
FACTORING MATRICES WITH A

TREE-STRUCTURED SPARSITY PATTERN

ALEX DRUINSKY AND SIVAN TOLEDO

Abstract. Let A be a matrix whose sparsity pattern is a tree

with maximal degree dmax. We show that if the columns of A

are ordered using minimum degree on A + A∗, then factoring A

using a sparse LU with partial pivoting algorithm generates only

O(dmaxn) fill, requires onlyO(dmaxn) operations, and is much more

stable than LU with partial pivoting on a general matrix. We

also propose an even more efficient and just-as-stable algorithm

called sibling-dominant pivoting. This algorithm is a strict partial

pivoting algorithm that modifies the column preordering locally to

minimize fill and work. It leads to only O(n) work and fill. More

conventional column pre-ordering methods that are based (usually

implicitly) on the sparsity pattern of A∗A are not as efficient as

the approaches that we propose in this paper.

1. Introduction
1

This paper explores the behavior of sparse LU factorizations of ma-

trices whose sparsity pattern is a tree. This class of matrices has re-

ceived tremendous attention in the literature, primarily because many

problems that are very hard or intractable on general matrices can be

solved when restricted to this class of matrices. Parter analyzed fill in

the Cholesky factorization of tree-structured matrices [19]; his results

were greatly extended in the following half-century, but the original

sparse Cholesky result focused on tree-structured matrices. Demmel

and Gragg show how to efficiently compute the inertia of symmet-

ric tree-structured matrices [8]. Hershkowitz analyzes the D-stability

Date: May 2010.
1A 2-page abstract of this paper, with no proofs and very few experimental re-
sults, has been presented in the 2007 Workshop on Combinatorial Tools for Parallel

Sparse Matrix Computations.
1

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN2

of tree-structured matrices [13]. Klein [16] and Nabben [18] analyze

the inverses of tree-structured matrices. Numerous papers analyze the

eigenvalues [1, 17, 21, 22], eigenvectors [9], energy[20], and character-

istic polynomials [14] of the Laplacians or adjacency matrices of trees.

The above citations are just a selection of a large body of results con-

cerning these matrices.

Our paper is similarly motivated. It addresses fundamental ques-

tions in sparse Gaussian elimination: how to minimize fill and element

growth. Our results, which cover tree-structured matrices, are sharper

than corresponding results for more general classes of matrices. In

some cases, our theoretical results agree with experimental evidence

on general sparse matrices.

The paper begins with an analysis of fill, work, and stability of the

factorization when the columns of the matrix are pre-ordered using a

minimum-degree algorithm. This analysis constitutes Section 3. The

section that follows, Section 4, describes an algorithm that is even more

efficient. This algorithm uses strict partial pivoting and a coarse pre-

ordering of the columns, but the final column ordering is determined

dynamically by inspecting the numerical values in the reduced matrix.

This algorithm performs work that is only linear in the order of the

matrix and generates only a linear amount of fill. Section 5 shows

that our new algorithm is, indeed, highly efficient, more than elimina-

tion based on a minimum-degree ordering. The experimental results

also show that both algorithms are more efficient than a conservative

column preordering algorithm. The notation for the paper and one im-

portant backround fact are described in Section 2 and our conclusions

from this research in Section 6.

2. Notation and Background

Let B be an arbitrary n-by-n square matrix, possibly unsymmetric.

The graph GB of B is an undirected graph with vertices {1, 2, . . . , n}

and with the edge set

EB = {(i, j) : i 6= j and (Bij 6= 0 or Bji 6= 0)} .

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN3

In an undirected graph G, we denote by d(i) the degree of vertex i,

and by dmax the maximal degree in the graph. If d(i) = 1, we denote

by p(i) the neighbor of i.

Consider an elimination algorithm, say Gaussian elimination. We

view the elimination algorithm in two different ways. The algebraic

view is that the elimination of k rows and columns produces partial

factors and a reduced matrix B(k). The graphical view is that the

elimination is a game that defines rules on how to eliminate vertices

from a graph. For example, the rule for the Cholesky factorization of

a symmetric positive definite matrix is that step k removes vertex k

and turns its neighbors into a clique. We denote by G
(k)
B the graph

that the game produces after the elimination of vertices 1, . . . , k from

G = G
(0)
B . When the identity of B is also clear from the context,

we denote G(k) = G
(k)
B . Under this definition, the graph of B(k) is a

subgraph of G
(k)
B , and it may be a proper subgraph if cancellations

occurred.

The vertices of G
(k)
B are {k+1, . . . , n}. That is, in the graphical rep-

resentation we always view vertices 1, . . . , k as having been eliminated

first, even if the elimination ordering performed some pivoting steps.

In this paper A always denotes an n-by-n sparse matrix whose graph

is a tree.

The results in the paper rely on one piece of backgrond informa-

tion concerning sparse LU with partial pivoting. The LU factorization

algorithm can be implemented in a way that ensures that the total

number of operations in the algorithm is proportional to the number of

arithmethic operations on nonzeros [12]. This allows us to asymptot-

ically bound the total amount of work in the factorization (work that

includes arithmetic but also pointer manipulation and so on) by simply

bounding the number of arithmetic operations.

3. LU with Partial Pivoting Using Minimum Degree on G

This section analyzes the behavior of the conventional sparse LU

with partial pivoting under effective column orderings.

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN4

We begin with an analysis of work and fill under the most obvious

column ordering, which always eliminates in step k a leaf in G(k−1). We

show that G(k) is always a tree, that we can compute this ordering be-

fore the factorization begins, and that this process requires O(dmaxn)

arithmetic operations and generates O(dmaxn) fill. The ordering in-

duced by this rule is simply the minimum degree ordering [10] applied

to G. The key observation is that although pivoting can generate fill

when G is a tree, the fill can only occur in U ; but pivoting essentially

cannot change the graph of the reduced matrix.

Lemma 1. Let 1 be a leaf of G(0). After one step of Gaussian elimi-

nation with partial pivoting, the following properties hold:

(1) G(1) is a subgraph of G(0) induced by vertices 2, . . . , n, and hence

it is also a tree.

(2) The first row of U contains at most d(p(1)) + 1 nonzeros.

(3) The first column of L contains at most two nonzeros.

(4) The first elimination step performs at most one comparison,

one division, and at most d(p(1)) multiply-add operations.

Proof. Since 1 is a leaf, the first column and row of A contain at most

two nonzeros, in positions 1 and p(1). If the diagonal element is larger

in absolute value, the algorithm simply modifies one diagonal element

in A(1) without producing any fill. In this case, the first row of U and

the first column of L will each have at most two nonzeros, in positions 1

and p(1). If, on the other hand,
∣

∣Ap(1),1

∣

∣ > |A1,1|, Gaussian elimination

with partial pivoting will exchange rows 1 and p(1). The algorithm will

then subtract a scaled multiple of Ap(1), : from A1, : , leading to fill of

at most d(p(1)) + 1 nonzeros in A1, : . The columns of these potential

nonzeros include columns 1 and p(1), so the new structure of row 1 is

exactly the structure of row p(1). This proves the first claim of the

lemma.

When pivoting occurs, the structure of the first row of U is the

structure of Ap(1), : . The structure of the first column of L is always

the structure of A : ,1. This proves the other claims in the lemma. �

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN5

This lemma leads to the the main result on LU with partial pivoting.

Lemma 2. Choose some root for G and use it to define the parent p(i)

of every vertex i except the root. Let Q be the permutation matrix of

any ordering of {1, . . . , n} such that p(i) is ordered after i. If we apply

Gaussian elimination with partial pivoting to compute QTAQ = PLU ,

then

(1) L contains at most 2n nonzeros.

(2) U contains at most

n
∑

i=1

(d(i) + 1)(d(i) + 2)

2
− 3 = O(dmaxn)

nonzeros.

(3) The algorithm performs n−1 comparisons and O(dmaxn) arith-

metic operations.

Proof. The definition of Q along with Lemma 1 ensure that in the kth

step, when the algorithm eliminates column k of (QTAQ)(k−1), this

column has at most two nonzeros (k is a leaf in G(k−1)). Consider the

rows corresponding to the nonzeros in column k of (QTAQ)(k−1). In

one of these there are at most two nonzeros (again because k is a leaf

in G(k−1)). In the other the number of nonzeros is bounded by d + 1,

where d is the degree of the parent of k in G(k−1).

The bound on the number of nonzeros in L is, therefore, trivial.

The bound on the number of nonzeros in U is derived by charging

the nonzeros in row k of U to i = p(k). The number of nonzeros that i

is charged for is the sum over its children of the number of remaining

children plus one when they are eliminated. Therefore, i is charged for

d(i) + 1 nonzeros when its first child is eliminated, for d(i) when the

second child is eliminated, and so on, down to 3 nonzeros when the last

child is eliminated. This gives the formula inside the summation. Note

that a leaf i of G contributes 0 to the sum. The asymptotic bound is

easy to prove: no row of U contains more than dmax + 1 nonzeros.

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN6

The bound on the number of nonzeros in a row of U , along with the

fact that columns of L have at most two nonzeros, give the bound on

arithmetic operations and comparisons. �

It is possible to construct a family of matrices that shows that the

bounds in this lemma are asymptotically tight. We omit the details,

but we do describe in Section 5 experimental results with such matrices,

which clearly show the tightness of the results.

We note that although this ordering method is fairly natural for

tree-structured matrices, it is different than orderings that we would

get from ordering algorithms designed for general sparse Gaussian elim-

ination with partial pivoting. One such algorithm is column minimum

degree [11] or its approximate-degree variants [6, 7]. This algorithm

produces minimum-degree-type orderings for A∗A but without com-

puting the nonzero structure of A∗A. The degree of a vertex in the

graph of A∗A can reach the number of vertices within distance 2 of

it in GA. Therefore, a column minimum degree algorithm may order

internal vertices of GA before leaves in GA. Our algorithm does not.

Another algorithm for ordering the columns of matrices for fill reduc-

tion in LU with partial pivoting relies on wide separators [3]. Consider

a regular degree-d rooted tree. We can partition hierarchically with

wide separators as follows. The root and its children constitute the

top-level separator, connected components in the next two levels form

the next-level separators, and so on. There are d + 1 vertices in each

separator: a vertex and its children in G. The wide-separators ordering

algorithm does not specify the ordering within separators, so the vertex

might be eliminated before its children. This leads to O(dn) nonzeros

in L, O(dn) nonzeros in U , and O(d2n) arithmetic operations. The

number of operations is a factor of d worse than in our approach.

When Gaussian elimination with partial pivoting always eliminates

a leaf of the reduced graph (as is the case in this algorithm and in

the algorithm of the next section), the growth factor in the elimina-

tion is limited to dmax + 1. Unless dmax is huge, this ensures that the

elimination is backward stable.

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN7

Lemma 3. Let M be a bound on the magnitude of the elements of

A, and let L and U be the triangular factors produced by Gaussian

elimination with partial pivoting of AQ for some permutation matrix

Q. If the elimination always eliminates leaves in the reduced graph,

then the elements of U and of the reduced matrices are bounded in

magnitude by (d
max

+ 1)M (the elements of L are always bounded in

magnitude by 1 in Gaussian elimination with partial pivoting).

Proof. Off-diagonal elements in the reduced matrices never grow. If

we eliminate a leaf i without exchanging the row of the leaf and of its

parent, then the only element that is modified in the reduced matrix

is the diagonal element associated with the parent. If we do exchange

the two rows, then off-diagonals in row p(i) in the new reduced matrix

are computed by A
(i)
p(i),j = −Lp(i),iA

(i−1)
p(i),j . Since

∣

∣Lp(i),i

∣

∣ ≤ 1, the off-

diagonals cannot grow in magnitude.

Diagonal elements can grow. In an elimination step without a row

exchange, we have

A
(i)
p(i),p(i) = A

(i−1)
p(i),p(i) − Lp(i),iA

(i−1)
i,p(i) .

In an elimination step with a row exchange, we have

A
(i)
p(i),p(i) = A

(i−1)
i,p(i) − Lp(i),iA

(i−1)
p(i),p(i) .

Since every diagonal element in the reduced matrices undergoes at

most dmax modifications, it is easy to see by induction that elements in

the reduced matrices and therefore in U are bounded in magnitude by

(dmax + 1)M . �

If A is not only tree-structured but tridiagonal and no column piv-

oting is used, then the proof of this lemma proves a normwise growth

bound by a factor of 2. This is a known result that is a special case of

the analysis of Bohte [2] of growth in Gaussian elimination with partial

pivoting of banded matrices (see also [15], Section 9.5).

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN8

4. Sibling-Dominant Pivoting

We now show that we can reduce the work and fill to O(n) using

a more sophisticated ordering strategy. In this algorithm, the column

ordering depends on the numerical values of A, not only on the struc-

ture of G and the reduced graphs. Furthermore, we build this ordering

dynamically as the algorithm progresses, not as a preprocessing step.

But even with the cost of the dynamic ordering taken into account, the

algorithm still performs only O(n) operations.

Definition 4. The dominance of column j in a matrix B is

dom(j) =







∞ |Bjj| ≥ maxi 6=j |Bij|
maxi6=j |Bij |

|Bjj |
otherwise .

The dominance is not continuous in Bjj; as Bjj grows, the dominance

shrinks towards 1, but then jumps to ∞. We say that column j domi-

nates column k if dom(j) ≥ dom(k).

Our algorithm works as follows. It selects a vertex i with at most one

non-leaf neighbor. It will eliminate next the leaves {j1, . . . , j`} whose

neighbor is i, but in a specific order. To determine the ordering of

{j1, . . . , j`}, the algorithm first computes the dominance of {j1, . . . , j`}.

Next, the algorithm finds the column in {j1, . . . , j`} with the largest

finite dominance (if any). This column is ordered after all the columns

with infinite dominance and before all the other columns with finite

dominance. Now the algorithm performs the elimination of {j1, . . . , j`},

breaking ties by not pivoting. That is, if
∣

∣

∣
A

(k)
j,j

∣

∣

∣
=

∣

∣

∣
A

(k)
i,j

∣

∣

∣
for some

j ∈ {j1, . . . , j`}, the algorithm uses the diagonal element of the reduced

matrix as a pivot.

Lemma 5. The algorithm given above performs at most one pivoting

step during the elimination of {j1, . . . , j`}.

Proof. The elimination sequence starts with columns with infinite dom-

inance (perhaps none). There are two kinds of such columns: columns

that are diagonally dominant, and columns with a zero diagonal. If we

eliminate a leaf column j with a zero diagonal, rows j and i = p(j) are

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN9

simply exchanged and then row and column j are dropped from the

reduced matrix. In this case, no more pivoting can occur during the

elimination of the remaining columns in {j1, . . . , j`}.

In the elimination of a leaf column that is diagonally dominant (even

weakly dominant), the algorithm does not pivot, and we only modify el-

ement Ai,i in the reduced matrix. Because only this element is modified,

the dominance of the remaining columns in {j1, . . . , j`} is preserved.

Now consider what happens when we eliminate the first column j in

{j1, . . . , j`} with a finite dominance. Its dominance is larger than that

of any other column in {j1, . . . , j`} with a finite dominance.

Because j has finite dominance, the algorithm pivots in column j; it

exchanges rows j and i = p(j). In the reduced matrix, we have

A
(j)
i,k = A

(j−1)
j,k −

A
(j−1)
j,j

A
(j−1)
i,j

A
(j−1)
i,k .

(This formula represents both the row exchange and the numerical

modification.) For a sibling k of j, we have A
(j−1)
j,k = 0, so

A
(j)
i,k = −

A
(j−1)
j,j

A
(j−1)
i,j

A
(j−1)
i,k

and the absolute values satisfy

∣

∣

∣
A

(j)
i,k

∣

∣

∣
=

∣

∣

∣

∣

∣

A
(j−1)
j,j

A
(j−1)
i,j

∣

∣

∣

∣

∣

∣

∣

∣
A

(j−1)
i,k

∣

∣

∣

=

∣

∣

∣
A

(j−1)
i,k

∣

∣

∣

dom(j)
.

We claim that the remaining uneliminated columns in {j1, . . . , j`} have

become diagonally dominant. Let k be one of these columns. We have

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN10

dom(j) ≥ dom(k), so
∣

∣

∣
A

(j)
k,k

∣

∣

∣
=

∣

∣

∣
A

(j−1)
k,k

∣

∣

∣

=

∣

∣

∣
A

(j−1)
k,k

∣

∣

∣

∣

∣

∣
A

(j−1)
i,k

∣

∣

∣

∣

∣

∣
A

(j−1)
i,k

∣

∣

∣

=

∣

∣

∣
A

(j−1)
i,k

∣

∣

∣

dom(k)

≥

∣

∣

∣
A

(j−1)
i,k

∣

∣

∣

dom(j)

=
∣

∣

∣
A

(j)
i,k

∣

∣

∣
.

This implies that if we eliminate k next, the algorithm will not pivot.

Since we have already shown that when the algorithm does not pivot,

it does not modify other sibling columns, the other siblings will remain

diagonally dominant and they will not require pivoting either. �

We note that columns with infinite dominance can be ordered after

the column with the largest finite dominance, but the proof becomes

longer. Since there is no benefit in this variant ordering, we kept the

ordering strict and the proof short.

In our sibling-dominant elimination, the elimination of each column

uses the regular partial-pivoting rule. It appears that the column or-

dering cannot be computed before the numerical factorization begins.

Nonetheless, the overall effort to compute the column ordering is O(n)

operations.

Lemma 6. The total amount of work to order the columns in sibling-

dominant partial pivoting requires only O(n) operations and O(n) stor-

age.

Proof. We pre-compute a partial column ordering before the numerical

factorization begins and refine it into a total ordering during the numer-

ical factorization. We use two integer vectors of size n: column-index

and partial-order.

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN11

The preordering phase begins with an arbitrary choice of root for GA,

say vertex 1. We write the index of the root into column-index[1] and

an invalid column index (such as −1 or n+1) into partial-order[1].

We now perform a breadth-first search (BFS) of GA starting from the

root. When we visit a new vertex, we write its column index into the

next-unused location in column-index and the index of its parent in

the rooted GA into the first unused location in partial-order. The

identity of the parent is always known, because it is the vertex from

which we discovered the current one.

The partial ordering is specified by the reverse ordering of the same-

parent groups of columns in the two vectors. That is, the first group of

columns to be eliminated will be the last group with the same parent to

be discovered by the BFS. It is not hard to see that if the elimination

ordering respects this partial order, then each group with the same

parent is eliminated when all the members of the group are leaves of

the reduced graph.

Given the vectors column-index and partial-order we can enu-

merate the siblings’ groups in time proportional to their size, by scan-

ning from the last uneliminated column in the vectors towards the be-

ginning of the vectors until we find a column with a different parent (or

no parent). During this enumeration, we can find and eliminate all the

columns with infinite dominance, and we can compute the dominance of

the rest. Once this traversal and the elimination of infinite-dominance

columns is complete, we eliminate the column with the largest finite

dominance, if any, and then we eliminate its siblings.

Clearly, the total work and storage required for computing the col-

umn ordering is O(n). The keys to efficiently computing the ordering

are an efficient pre-computation of the sibling groups (using BFS) and

the fact that in each group we only need to find one dominant sibling,

not to sort all the siblings by dominance. �

The sibling-dominant column ordering results in a partial-pivoting

Gaussian elimination algorithm that only performs O(n) work and only

generates O(n) fill.

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN12

Theorem 7. The work and fill in sibling-dominant partial pivoting are

both O(n).

Proof. Sibling-dominant partial pivoting is a special case of partial-

pivoting using a minimum degree ordering. By lemmas 1 and 2, each

column in L contains at most two nonzeros and requires a constant

number of operations to compute. The elimination of columns with

infinite dominance because they are diagonally dominant requires no

pivoting. Therefore, the row of U is simply the row of the reduced

matrix, which contains at most two nonzeros because the reduced graph

is a tree and the eliminated column is a leaf. If we eliminate a column

with infinite dominance because its diagonal element is zero or if there

are no such columns and we eliminate the column with the largest finite

dominance, then we exchange two rows. This causes fill in the row of U :

the number of fill elements and the number of multiply-add operations

is bounded by the number of remaining siblings in the group plus 2.

However, once we perform such a row exchange, further eliminations in

the same sibling group will not require any row exchanges (Lemma 5).

This implies that no more fill will occur in U within this group, and that

the number of arithmetic operations per remaining column in the group

is bounded by a small constant. Since we showed that the ordering of

the elimination steps also requires only O(n) operations, the lemma

holds. �

5. Experimental Results

We conducted three sets of experiments in order to demonstrate

the effectiveness of the sibling-dominant pivoting method. In all the

experiments we used almost-complete regular trees. These trees are

degree-dmax complete trees with some of the leaves removed to obtain a

specific number of vertices. In these trees, the degree of all the internal

vertices is the same except for one or two (the root and perhaps one

vertex in the second-to-last level). Figure 5.1 shows an example of such

a tree.

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN13

Figure 5.1. An almost complete regular tree with
dmax = 4.

experiments/ex1_nnz.eps

Figure 5.2. The number of nonzeros in the LU factors
of symmetric matrices whose graphs are almost-complete
regular trees. The values of the elements of the matrices
were chosen so as to cause as much fill as possible in LU

with partial pivoting when the elimination ordering is
bottom-up.

The first experiment, whose results are shown in Figures 5.2, 5.3,

and 5.4, used trees with 1000 vertices and dmax that ranged from 2 to

999. The matrices are all symmetric and the value of all the nonzero

off-diagonal elements is 1. The values of the diagonal elements are

constructed so as to cause LU with partial pivoting to fill as much as

possible when the column ordering is produced by a minimum-degree

algorithm applied to A+A∗. In other words, to construct the matrices

we first construct their graph, we then construct a minimum-degree

ordering for this graph, permute the matrix according to this ordering,

and finally compute the values of the diagonal elements.

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN14

experiments/ex1_ops.eps

Figure 5.3. The number of arithmetic operations in the
factorizations, on the same matrices as in Figure 5.2.

experiments/ex1_growth.eps

Figure 5.4. The growth in U on the same matrices as
in Figure 5.2. The two data sets overlap each other ex-
actly.

The results of the experiments show clearly that the amount of fill

and the number of arithmetic operations that LU with partial pivoting

performs on these matrices is linear in dmax, even though the elimina-

tion was ordered bottom-up using a minimum-degree algorithm. The

slight non-linearities are caused by the fact that the trees are not com-

plete. The growth in both algorithms is exactly the same and appears

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN15

experiments/ex2_nnz.eps

Figure 5.5. The number of nonzeros in the LU factors
of symmetric matrices whose graphs are almost-complete
regular trees. The values of the off-diagonal nonzeros are
all 1 and the values of the diagonal elements are random.
The markers and the lines show the average of 100 ma-
trices and the error bars show the standard deviation.

experiments/ex2_ops.eps

Figure 5.6. The number of arithmetic operations in the
experiments described in Figure 5.5.

to be slightly sub-linear. The fact that the growth in the two algo-

rithms is exactly the same is an artifact of the special structure of

these matrices; in general, the growth factors would be different.

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN16

experiments/ex2_growth.eps

Figure 5.7. The growth factors in the experiments de-
scribed in Figure 5.5.

In the second set of experiments we used random diagonal elements

with uniform distribution in [1
2
, 1]; the non-zero off-diagonals were still

all 1. The trees were still almost complete with 10, 000 vertices. For

each of 10 different values of dmax we generated 100 random matrices.

The results, shown in Figures 5.5, 5.6, and 5.7 indicate that on these

trees, partial pivoting with a bottom-up column preordering fills much

less than the worst-case bound. The average amount of fill grows very

little with dmax, but the variance in fill does grow with dmax. Still, in

absolute terms the amount of fill and arithmetic in sibling-dominant

pivoting is much smaller than in partial pivoting. The growth in U is

exactly linear in dmax and is almost completely invariant to the random

choice of diagonal elements. In this case too, the growth in the two

algorithms is the same (again an artifact of the special construction).

The last set of experiments used similar matrices, but the value of

all the diagonal elements was n (number of vertices and the order of

the matrices). These matrices are strongly diagonally dominant. The

LU factorization with partial pivoting was computed after a column-

preordering phase that started by a random column ordering but then

reordered again using colamd [6], a minimum-degree heuristic order-

ing that tries to minimize fill in the Cholesky factor of A∗A (without

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN17

experiments/ex3_nnz.eps

Figure 5.8. The number of nonzeros in the factoriza-
tion of symmetric diagonally-dominant tree-structured
matrices. For LU with partial pivoting, the matrices
were ordered using colamd following an initial random
ordering; the randomness in the results is caused by this
initial random ordering.

experiments/ex3_ops.eps

Figure 5.9. The number of arithmetic operations in the
experiments shown in Figure 5.8.

explicitly computing A∗A or its nonzero structure). Multiple initial

random orderings of each matrix produced variance in the fill and work

of the partial-pivoting code, even with the colamd reordering. The

matrices are diagonally dominant, so no pivoting was performed by LU

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN18

with partial pivoting. Therefore, minimum degree onA+A∗ would have

produced no fill and linear work.

The results in Figures 5.8 and 5.9 indicate that colamd leads to

superlinear fill and work in LU with partial pivoting even though the

matrix is a diagonally dominant tree. Colamd indeed guards the fac-

torization from catastrophic fill, by considering any pivoting sequence.

But the price of this conservatism is some fill even when no pivoting is

performed.

6. Conclusions

This paper explored the behavior of LU with partial pivoting on

matrices whose sparsity pattern is a tree.

We have argued and demonstrated experimentally that a conserva-

tive column pre-ordering that attempts to minimize fill for any pivoting

sequence, such as colamd, can lead to fill and work that are super-

linear in the maximal degree in the tree. We have shown theoretically

that a column pre-ordering that is obtained from a minimum-degree al-

gorithm that is applied directly to A+A∗ guarantees fill and work that

are only linear in the maximal degree. We have argued and shown ex-

perimentally that this bound is tight. Finally, we have proposed a more

dynamic pivoting rule called sibling-dominant pivoting. This pivoting

rule uses strict partial pivoting for stability, but performs local column

reorderings to minimize fill and work. The amount of work and fill in

our new algorithm is linear in the order of the matrix, independently

of the structure and maximal degree of the tree.

We have also analyzed the growth in factorizations based on both

minimum-degree on A + A∗ and sibling-dominant pivoting. We have

shown that it is bounded in both cases by dmax + 1, a much smaller

bound than the 2n−1 bound for general LU with partial pivoting.

These results have two consequences whose significance may tran-

scend the class of tree-structured matrices. First, the results show that

on some restricted classes of matrices, orderings based on the structure

of A + A∗ may be provably better than more conservative orderings

based on the structure of A∗A, even in factorizations with pivoting.

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN19

Second, they show that dynamic but cheap-to-compute local column

reorderings can dramatically reduce fill and work. This was known

experimentally from the experiences gathered by the umfpack 4 algo-

rithm [4, 5], but our results are the first theoretical ones in this area.

We did not find a symmetric elimination method for tree-structured

matrices that is stable and as efficient as sibling-dominant pivoting

(which does not require symmetry). We did find a method withO(dmaxn)

fill and O(d2maxn) work, but it is clearly not competitive with sibling-

dominant pivoting, so there is little reason to use it for solving linear

systems of equations. We omit the details. Symmetric factorizations

are also useful for computing the inertia of a matrix (which cannot be

computed from an LU factorization), but the inertia of tree-structured

matrices can be computed using a sparse LDL∗ factorization with no

pivoting [8].

Acknowledgement. This research was supported by an IBM Faculty

Partnership Award, by grants 848/04 and 1045/09 from the Israel

Science Foundation (founded by the Israel Academy of Sciences and

Humanities), and by grant 2002261 from the United-States-Israel Bi-

national Science Foundation.

References

[1] Türker Bıyıkoğlu and Josef Leydold. Semiregular trees with minimal Laplacian

spectral radius. Linear Algebra and its Applications, 432(9):2335–2341, 2010.

Special Issue devoted to Selected Papers presented at the Workshop on Spec-

tral Graph Theory with Applications on Computer Science, Combinatorial

Optimization and Chemistry (Rio de Janeiro, 2008).

[2] Zvonimir Bohte. Bounds for rounding errors in the Gaussian elimination for

band systems. Journal of the Institute of Mathematics and its Applications,

16(2):133–142, 1975.

[3] Igor Brainman and Sivan Toledo. Nested-dissection orderings for sparse LU

with partial pivoting. SIAM Journal on Matrix Analysis and Applications,

23:998–112, 2002.

[4] Timothy A. Davis. Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern

multifrontal method. ACM Transactions on Mathematical Software, 30(2):196–

199, 2004.

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN20

[5] Timothy A. Davis. A column pre-ordering strategy for the unsymmetric-

pattern multifrontal method. ACM Transactions on Mathematical Software,

30(2):165–195, 2004.

[6] Timothy A. Davis, John R. Gilbert, Stefan I. Larimore, and Esmond G. Ng.

Algorithm 836: COLAMD, a column approximate minimum degree ordering

algorithm. ACM Transactions on Mathematical Software, 30(3):377–380, Sep-

tember 2004.

[7] Timothy A. Davis, John R. Gilbert, Stefan I. Larimore, and Esmond G. Ng. A

column approximate minimum degree ordering algorithm. ACM Transactions

on Mathematical Software, 30(3):353–376, September 2004.

[8] James W. Demmel and William Gragg. On computing accurate singular val-

ues and eigenvalues of matrices with acyclic graphs. Linear Algebra and its

Applications, 185:203–217, 1993.

[9] Miroslav Fiedler. Eigenvectors of acyclic matrices. Czechoslovak Mathematical

Journal, 25(100):607–618, 1975.

[10] A. George and J. W. H. Liu. The evolution of the minimum-degree ordering

algorithm. SIAM Review, 31:1–19, 1989.

[11] John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in MAT-

LAB: Design and implementation. SIAM Journal on Matrix Analysis and Ap-

plications, 13(1):333–356, 1992.

[12] John R. Gilbert and Tim Peierls. Sparse partial pivoting in time proportional to

arithmetic operations. SIAM Journal on Scientific and Statistical Computing,

9:862–874, 1988.

[13] Daniel Hershkowitz. Stability of acyclic matrices. Linear Algebra and its Ap-

plications, 73:157–169, 1986.

[14] Abbas Heydari and Bijan Taeri. On the characteristic and Laplacian polyno-

mials of trees. Linear Algebra and its Applications, 432(2-3):661–669, 2010.

[15] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Soci-

ety for Industrial and Applied Mathematics, Philadelphia, PA, USA, second

edition, 2002.

[16] D. J. Klein. Treediagonal matrices and their inverses. Linear Algebra and its

Applications, 42:109–117, 1982.

[17] Jianxi Li, Wai Chee Shiu, and An Chang. On the kth Laplacian eigenvalues of

trees with perfect matchings. Linear Algebra and its Applications, 432(4):1036–

1041, 2010.

[18] Reinhard Nabben. On Green’s matrices of trees. SIAM Journal on Matrix

Analysis and Applications, 22(4):1014–1026, 2001.

[19] S. Parter. The use of linear graphs in Gauss elimination. SIAM Review, 3:119–

130, 1961.

FACTORING MATRICES WITH A TREE-STRUCTURED SPARSITY PATTERN21

[20] Maŕıa Robbiano and Raúl Jiménez. Improved bounds for the Laplacian energy

of Bethe trees. Linear Algebra and its Applications, 432(9):2222–2229, 2010.

Special Issue devoted to Selected Papers presented at the Workshop on Spec-

tral Graph Theory with Applications on Computer Science, Combinatorial

Optimization and Chemistry (Rio de Janeiro, 2008).

[21] P. Rowlinson. On multiple eigenvalues of trees. Linear Algebra and its Appli-

cations, 432(11):3007–3011, 2010.

[22] Shang-Wang Tan. On the weighted trees with given degree sequence and pos-

itive weight set. Linear Algebra and its Applications, 433(2):380–389, 2010.

Current address : School of Computer Science, Tel-Aviv University, Tel-Aviv

69978, Israel. stoledo@tau.ac.il.

