F̃r(θ) = F (xr(θ)), and

apply the previous lemma to the derivative DF̃r. This yields the estimate
EN(r; F ) = O(rm−1) for r →∞. From this, one easily deduces the existence
of the limit (1) in Theorem 1.

1.4 Proof of Theorem 1 (continuation)

It remains to show that condition (ρ4) yields positivity of the limiting con-
stant ν(ρ). We prove that if assumption (ρ4) holds, then P{N(r0; F )>0}>0,
and therefore, E{N(r0; F )} > 0, at least when r0 is sufficiently big. Since we
already know that, for each r0 > 0, ν(ρ) > E{N(r0; F )}/ vol B(r0), this will
yield positivity of ν(ρ).

Speaking somewhat informally, this argument shows that if bounded com-
ponents of the zero set Z(F ) are possible at all, then they must have certain
positive density. It replaces a more explicit “barrier construction” introduced
in [16].

1.4.1 A Gaussian lemma that yields positivity of ν(ρ)

To see that P{N(r0; F ) > 0} > 0 for some r0 > 0, we use the following

Lemma 3. Let µ be a compactly supported Hermitian measure with spt(µ) ⊂
spt(ρ). Then for each ball B ⊂ Rm and for each ε > 0,

P{‖F − µ̂‖C(B̄) < ε
}

> 0 .

Proof of Lemma 3: We will use an equivalent description of the translation-
invariant Gaussian function F with a given spectral measure. Consider the
reproducing kernel Hilbert space H(ρ) = FL2

H(ρ), which consists of Fourier
integrals µ̂ of measures µ = h dρ, with a Hermitian density h ∈ L2

H(ρ),
h(−x) = h(−x). The space H(ρ) is equipped with the scalar product trans-
ferred from L2(ρ): 〈µ̂1, µ̂2〉H(ρ) = 〈h1, h2〉L2(ρ). Take any orthonormal basis{
ek

}
in H(ρ). Then F is represented by series

F (u) =
∑

k

ξkek(u)

where the ξk are independent identically distributed Gaussian random vari-
ables, and the series converges in L2(γF ). By a classical result of Kol-
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1.5 Some questions 2 THE RIEMANNIAN CASE

mogorov3, with probability 1, the series also converges locally uniformly in
Rm. This yields a special case of Lemma 3 for measures of the form dµ = h dρ
with h ∈ L2

H(ρ),
In the general case, we approximate the measure µ in the weak topology

by measures of the form h dρ with compactly supported h ∈ L2
H(ρ), and recall

that for compactly supported measures, the weak convergence yields locally
uniform convergence of their Fourier transforms with all derivatives. Hence,
the lemma. 2

Applying Lemma 3 to a measure µ from condition (ρ4), we see that, for
some r0 > 0, P{N(r0; F ) > 0} > 0.

1.5 Some questions

We close this lecture with several questions related to Theorem 1.

Question 2. Find the asymptotics of the variance of N(R; F ) as R →∞.

It is likely that under some assumptions, similar to those of Theorem 1, the
variance of the random variable N(R; F ) also grows as vol B(R).

The proof of Theorem 1 yields that under assumptions (ρ1)−(ρ4) con-
nected components of the zero set Z(F ) with large diameter have zero density.
This is the only thing we know about statistics of the components with large
diameter, and we would like to know more. For instance, given 0 < α < 1,
denote by Nα(R; F ) the number of connected components of the zero set
Z(F ) of diameter comparable to Rα that are contained in the ball B(R).

Question 3. Find the asymptotics of the mean E{
Nα(R; F )

}
as R →∞.

2 The Riemannian case

Now, let (fL) be a random parametric ensemble of smooth Gaussian func-
tions on a smooth compact m-dimensional Riemannian manifold X without
boundary, and let L be a large scaling parameter. By N(fL) we denote the
number of connected components of the zero set of the function fL. We aim
to understand the asymptotic behaviour of the random variable N(fL) as

3 Kolmogorov’s theorem can be found in many textbooks on advanced probability, for
instance, in M. Hairer’s lecture notes [9, Theorem 3.17]

11



2.1 Setup 2 THE RIEMANNIAN CASE

L → ∞. The idea of our approach is rather simple; as in many situations,
the devil is in the details. We fix an arbitrary point x ∈ X, blow up local
coordinates at the point x at L times, and denote by fx,L the scaled random
Gaussian functions. Our standing assumption is that there exists a Gaus-
sian function Fx on Rm with translation-invariant distribution such that the
covariance of Fx approximates well the covariance of fx,L when L →∞. To
make things more transparent, suppose for the moment that the distribution
of Fx does not depend on the point x ∈ X. If the limiting Gaussian function
F satisfies assumptions of Theorem 1, we may hope that, for large enough L
and R,

N(fL)

Lm vol(X)
≈ N(R; F )

vol B(R)
≈ ν(ρ) ,

where ρ is the spectral measure of F and ν(ρ) is the limiting constant from
Theorem 1.

If the limiting functions Fx depend on the point x, then, in a similar way,
we expect that

N(fL)

Lm
≈

∫

X

ν̄ d volX ,

where ν̄(x) = ν(ρx), and ρx is the spectral measure of Fx.
Note that the limiting measure ν̄ d volX does not depend on the choice of

the Riemannian metric on X, only the smooth structure on X matters.

2.1 Setup

A convenient way to define the Gaussian ensemble (fL) is to start with a fam-
ily HL of reproducing kernel Hilbert spaces of smooth real-valued functions
on X. In all examples we have in mind, the spaces HL are finite-dimensional
and dimHL →∞ as L →∞. By KL(x, y) we denote the reproducing kernel
of the space HL, that is,

f(y) = 〈f( · ), KL( · , y)〉HL
, f ∈ HL, y ∈ X.

In what follows, we assume that the function x 7→ KL(x, x) does not vanish
on X, that is, there is no point x ∈ X at which all functions in HL vanish.
The Hilbert space HL generates a random Gaussian function

fL(x) =
∑

ξkek(x), x ∈ X,
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2.2 Translation-invariant local limits 2 THE RIEMANNIAN CASE

where
{
ek

}
is an orthonormal basis in HL and ξk are independent standard

Gaussian random variables. The covariance of the Gaussian function fL

equals

E{
fL(x)fL(y)

}
=

∑
ek(x)ek(y) = KL(x, y)

and does not depend on the choice of the orthonormal basis
{
ek

}
in HL.

Hence, the distribution of F also does not depend on the choice of the or-
thonormal basis.

We say that the functions fL are normalized if everywhere on X, Ef 2
L(x) =

KL(x, x) = 1. Later on, we will always assume that the functions fL are
normalized. Note that in the most basic examples, including the ones we
consider below, the function x 7→ KL(x, x) is constant, so the normalization
boils down to dividing by that constant.

2.2 Translation-invariant local limits

First, we transplant the functions fL together with the kernels KL to the
Euclidean space and then blow up the local coordinates at L times. Put

Φx = expx ◦Ix : Rm → X , Φx(0) = x,

where expx : TxX → X is the exponential map, and Ix : Rm → Tx(X) is
a linear Euclidean isometry. The particular choice of the isometry Ix is
irrelevant for us.4 We define the scaled covariance kernel Kx,L at a point
x ∈ X by

Kx,L(u, v) = KL

(
Φx(L

−1u), Φx(L
−1v)

)
.

This is the covariance kernel of the scaled Gaussian functions

fx,L(u)
def
= fL

(
Φx(L

−1u)
)
, u ∈ Rm ;

i.e., Kx,L(u, v) = E{
fx,L(u)fx,L(v)

}
.

Definition 1. A Gaussian ensemble (fL) has translation-invariant local lim-
its as L → ∞, if for a.e. x ∈ X, there exists a positive definite continuous
even function kx : Rm → R1, such that for each R < ∞,

lim
L→∞

sup
|u|,|v|6R

|Kx,L(u, v)− kx(u− v)| = 0 .

4 Moreover, the choice of the exponential mapping is not essential either. It suffices
to take any smooth diffeomorphism Φx of a neighbourhood of the origin in Rm onto a
neighbourhood of the point x such that Φx(0) = x and the differential dΦx(0) is a linear
isometry.
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2.3 Smoothness and non-degeneracy 2 THE RIEMANNIAN CASE

The limiting kernels kx(u−v) are covariance kernels of translation-invariant
Gaussian functions Fx : Rm → R1. Furthermore, kx = ρ̂x where ρx are prob-
ability measures on Rm, symmetric with respect to the origin. We call the
function Fx the local limiting function and the measure ρx the local limiting
spectral measure of the family fL at the point x.

Next, we introduce two conditions which guarantee that every limiting
spectral measure ρx satisfies conditions (ρ2) and (ρ3) imposed in Theorem 1
that dealt with the Euclidean case.

2.3 Smoothness and non-degeneracy

Definition 2 (Separate C3-smoothness). The Gaussian ensemble (fL) is C3-
smooth if, for every R < ∞,

lim
L→∞

sup
{∣∣(∂i

u∂
j
vKx,L

)
(u, v)

∣∣ : x ∈ X, |u|, |v| 6 R, 0 6 i, j 6 3
}

< ∞ . (2)

Several remarks are in order:

• Note that ∂i
u∂

j
vKx,L(u, v) = E {∂i

ufx,L(u)∂j
vfx,L(v)}. Therefore, using the

Cauchy-Schwarz inequality, we see that it suffices to verify the smoothness
condition on the “diagonal” u = v and i = j.

• By condition (2), for every R < ∞,

lim
L→∞

sup
x∈X

E{‖fx,L‖2
C2(B̄(R))

}
< ∞ . (3)

• Suppose that the kernel KL has translation-invariant local limits at some
x ∈ X. Then, by condition (2), Kx,L(u, v) converge to kx(u − v) in the
C2+α-norm for any α < 1. Hence, the second partial derivatives of kx are α-
Hölder functions for any α < 1, which, in turn yields that all limiting spectral
measures ρx satisfy the smoothness assumption (ρ2) with any p < 6, and the
corresponding moment is controlled by the upper limit in the smoothness
condition (2).

Next, we turn to non-degeneracy. Introduce the matrix Cx,L with the
entries

Cx,L(i, j) = ∂ui
∂vj

Kx,L(u, v)
∣∣
v=u

, 1 6 i, j 6 m .
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Definition 3 (Non-degeneracy). The Gaussian ensemble (fL) is non-dege-
nerate if, for every R < ∞,

lim
L→∞

inf
{| det Cx,L(u)| : |u| 6 R, x ∈ X

}
> 0 . (4)

Equivalently,

lim
L→∞

inf
{
E
∣∣〈∇fx,L(u), ξ〉

∣∣2 : ξ ∈ Sm−1, |u| 6 R, x ∈ X
}

> 0 . (5)

Note that if the ensemble (fL) is C3-smooth and has a translation-invariant
local limit at some x ∈ X, then the matrix Cx,L converges to the matrix cx

with the entries

cx(i, j) = −(
∂ui

∂uj
kx

)
(0) =

∫

Rm

λiλj dρx(λ) .

Therefore, in this case, the limiting spectral measures ρx satisfy the non-
degeneracy condition (ρ3) uniformly in x. That is,

ess inf
x∈X

inf
ξ∈Sm

∫

Rm

∣∣〈λ, ξ〉
∣∣2 dρx(λ) > 0 .

It is useful to note that these smoothness and non-degeneracy conditions
hold automatically whenever the limiting spectral measure ρ does not depend
on the point x ∈ X and satisfies conditions (ρ2) and (ρ3), and the scaled
kernel Kx,L(u, v) converges to k(u− v) together will all partial derivatives in
u and v up to the third order, locally uniformly in u, v ∈ Rm and uniformly
in x ∈ X. This is what we will encounter in all the examples considered
below.

2.4 Main result

As above, by ν(ρ) we denote the limiting constant from Theorem 1. Put
ν̄(x) = ν(ρx).

Theorem 4. Suppose that (fL) is a C3-smooth non-degenerate Gaussian
ensemble on X that has translation-invariant local limits. Suppose that the
local limiting spectral measures ρx have no atoms. Then ν̄ ∈ L∞(X) and

lim
L→∞

E
{∣∣∣L−mN(fL)−

∫

X

ν̄ d volX

∣∣∣
}

= 0 . (6)
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2.4.1 A local version of Theorem 4

Theorem 4 has a “local version”, which says that the limiting constant ν(ρx)
can be recovered by a double limit.

Theorem 5. Under assumptions of Theorem 4, for almost every x ∈ X and
for every ε > 0,

lim
R→∞

lim
L→∞

P
{∣∣∣ 1

vol B(R)
N

(
x, R

L
; fL

)− ν̄(x)
∣∣∣ > ε

}
= 0 , (7)

where N
(
x, R

L
; fL

)
is the number of connected components of the zero set

Z(fL) contained in the open ball in X centered at x and of radius R/L.

Theorem 4 can be viewed as “an integrated version” of Theorem 5.

2.5 Examples

We start with four examples illustrating Theorem 4.

2.5.1 The trigonometric ensemble

Here, Hn is the subspace of L2(Tm) that consists of real-valued trigonometric
polynomials in m variables of degree 6 n in each of the variables:

Re
[ ∑

ν∈Zm : |ν|∞6n

cνe
2πi(ν·x)

]
.

A straightforward computation shows that the covariance of this ensemble
coincides with the product of m Dirichlet’s kernels:

Kn(x, y) =
m∏

j=1

sin [π(2n + 1)(xj − yj)]

(2n + 1) sin [π(xj − yj)]
.

We fix a point x ∈ T and put fx,n(u) = fn(x + n−1u) (that is, the scaling
parameter L equals the degree n). Then the scaled kernel Kn

(
x + n−1u, x +

n−1v
)

converges locally uniformly in u and v, together with partial derivatives
of any order, to the limiting kernel k(u− v), where

k(u) =
m∏

j=1

sin 2πuj

2πuj

, u ∈ Rm

16



2.5 Examples 2 THE RIEMANNIAN CASE

is the reproducing kernel in the m-dimensional Paley-Wiener space. The
limiting spectral measure is the normalized Lebesgue measure σm on the cube
[−1, 1]m ⊂ Rm. This measure obviously satisfies assumptions (ρ1) − (ρ4) of
Theorem 1. Then Theorem 4 yields convergence of N(fn)/nm to ν(σm), both
in mean and with probability one.

2.5.2 Ensemble of spherical harmonics

Here, Hn is the subspace of L2(Sm), which consists of m-dimensional real-
valued spherical harmonics of degree n, that is, of restrictions to the unit
sphere Sm ⊂ Rm+1 of homogeneous harmonic polynomials of degree n in
m + 1 variables. The reproducing kernel for this space is well known:

Kn(x, y) = Qm
n (cos Θ(x, y)) ,

where Θ(x, y) is the angle between the vectors x, y ∈ Sm (that is, cos Θ(x, y) =
x·y), and Qm

n are the Gegenbauer polynomials5 that are orthogonal on [−1, 1]

with the weight (1− t2)
m−2

2 and normalized by Qm
n (1) = 1. For m = 2, these

polynomials coincide with the standard Legendre polynomials.

Fig. 1: Nodal portrait of the Gaussian spherical harmonic of degree 40 (figure
by A. Barnett). “Elliptic regularity in action”: nice boundaries, no
small nodal domains, cf. the next figure.

To scale the random spherical harmonic fn, we fix a point x ∈ Sm, fix its
neighbourhood Ox ⊂ Sm and a neighbourhood U ⊂ Rm of the origin, and

5 a.k.a. ultraspherical polynomials.
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put fx,n(u) = (f ◦ Φx)(n
−1u). Then the scaled covariance kernel equals

Kx,n(u, v) = Qm
n (cos Θ(Φx(n

−1u), Φx(n
−1v))) .

Now, we observe that the angle Θ(Φx(n
−1u), Φx(n

−1v)) is close to n−1|u− v|
and that by the classical Mehler-Heine-type asymptotics [21, Theorem 8.1.1],

lim
n→∞

Qm
n

(
cos

z

n

)
= cmz−

m−2
2 Jm−2

2
(z) ,

where J` is the Bessel function (of the first kind) of index `, and the conver-
gence is locally uniform in C. Keeping these observations in mind, it is not
difficult to show that the scaled kernel Kx,n(u, v) converges locally uniformly
in u and v, together with partial derivatives of any order, to

cm|u− v|−m−2
2 Jm−2

2
(|u− v|) ,

which is the Fourier integral of the normalized Lebesgue measure ωm on the
sphere Sm. Thus, ωm is the limiting spectral measure, and conditions (ρ1)–
(ρ4) obviously hold. Then Theorem 4 yields convergence of N(fn)/nm to
ν(ω̂m), a.s. and with probability one.

Actually, for this ensemble we can say much more: the probability that
N(fn)/nm deviates from ν(ω̂m) by an arbitrary ε is exponentially small when
n is large. In Section 4, we will prove this for m = 2.

2.5.3 Another spherical ensemble

Here, Hn is the subspace of L2(Sm) spanned by all polynomials in m + 1
variables of total degree 6 n, restricted to Sm. A known computation [14, 18]
based on the Christoffel-Darboux formula shows that the reproducing kernel
in Hn equals

Kn(x, y) = P
(m

2
, m

2
−1)

n (cos Θ(x, y)) , x, y ∈ Sm ,

where P
(α,β)
n denote Jacobi polynomials of degree n and of index (α, β) (i.e.,

polynomials orthogonal on [−1, 1] with the weight (1−x)α(1+x)β), normal-

ized by P
(α,β)
n (1) = 1. For this ensemble, the scaling is the same as in 2.5.2.

Now, the Mehler-Heine-type asymptotics [21, Theorem 8.1.1] gives us

lim
n→∞

P
(m

2
, m

2
−1)

n

(
cos

z

n

)
= cmz−

m
2 Jm

2
(z) ,
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Fig. 2: Nodal portrait of Gaussian linear combination of spherical harmonic
of degrees 6 40 (figure by A. Barnett). Note some small nodal do-
mains, cf. the previous figure.

with locally uniform convergence in C, and the scaled kernel Kx,n(u, v) con-
verges locally uniformly in u and v, together with partial derivatives of any
order, to

cm|u− v|−m
2 Jm

2
(|u− v|).

This is the Fourier integral of the normalized Lebesgue measure σm on the
unit ball Bm ⊂ Rm. Therefore, the limiting spectral measure is σm, and con-
ditions (ρ1)–(ρ4) obviously hold. Once again, Theorem 4 yields convergence
of N(fn)/nm to ν(σm), both in mean and a.s..

This example can be extended in different directions. For instance, given
a Riemannian manifold X, one can consider finite-dimensional subspaces of
L2(X) spanned by the eigenfunctions of the (minus) Laplacian on X corre-
sponding to the eigenvalues 6 λ2, cf. [18]. More generally, one can consider
subspaces of L2(X) spanned by the eigenfunctions corresponding to a pre-
assigned window for eigenvalues.

2.5.4 Kostlan’s ensemble

We start with a Gaussian ensemble of homogeneous polynomials of degree
n in m + 1 variables. The zero sets of these polynomials are viewed as
hypersurfaces in Sm. The corresponding Hilbert space Hn is endowed with
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2.5 Examples 2 THE RIEMANNIAN CASE

the scalar product

〈f, g〉 =
∑

|J |=n

(
n

J

)−1

fJgJ , (8)

where

f(X) =
∑

|J |=n

fJXJ , g(X) =
∑

|J |=n

gJXJ , XJ = xj0
0 xj1

1 xj2
2 ... xjm

m ,

and

J = (j0, j1, j2, ... , jm), |J | = j0+j1+j2+ ... +jm,

(
n

J

)
=

n!

j0!j1!j2! ... jm!
.

The form of the scalar product (8) comes from the complexification: after
the continuation of the homogeneous polynomials f and g to Cm+1, up to
a factor depending on n and m, it coincides with the scalar product in the
Fock-Bargmann space,

〈f, g〉 = cn,m

∫

Cm+1

f(Z)g(Z)e−|Z|
2

d vol(Z) .

It is known that the complexified Kostlan ensemble is the only unitarily
invariant Gaussian ensemble of homogeneous polynomials. On the other
hand, there are many other orthogonally invariant Gaussian ensembles, all
of them having been classified by Kostlan [11].

The normalized covariance kernel of Kostlan’s ensemble equals
(

X · Y
|X| |Y |

)n

= (x · y)n = cosn Θ(x, y) .

This is a Hermitian positive definite kernel on Sm, and it is not difficult to
check that it is the reproducing kernel in the Hilbert space

H̃n =
{
f̃ : f̃(X) = |X|−nf(X), f ∈ Hn

}

with the scalar product borrowed from Hn.
For Kostlan’s ensemble, the choice of the scaling parameter is different

from the one used in the previous examples: it is the square root of the
degree, not the degree itself. We put

Kx,n(u, v) = K
(
Φx(n

−1/2u), Φx(n
−1/2v)

)
= cosn Θ

(
Φx(n

−1/2u), Φx(n
−1/2v)

)
.
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Noting that Θ
(
Φx(n

−1/2u), Φx(n
−1/2v)

)
is close to n−1/2|u−v| as n →∞, we

find that the scaled kernel converges to the kernel e−
1
2
|u−v|2 locally uniformly,

together with partial derivatives of any order. Thus, the limiting spectral
measure is the Gaussian measure γm on Rm with the density exp

[−1
2
|λ|2],

and Theorem 4 yields convergence of n−
m
2 N(fn) to ν(γm) both in mean and

a.s..
An interesting feature of Kostlan’s ensemble is the very rapid off-diagonal

decay of its covariance.

3 The Riemannian case: the proofs

First, we explain the main steps in the proof of the local theorem, and then
turn to the proof of Theorem 4, which is based on the local version.

3.1 Proof of Theorem 5

We fix the point x ∈ X, and denote by Fx the corresponding limiting Gaus-
sian function. We also fix the following parameters:

• an arbitrarily small parameter δ, which will control the probabilities of the
events we discard;

• R > 1, which will be sent to infinity only at the very last step of the proof;

• a sufficiently big M , which controls the C2-norms: E‖fx,L‖C2(B̄(2R)) 6 M
and E‖Fx‖C2(B̄(2R)) 6M .

3.1.1 Coupling

The Gaussian functions fx,L and Fx are defined on different probability
spaces, and we only know that their covariances are close. First of all, we
need to couple them, i.e., to find Gaussian functions f̃x,L and F̃x defined on
the same probability space, equidistributed with fx,L and Fx correspondingly,
and with high probability close to each other in C1(B̄(2R)). The C1-error
of coupling is controlled by a small parameter β(δ, R), whose value will be
fixed later.

Lemma 4. Given α > 0, there exist Gaussian functions f̃x,L and F̃x defined
on the same probability space and equidistributed with fx,L and Fx, such that,
for L > L0(α, δ,R),

E‖f̃x,L − F̃x‖C1(B̄(2R)) < α .
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3.1 Proof of Theorem 5 3 PROOFS

Sketch of the proof of Lemma 4: We fix a finite η-net in B̄(2R) with suffi-
ciently small η. First, using a simple finite-dimensional linear algebra argu-
ment, we couple the restrictions of fx,L and Fx to this net and get the func-

tions f̃x,L and F̃x, which are close to each other on the net. Then, using once
again a simple linear algebra argument, but this time an infinite-dimensional
one, we extend the coupled random functions from the net to the whole ball
B̄(2R). At last, using a priori estimates of the C2-norm of these functions
and the classical Hadamard-Landau inequality, we conclude that they close
to each other in C1(B̄(2R)). 2

Given β > 0, we introduce the event

Ω1 = {‖fx,L − Fx‖C1(B̄(2R)) > β} .

Applying Lemma 4, we assume that the scaling parameter L is so big that
P(Ω1) < δ. Then we consider the events

Ω2 =
{
‖fx,L‖C2(B̄(2R)) > δ−1M

}
, Ω3 =

{
‖Fx‖C2(B̄(2R)) > δ−1M

}
.

Each of them has probability at most δ. Discarding these events, we assume
that

‖fx,L‖C2(B̄(2R)) < δ−1M , ‖Fx‖C2(B̄(2R)) < δ−1M .

3.1.2 Stability

Discarding the events Ω1, Ω2, and Ω3, we get smooth functions fx,L and Fx

defined on the same probability space that are C1-close to each other. We
wish to conclude that the numbers of connected components of their zero sets
are also close. Generally speaking, a C1-perturbation of a smooth function
can drastically change the topology of its zero set. The good news is that
this does not happen if the function and its gradient are not simultaneously
small. We call such functions stable. The next step is to show that, with
high probability, the functions fx,L and Fx are stable.

Consider the event

Ω4 =
{

min
u∈B̄(2R)

max {|fx,L(u)|, |∇fx,L(u)|} 6 2β
}

.

Lemma 5. Given δ > 0 and R > 0, there exist β = β(δ, R, M) and L0 =
L0(δ, R), such that P(

Ω4

)
< δ provided that L > L0.
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Note that discarding the event Ω4 we also have

min
B̄(2R)

max{|Fx|, |∇Fx|} > β .

The proof of Lemma 5 is based on the following simple and useful observation:

• if a C1-Gaussian function g has a constant variance, then the random
variables g(u) and ∇g(u) are independent at each point u.

Sketch of the proof of Lemma 5: We choose a finite η-net {yj} in B̄(2R)
with sufficiently small η = η(δ, R). Suppose that, for some y ∈ B̄(2R), both
|fx,L(y)| and |∇fx,L(y)| are less or equal than 2β. Then, for some point yi of
the net,

|fx,L(yi)| . β + δ−1Mη2 , |∇fx,L(yi)| . β + δ−1Mη .

Using the aforementioned independence (and non-degeneracy of the distri-
bution of the Gaussian vector ∇fx,L), we estimate the probability that both
events occur simultaneously, and take the union bound over the net. 2

3.1.3 Stable components of the zero set

Discarding events Ωi, 1 6 i 6 4, we have, for sufficiently large L,

‖fx,L − Fx‖C1(B̄(2R)) < β ,

while

min
B̄(2R)

max{|fx,L|, |∇fx,L|} > β , min
B̄(2R)

max{|Fx|, |∇Fx|} > β .

We claim that this yields

N(R− 1; Fx) 6 N(R, fx,L) 6 N(R + 1; Fx) . (9)

Combined with Theorem 1, this yields Theorem 5.

To prove (9), we will use a lemma from multivariable calculus. Denote
by V+t an open t-neighbourhood of the set V ⊂ Rm.

Lemma 6. Fix positive α and β. Let f be a C1-smooth function on an
open ball B ⊂ Rm such that at every point u ∈ B, either |f(u)| > α, or
|∇f(u)| > β. Then each component γ of the zero set Z(f) with dist(γ, ∂B) >
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α/β is contained in an open “annulus” Aγ ⊂ γ+α/β bounded by two smooth
connected hypersufaces such that f = +α on one boundary component of
Aγ, and f = −α on the other. Furthermore, “the annuli” Aγ are pairwise
disjoint.

Proof of Lemma 6: With no loss of generality, we assume that α = β = 1
(otherwise, we replace the function f by λ1f(λ2u) with appropriate λ1 and
λ2). We fix the component γ, as in the assumptions. Given t ∈ (0, 1],
we denote by γt a connected component of the sublevel set {|f | < t} that
contains γ, and look at the evolution of γt as t grows from 0 to 1. During this
evolution |∇f | > 1, therefore, the component γt neither merges with other
components of the set {|f | < t}, nor shrinks.

Using once again that |∇f | > 1 everywhere on the component γt, we
see that γt ⊂ γ+1, and therefore, during the evolution γt cannot reach the
boundary ∂B. 2

As an immediate corollary, we get the needed stability of components of
the zero set:

Lemma 7. Let the function f meet assumptions of Lemma 6 and let g be
any C(B)-function with sup |g| < α. Then each component γ of Z(f) with
dist(γ, ∂B) > α/β generates a component γ̃ of the zero set Z(f +g) such that
γ̃ ⊂ γ+α/β. Different components γ1 6= γ2 of f generate different components
γ̃1 6= γ̃2 of Z(f + g).

Now, applying Lemma 7 to the functions f = fx,L and g = Fx−fx,L with
α = β, and then, once again, to the functions f = Fx and g = fx,L − Fx, we
get (9). This completes the proof of Theorem 5. 2

3.2 Proof of Theorem 4

For a.e. x ∈ X, denote by Fx the corresponding local limiting function. Then

ν̄(x) = lim
R→∞

E{
N(R; Fx)

}

vol B(R)
.

Since N(R; Fx) does not exceed the number of critical points of Fx in the ball
B(R), by the Kac-Rice upper bound (Lemma 2), ν̄ is a bounded function on
X.
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We need to show that

lim
L→∞

E
∣∣∣L−mN(fL)−

∫

X

ν̄ d volX

∣∣∣ = 0 .

Below, we will explain how we prove the upper bound

lim
L→∞

E
[
L−mN(fL)−

∫

X

ν̄ d volX

]
+

= 0 .

The proof of the lower bound is similar, but simpler, since it does not require
a separation of small and long components, which we will describe below.

3.2.1 Discarding long components

Long components are the ones whose diameter is much bigger than 1/L.
They cannot be captured by our local approximation of the zero set Z(fL)
by Z(Fx), so we need to discard them.

Definition 4. We call a connected component of the zero set Z(fL) D-long
if diam(γ) > D/L, and denote by ND−long(fL) the number of D-long compo-
nents of the zero set Z(fL).

Lemma 8. For D > 1, we have

lim
L→∞

L−m END−long(fL) . 1/D .

Sketch of the proof: We fix a D/(4L)-net on X of cardinality ' (L/D)m,
cover X by balls Bj of radius D/(2L) centered at the points of this net,
and bound the number of D-long components by the total number of critical
points of the restrictions fL

∣∣
∂Bj

. To estimate the mean number of critical

points of these restrictions, we apply the Kac-Rice upper bound. 2

3.2.2 Discarding small components

Small components are boundary components of nodal domains6 of fL whose
volume is much smaller than L−m. Ignoring small components, we will be
able to control the number of components by the volume of the set they are
contained in.

6 Nodal domains of fL are connected components of the set {fL 6= 0}.
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Definition 5. We call a nodal domain G of the function fL δ-small if
volX(G) < δL−m. We call a connected component γ of the zero set Z(fL)
δ-small if it is a boundary component of a δ-small nodal domain. We denote
by Nδ−small(fL) the number of δ-small components of Z(fL).

Lemma 9. There exists a constant c > 0 such that

lim
L→∞

L−m ENδ−small(fL) . δc .

To prove this lemma, we use a chain of four lemmas on (non-random)
smooth functions. The starting point is Morrey’s version of Poincaré’s in-
equality [6, Section 4.5.3]:

Lemma 10. Suppose H is a smooth function in the unit ball B ⊂ Rm. Then,
for q > m,

sup
B
|H −H(0)| 6 C(m, q)‖DH‖Lq(B).

As a corollary, we get

Lemma 11. Let B ⊂ X be a ball centered at c of a sufficiently small radius.
Suppose that f ∈ C2(B̄), Df(c) = 0, and f vanishes somewhere on the
boundary ∂B. Then, for q > m,

‖Df‖C(B̄) .
(
volX(B)

) 1
m
− 1

q ‖D2f‖Lq(B)

and
‖f‖C(B̄) .

(
volX(B)

) 2
m
− 1

q ‖D2f‖Lq(B) .

Next, it is convenient to introduce the notation

I(B) =

∫

B

|D2f |q d volX .

The previous lemma yields the following one:

Lemma 12. Under the assumptions of the last lemma, we have

I(B)−s .
(
volX(B)

)t
∫

B

|f |−(1−ε)|Df |−(m−ε) d volX ,

where ε > 0 is so small and q > m is so large that the parameters

s =
m + 1− 2ε

q
, t = (1− ε)

( 2

m
− 1

q

)
+ (m− ε)

( 1

m
− 1

q

)
− 1

are positive.
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For a smooth function f on X, we denote by N = Nf (δ) the number
of nodal domains of f of volume less than δ. Note that if f has N nodal
domains of volume less than δ, then we can find N disjoint balls Bj so that

• the gradient of f vanishes at the center of each ball Bj;

• the function f vanishes somewhere on the boundary of each ball Bj;

• the volume of each ball Bj is less than δ.

Then Lemma 12 allows us to estimate from above the number of these balls:

Lemma 13. Given a positive integer m, there exist parameters q > m, ε > 0,
c > 0, s > 0, such that, for any f ∈ C2(X),

Nf (δ) . δc
(∫

X

|D2f |q d volX

) s
s+1

(∫

X

|f |−(1−ε)|Df |−(m−ε) d volX

) 1
s+1

.

We apply this estimate to the random function fL with δL−m instead of δ.
Taking the expectation, applying Hölder’s inequality, and using the smooth-
ness and non-degeneracy of the ensemble (fL), as well as the independence
of fL(x) and DfL(x), we get Lemma 9.

3.2.3 Integral-geometric estimate for normal components

We fix a small parameter δ and a large parameter D.

Definition 6. We call the connected component γ of Z(fL) normal if it is
neither δ-small, nor D-long. We denote by Nnorm(fL) the number of normal
components of the zero set of fL.

Keeping in mind Lemma 8 and Lemma 9, it suffices to show that

lim
L→∞

E
[
L−mNnorm(fL)−

∫

X

ν̄ dvolX

]
+

= 0 .

We start with a Riemannian version of the integral-geometric estimate 1.3.1.
Denote by Nnorm(x, r; fL) the number of normal components of the zero set
Z(fL) contained in the geodesic ball B(x; r) and by N∗

norm(x, r; fL) the number
of normal components of the zero set Z(fL) that intersect the geodesic ball
B(x; r).
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Lemma 14. Given ε > 0, there exists δ > 0 such that, for every r < δ,

(1− ε)

∫

X

Nnorm(x, r; fL)

vol B(R)
d volX(x) 6 Nnorm(fL)

6 (1 + ε)

∫

X

N∗
norm(x, r; fL)

vol B(R)
d volX(x) . (10)

Here vol B(r) is the Euclidean volume of the m-dimensional ball of radius r.
The proof of this lemma is very close to that of Lemma 1 and we skip it.

Since the diameters of normal components do not exceed D/L, we have

N∗
norm(x, r; fL) 6 Nnorm(x, r + L−1D; fL) .

Next, we fix a sufficiently big R, put D =
√

R, and use the right half of
estimate (10) with r = R/L, where L is big enough. We get

Nnorm(fL)

Lm
6 (1 + 2ε)

∫

X

Nnorm(x, (R + D)/L; fL)

vol B(R + D)
d volX(x) .

Using the left half of estimate (10), we see that the integral

∫

X

Nnorm(x, (R + D)/L; fL)

vol B(R + D)
d volX(x)

is majorized by the total number of critical points of the function fL. In turn,
by the smoothness assumption and the Kac-Rice estimate, the expectation
of the latter number is . Lm volX(X). Therefore,

E
[
L−mNnorm(fL)−

∫

X

ν̄ d volX

]
+

6
∫

Ω

∫

X

[Nnorm(x, (R + D)/L; fL)

vol B(R + D)
− ν̄(x)

]
+

d volX(x) dP(ω) + O(ε) .

Thus, it remains to estimate the double integral on the RHS.

3.2.4 Completing the proof of Theorem 4

To simplify notation, we assume that volX(X) = 1. Put

Ωx,R,L(ε) =
{∣∣∣N(x,R/L; fL)

vol B(R)
− ν̄(x)

∣∣∣ > ε
}

.
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By Theorem 5, for a.e. x ∈ X,

lim
R→∞

lim
L→∞

P{
Ωx,R+D,L(ε)

}
= 0 .

Applying Egorov’s theorem to this double limit, we see that, given η > 0,
there exists a set Xη ⊂ X with vol(Xη) > 1− η, such that the convergence is
uniform on Xη, that is,

lim
R→∞

lim
L→∞

sup
x∈Xη

P{
Ωx,R,L(ε)

}
= 0 .

Since we have discarded δ-small components (and since D =
√

R),

Nnorm(x, (R + D)/L; fL) . δ−1 vol B(R + D) .

Therefore, uniformly in ω ∈ Ω,
∫

X\Xη

Nnorm(x, (R + D)/L; fL)

vol B(R + D)
d volX(x) . ηδ−1 ,

and uniformly in x ∈ X,
∫

Ωx,R+D,L(ε)

Nnorm(x, (R + D)/L; fL)

vol B(R + D)
dP(ω) . δ−1P{

Ωx,R+D,L(ε)
}
.

The remaining integral is small by the very definition of the set Ωx,R+D,L(ε):
∫

Ω\Ωx,R+D,L(ε)

∫

Xη

[Nnorm(x, (R + D)/L; fL)

vol B(R + D)
− ν̄(x)

]
+

d volX(x) dP(ω) 6 ε .

It remains to let L →∞, R →∞, η → 0, δ → 0, and then ε → 0. 2

4 Random monochromatic waves

In this lecture, we will discuss the nodal portraits of two-dimensional random
functions f satisfying the Helmholtz equation ∆f + κ2f = 0. We consider
two instances closely related to each other:

• The random ensemble of two-dimensional spherical harmonics, which we
have already discussed in 2.5.2.

• The Gaussian Helmholtz waves. These are translation-invariant Gaussian
functions on R2 whose spectral measure is the Lebesgue measure on the unit
circle S1.

Recall that the Gaussian Helmholtz wave is the limiting function for the
ensemble of two-dimensional spherical harmonics.
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Fig. 3: Nodal portrait of the Gaussian Helmholtz wave (figure by A. Barnett)

4.1 The Bogomolny-Schmit bond percolation model

Bogomolny and Schmit studied nodal portraits of the Gaussian Helmholtz
waves. Their hypothesis is that the distribution of nodal domains is roughly
the same as in the critical bond percolation model on a square lattice. Their
starting point is the square lattice in R2 whose length per unit area coincides
with the mean length of the zero set Z(F ) per unit area (the latter can
be readily computed). The cells of the lattice represent local maxima and
minima, while the sites are saddle points with zero saddle heights. Though
this picture is not realistic (a.s., the function F and its gradient ∇F cannot
vanish simultaneously), nevertheless, it takes into account two important
features of nodal portrait of F :

• all local maxima of the function F are positive and all local minima are
negative (this follows from the Helmholtz equation);

• in large disks, the number of local maxima plus the number of local minima
approximately equals the number of saddle points.

To make the model more realistic, Bogomolny and Schmit suggest to
change at each site the line crossing to one of the two equiprobable avoided
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Fig. 4: Avoided nodal crossings in the Bogomolny-Schmit model

crossings, as shown in Fig 4.1. At different sites, the changes are independent.
Then Bogomolny and Schmit introduce two dual square lattices: the

‘blue’ one, with vertices at the cells of the grid where the function is positive,
and the ‘red’ one, with vertices at the cells of the grid where the function is
negative. Each realization of the random choice of avoided crossings gener-
ates two graphs, the blue one, whose vertices are the blue lattice points and
the red one, whose vertices are the red lattice points. Two vertices are con-
nected by an edge if the corresponding cells of the grid belong to the same
nodal domain of the random function. Each of these graphs uniquely de-

Fig. 5: Bond percolation on the ‘blue’ lattice

termines the topology of the whole nodal portrait (so it suffices to consider
only one of them), and each of them represents the critical bond percola-
tion on the corresponding square lattice. Then using some heuristics coming
from statistical mechanics, Bogomolny and Schmit computed the limits of
the mean 7,

lim
R→∞

EN(R; F )

R2
=

3
√

3− 5

π
≈ 0.0624 .

7 as we have already mentioned, Konrad’s thesis [10] puts some doubt about this exact
value
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They also argued that the growth of the variance of N(R; F ) is proportional
to R2 and that fluctuations of the random variable N(R; F ) are asymptoti-
cally Gaussian when R →∞. They concluded their work with a remarkable
prediction of the power distribution law for the areas of nodal domains, based
on percolation theory.

The major problem with this model is that it completely ignores correla-
tions between values of the function F , which decay only as the distance to
the power −1

2
. The ‘minor’ problem is that there is still no rigorous mathe-

matical treatment of the critical bond percolation on the square lattice.

Question 4. Reveal “a hidden universality law” that provides a rigorous
foundation for the Bogomolnny-Schmit work.

It seems that, at present, we are very far from understanding this universality.
We do not have answers to the following, much more basic questions:

Question 5. Show that with probability one the zero set Z(F ) has no infinite
component.

Question 6. Show that for each ε > 0, the probability that the set
{
x : F (x) >

ε, |x| < R
}

has a component of diameter bigger than εR tends to zero as
R →∞.

In one aspect, we went beyond the Bogomolny-Schmit predictions. Namely,
for random Gaussian monochromatic waves, we can rigorously prove the ex-
ponential concentration of the number of connected components around its
mean value. Contrary to the Bogomolny-Schmit model, this result is not par-
ticularly two-dimensional. To simplify the exposition, we restrict ourselves
to the ensemble of two-dimensional spherical harmonics.

4.2 Exponential concentration

Here, Hn is the 2n + 1-dimensional subspace of L2(S2) consisting of the
real-valued spherical harmonics of degree n on S2. This is the space of eigen-
functions of the Laplace-Beltrami operator on S2 with the n-th eigenvalue
λn = n(n + 1). An alternative definition says that the elements of this space
are restrictions of harmonic homogeneous polynomials in R3 to the sphere
S2. By (fn) we denote the ensemble of random Gaussian spherical harmonics
of degree n built on the space Hn. Recall that the limiting spectral mea-
sure for this ensemble is the Lebesgue measure ω on the unit circumference
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S1 ⊂ R2 and that the limiting translation-invariant function is the Gaussian
Helmholtz wave. According to Theorem 4, N(fn)/n2 converges to a positive
constant ν(ω) both in mean and a.s., and according to the Bogomolny-Schmit
prediction, ν(ω) = (3

√
3− 5)/π.

Theorem 6. For every ε > 0, there exist positive constants c(ε) and C(ε)
such that

P
{∣∣∣N(fn)

n2
− ν(ω)

∣∣∣> ε
}

6 C(ε)e−c(ε)n .

The exponential concentration in Theorem 6 can be viewed as another
manifestation of Levy’s concentration of measure principle. It is particu-
larly interesting, since the covariance of the ensemble of Gaussian spherical
harmonics has a very slow off-diagonal decay.

The proof of Theorem 6 is based on the Gaussian isoperimetric inequality,
which was independently found by Sudakov and Tsirelson [20] and Borell [4].

4.2.1 Gaussian isoperimetry

Put d = 2n + 1. It is convenient to view the Hilbert space Hn as a d-
dimensional Euclidean space equipped with a standard Gaussian measure γd

with E|x|2 = 1. As above, by V+% we denote an open %-neighbourhood of the
set V ⊂ Rd.

Theorem 7 (Borell, Sudakov-Tsirelson). Suppose V ⊂ Rd is a Borel set
and Π ⊂ Rd is an affine half-space such that γd(V ) = γd(Π). Then, for every
% > 0, γd(V+%) > γd(Π+%).

A simple computation shows that if γd(Π+%) is not too close to 1, then
γd(Π) must be exponentially small in d, like exp[−c%2d]. Returning to the
space Hn of spherical harmonics, we get

Corollary 1 (Levy’s concentration of Gaussian measure onHn). Let V ⊂ Hn

be any Borel set of spherical harmonics. Suppose that the set V+% satisfies
P(V+%) 6 3

4
. Then P(V ) 6 2e−c%2n.

To use the concentration of measure principle, we need to show that the
number N(f) doesn’t change too much under small perturbation of f in the
L2(S2)-norm. Certainly, it is not true for all f ∈ Hn, but we show that the
“unstable” spherical harmonics f ∈ Hn for which small perturbations can
lead to a drastic decrease in the number of components of the zero set are
exponentially rare.
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4.2.2 Uniform lower semicontinuity of N(f)/n2 outside a small
exceptional set

Here is a fundamental lemma. It gives a quantitative version of estimates we
were using in the course of the proof of Theorem 5.

Lemma 15 (Uniform lower semi-continuity of N(fn)/n2). For every ε > 0,
there exist % > 0 and an exceptional set E ⊂ Hn of probability P(E) 6
C(ε)e−c(ε)n, such that for all f ∈ Hn \ E and for all g ∈ Hn satisfying
‖g‖ 6 %, we have

N(f + g) > N(f)− εn2.

A seeming asymmetry in this statement appears since we perturb non-
exceptional spherical harmonics by arbitrary ones with small norm.

Theorem 6 readily follows from this lemma combined with the previous
results. Indeed, denote by mn the median of the random variable N(f)/n2.
By Theorem 4, we have mn → ν(ω) as n →∞. Therefore, it suffices to show
that

P
{∣∣∣N(f)

n2
−mn

∣∣∣ > ε
}

< C(ε)e−c(ε)n2

.

First, we consider the set V =
{
f ∈ Hn : N(f) > (mn + ε)n2

}
. Then for

f ∈ (V \ E)+% we have N(f) > mnn
2, and therefore P(

(V \ E)+%

)
6 1

2
.

Hence, by the concentration of Gaussian measure, P(V \ E) 6 2e−c%2n, and
finally

P(V ) 6 P(V \ E) + P(E) 6 2e−c%2n + C(ε)e−c(ε)n 6 C(ε)e−c(ε)n .

Now, let us look at the set V =
{
f ∈ Hn : N(f) < (mn− ε)n2

}
. For this set,

V+% ⊂
{
f ∈ Hn : N(f) < mnn

2
} ∪ E, so that

P(V+%) 6 1

2
+ C(ε)e−c(ε)n <

3

4

for large n, and it follows that P(V ) 6 2e−c%2n. This proves Theorem 6
modulo Lemma 15. 2

The proof of Lemma 15 goes in two steps. First, we single out the ex-
ceptional set E of unstable spherical harmonics and estimate its measure.
Then we show that the number of connected components of non-exceptional
spherical harmonics is stable under small perturbations.
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4.2.3 Several facts about spherical harmonics

We start with a few standard facts about spherical harmonics of degree n,
which will be used in the proof of Lemma 15. These facts can be derived
either from the fact that they are eigenfunctions of the Laplacian on the
sphere corresponding to the eigenvalue n(n + 1), or from the fact that they
are traces of homogeneous harmonic polynomials in R3 of degree n on the
unit sphere. Everywhere below we assume that n > 1.

Lemma 16 (Mean-value property). For any f ∈ Hn and any point x ∈ S2,
we have

|f(x)|2 . n2

∫

D(x,1/n)

f 2 .

Here D(x, 1/n) is a spherical disc of radius 1/n centered at x.

Lemma 17 (Length estimate). For any f ∈ Hn that is not identically 0, the
total length of Z(f) does not exceed Cn.

The next lemma follows from the classical Faber-Krahn inequality:

Lemma 18 (Area estimate). For any connected component G of S2 \Z(f),
we have Area(G) & n−2.

Actually, it is not difficult to show that every nodal domain of f contains a
disc of radius c/n.

4.2.4 Spherical harmonics with many unstable disks

Here, we use an idea similar to the one used in the proof of Theorems 5
and 4: the nodal portrait of a spherical harmonic is unstable under small
perturbations only if in many different places on the sphere S2 the function
f and its gradient ∇f are simultaneously small.

We fix small positive parameters α and δ and a large positive parameter
R; all of them will be some powers of ε. Then we cover the sphere S2 by
' R−2n2 disks Dj of radius R/n in such a way that the concentric disks 4Dj

with 4 times larger radius cover the sphere with a bounded multiplicity. We
denote by D the collection of the discs Dj.

Definition 7 (unstable disks). We call the disk Dj stable, if for each x ∈ 3Dj

either |f(x)| > α, or |∇f(x)| > αn. Otherwise, the disk Dj is unstable.
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Definition 8 (exceptional spherical harmonics). We call the spherical har-
monic f ∈ Hn exceptional, if the number of unstable disks is at least δn2,
and denote by E the set of all exceptional spherical harmonics of degree n.

Lemma 19. Given δ > 0, there exist positive small α0(δ) and c(δ), and a
positive large C(δ) such that

P(E) 6 C(δ)e−c(δ)n

provided that α 6 α0(δ).

We skip the proof of this lemma (it is given in Section 4.2 of [16]), but
note that, curiously enough, it uses once again the concentration of measure
principle.

4.2.5 Proof of the uniform lower semicontinuity

Fix a “stable” spherical harmonic f ∈ Hn \E. We need to show that at most
εn2 components of the zero set Z(f) can disappear after perturbation of f by
another spherical harmonic g ∈ Hn with sufficiently small L2-norm ‖g‖ < %.
First, in several steps, we identify possibly ‘unstable’ connected components
of the zero set Z(f) that can disappear after perturbation, show that their
number is small compared to n2, and discard them. Then Lemma 7 will
yield that all other connected components of Z(f) do not disappear after the
perturbation.

• First, we discard the nodal components γ whose diameter is bigger than
R/n. By the length estimate in Lemma 17, their number is . R−1n2, which
is small compared to n2.

With each remaining component γ of the nodal set Z(f) we associate a
disk Dj from the collection D such that Dj ∩ γ 6= ∅. Then γ ⊂ 2Dj. By
the area estimate in Lemma 18, the number of components γ intersecting Dj

(and, thereby, contained in 2Dj) is bounded.

• Second, we discard the components γ with unstable disks Dj. Since f is not
exceptional, and since, by the area estimate, each disk Dj cannot intersect
too many components contained in 2Dj, the number of such components is
also small compared to n2.

• At last, we discard the components γ such that

max
3Dj

|g| > α .
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To estimate the number N of such disks, we denote by D∗
j ⊂ 4Dj the disk of

radius 1/n centered at the point yj where |g| attains its maximum in 3Dj.
By Lemma 16, ∫

D∗j

|g|2 & n−2|g(yj)| = α2n−2 ,

whence
%2 > ‖g‖L2(S2) & Nα2n−2 ,

that is, N . %2α−2n2. As above, using Lemma 18 and juxtaposing the
areas, we conclude that the number of components γ affected by this is
. R2N . R2%2α−2n2, which is much less than εn2, provided that %2 is much
less than εα2R−2.

In the three steps above, we have discarded at most εn2 connected com-
ponents of Z(f). Let γ be one of the remaining components. By our con-
struction, there is a disc Dj so that

• γ ⊂ 2Dj;

• max
(|f |, n−1|∇f |) > α everywhere in 3Dj;

• |g| < α everywhere in 3Dj.

Then, by Lemma 7, the component γ survives when we perturb the function
f by g. This completes the proof of Lemma 15. 2

4.3 More questions

Question 7. Is it possible to extend the exponential concentration result to
random functions that do not solve the Helmholtz equation?

This question is open even in the one-dimensional case, that is, for zero
crossings of sufficiently smooth Gaussian stationary processes on R1, cf.
Tsirelson’s lecture notes [22]. The principal obstacle are small nodal do-
mains.

Nothing is known about the number of connected components of the
zero set for a ‘randomly chosen’ high-energy Laplace eigenfunction fλ on
an arbitrary compact surface X without boundary endowed with a smooth
Riemannian metric g. It is tempting to expect that Theorem 6 models what is
happening when X is the two-dimensional sphere S2 endowed with a generic
Riemannian metric g that is sufficiently close (with several derivatives) to the
constant one. However, the following more näıve question is widely open:
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Question 8. Suppose X is the two-dimensional sphere S2 endowed with a
generic Riemannian metric g that is sufficiently close (with several deriva-
tives) to the constant one. Denote by N(fλ) the number of connected com-
ponents of the zero set of the Laplace eigenfunction fλ on X. Is it true that
lim sup

λ→∞
N(fλ) = +∞?

Instead of perturbing the “round metric” on the sphere S2, one can add
a small potential V to the Laplacian on the “ round sphere”. The question
remains just as hard.
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