A Supernodal Out-of-Core Sparse
Gaussian-Elimination Method*

Sivan Toledo and Anatoli Uchitel

Tel-Aviv University

Abstract. We present an out-of-core sparse direct solver for unsymmetric linear sys-
tems. The solver factors the coefficient matrix A into A = PLU using Gaussian elimi-
nation with partial pivoting. It assumes that A fits within main memory, but it stores
the L and U factors on disk (that is, in files). Experimental results indicate that on
small to moderately-large matrices (whose factors fit or almost fit in main memory), our
code achieves high performance, comparable to that of SuperLU. In some of these cases
it is somewhat slower than SuperLU due to overheads associated with the out-of-core
behaviour of the algorithm (in particular the fact that it always writes the factors to
files), but not by a large factor. But in other cases it is faster than SuperLU, probably
due to more efficient use of the cache. However, it is able to factor matrices whose factors
are much larger than main memory, although at lower computational rates.

1 Introduction

We present an out-of-core sparse direct solver for unsymmetric linear systems.
The solver factors the coefficient matrix A into A = PLU using Gaussian elimi-
nation with partial pivoting. It assumes that A fits within main memory, but it
stores the L and U factors on disk (that is, in files).

The availability of computers with large main memories reduced the need for
out-of-core solvers. Personal computers can be fitted today with 2-4 GB of main
memory for a reasonable cost. This allows users to factor large sparse matrices
using high-performance in-core solvers on widely-available machines. But the
need to factor matrices that are too large to factor in core still arises occasionally,
and new out-of-core algorithms are still being actively developed [11].

The solver that we present here combines ideas from two earlier sparse LU
factorization algorithms. The overall structure of our algorithm follows that of
SuperLU a high-performance in-core code by Li et al. [4]. We also use tech-
niques from an earlier (and much slower) out-of-core algorithm by Gilbert and
Toledo [10].

Experimental results indicate that on small to moderately-large matrices
(whose factors fit or almost fit in main memory), our code achieves high per-
formance, comparable to that of SuperLU. In some of these cases it is somewhat
slower than SuperLLU due to overheads associated with the out-of-core behaviour
of the algorithm (in particular the fact that it always writes the factors to files),
but not by a large factor. But in other cases it is faster than SuperLU, probably
due to more efficient use of the cache. Our method is able, of course, to factor
matrices whose factors are much larger than main memory, although at lower
computational rates.

* This research was supported by an IBM Faculty Partnership Award, by grant 848/04 from the
Israel Science Foundation (founded by the Israel Academy of Sciences and Humanities), and by
grant 2002261 from the United-States-Israel Binational Science Foundation.

The paper is organized as follows. Section 2 describes the new algorithm.
We discuss the efficiency of the algorithm and its relationship to earlier algo-
rithms in Section 3. Section 4 presents our experimental results and Section 5
our conclusions.

2 The Algorithm and Its Data Structures

This section describes our the algorithm and the data structures that our new
factorization code uses.

The algorithm partitions the matrix into a set of consecutive columns that we
call panels. The algorithm first factors the columns of panel 1, then the columns
of panel 2, and so on. The algorithm is left looking (between panels); when it
starts processing panel p, the columns of the panels have not been updated at all.
During the factorization of the panel, these columns are updated by the columns
of panels 1 to p — 1, and then the panel itself is factored. Once the columns of
the panel are factored, they are written to files to make space in memory for the
factorization of the next panel.

As we factor a panel, we partition it into supernodes, smaller sets of consec-
utive columns with similar nonzero structure in L. As in SuperLU [4], our al-
gorithm builds supernodes incrementally: after a column is factored, its nonzero
structure is inspected to determine whether it should be added to the current
supernode. If its nonzero structure is similar to that of the supernode, it is added
to it and the algorithm continues to the next column. If it is not similar to the
structure of the supernode, the current supernode is finalized and the column
starts a new supernode.

External-Memory Data Structures

Our code assumes that the input matrix is stored in main memory in a compressd-
column format, although it can be easily converted to use an out-of-core input
matrix.

The code stores L and U, as well as the pivoting permutation, in a file or
files. It uses the matrix-oriented input-output library developed by Rotkin and
Toledo [12]. This library allows the code to write out to files arbitrary rectangular
arrays of floating point or integer data and to retrieve such matrices from files.
A set of arrays is associated with a symbolic name such as mymatrix.L. These
arrays can be stored in one file, or if it grows beyond one gigabyte, multiple files.
The splitting of the logical data into multiple files is transparent to the code.

We store U column by column in such a file. The columns are compressed, of
course. We store L in supernodes, also compressed. The nonzeros of the supern-
ode (padded with zeros if the columns of the supernode do not have identical
nonzero structure) are stored in rowwise order, and the rows are ordered in their
original order (not in pivot order).

Data Structures

The algorithm uses several data structures. The main data structure stores the
columns of the current panel and information about them. Another data struc-
ture, a priority queue ¢, is associated with the entire panel. The algorithm also

2

uses integer vectors that map columns to their pivot rows (7) and back, and
columns to supernodes and back.

The panel data structure consists of an n-by-w array of floating-point num-
bers, where w is the number of colums in a panel. This is a dense array that stores
a sparse submatrix, so it does not use memory as efficiently as possible, but the
dense array allows for fast access. The panel is stored in this array in columnwise
order (columns are contiguous). The row ordering of panel p reflects all the row
exchanges that were made during the factorization of panels 1 through p — 1.
That is, the first row in the array is the pivot row of column 1 and so on.

We associate with each column j in the panel three integer vectors. The vector
r;j stores the indices of nonzero rows in column j. The indices are compressed
toward the beginning of the vector and an integer stores the number of nonzero
rows. The row indices are not sorted. We allocate r; to be large enough to store
all the nonzero indices in column j, using the precomputed bounds on the column
counts in L and U. The bound is usually much smaller than n. An n-vector ¢;
stores the location of indices in r;. If column j has a zero in a particular row, then
the corresponding position of ¢; is —1. That is, if row 7 in the column is nonzero,
then element ¢ of ¢; stores the position in 7; that contains ¢, and it contains —1
otherwise. A third vector, h;, contains a binary heap (a priority queue) of the
nonzero row indices in column j. The priority order is the pivoting order. That
is, if rows i1 and 75 are in the heap, and if i; was used as a pivot row before 5,
then 4; will precede 75 in the priority ordering. Rows that are nonzero in column
7 but were not yet used as pivots are not in the queue.

The panel-wide priority queue ¢ stores at most one nonzero row index from
every column in the panel. If column j contains nonzeros in rows that were
already used as pivots, then ¢ contains a pair (4,), where ¢ is the minimal row
index in j in the pivot order. (We actually do not store (i, 7) but (s, j), where s
is the supernode in which ¢ was used as pivot; this simplifies the code a bit, but
complicates the notation here, so we view the contents of the queue as (i, 7); i
can easily be mapped to s.) If a column contains now nonzero rows that were
used as pivots, it is not represented in q.

The Algorithm

The factorization proceeds in phases that each factor one panel. When phase p
starts, panels 1 through p — 1 have already been factored, and the supernodes
that they have generated in L are stored in a file. The n-by-w array for the panel
contains only —1’s, and the ¢ vectors also contain only —1’s.

Phase p starts by loading the nonzeors of the columns of the panel from the
input-matrix data structure into the panel. We traverse the compressed repre-
sentation of each column of the panel. We store each nonzero A;; in the n-by-w
array, add its row index to r;, note the location in r; in the 7th position of /;, and
if 7 has been used as a pivot row, we append it to h; (ignoring the heap structure
that h; should have). Once all the nonzeros of column j have been processed, we
build the heap structure of h; (see [2]; the cost of building the heap this way is
linear in its size, faster than multiple heap insertions).

To finish the pre-processing of column j, we test whether h; contains any
indices. If it does, we append (minh;,j) into the panel-wide priority queue,
which we will build as a heap later.

The total cost of this panel pre-processing step is linear in the number of
nonzeros in the panel in the input matrix A.

Next, the algorithm updates the panel, performing all the column-column
operations involving a column from panels 1 to p — 1 and a column in panel p
(the operations are performed in a blocked fashion, as we explain below). This
is done as follows. We repeatedly extract a pair (i,) from ¢. This tells us that
column 771(4) (the column in which row i was the pivot row) must be scaled and
subtracted from column 7. But in order to perform block operations, we delay the
subtraction. Immediately after extracting (i, j) from ¢, we extract the minimal
row index 4’ in h; and insert (¢, j) to ¢, to maintain its invariant property. We
remember the pair (7, j) in an auxiliary vector and continue to extract pairs from
¢ until the row index in the minimal pair in ¢ belongs to a different supernode
than row ¢, the first row that we extracted from g. Then we stop.

We now read the supernode s of L that contains 77!(i) from external mem-
ory. We copy the columns of panel p whose indices we extracted from ¢ into a
compressed array B. We extract from ¢ row-column pairs; the columns that we
copy are the column indices in these pairs. We only copy the rows that appear
as row indices in supernode s. In other words, B contains the elements of p that
belong to columns that s updates and to rows that appear in s. These numbers
are compressed in B, in rowwise order, and the rows have the same ordering as
in the compressed supernode s. We can now perform the triangular solve and
the matrix-matrix multiplication that constitute the column-column operations
involving s and p. Hence, all of these numerical operations are performed by two
calls to the level-3 BLAS [8,7]. The supernode s is not needed any more during
the processing of panel p, so it can be evicted from memory. The contents of B
are now copied back into the main data structure of the panel, updating the r,
¢, and h vectors where necessary.

When all the column-column operations involving panels 1 through p—1 have
been applied to p, we factor p itself. At this point the heaps h; are empty.

The factorization of the panel is supernodal and uses a mixture of left-looking
and right-looking updating rules. We first explain the updating rules. Suppose
that the next column to be factored is column j and that the factorization of the
previous columns in the panel generated supernodes s, ..., sy, s,. If the nonzero
structure of column j of L will be similar enough to the nonzero structure of s,
j will join s,. Therefore, we view s, as a pending supernode, which we store in
somewhat different data structure than the finalized supernodes s, ..., s,.

A finalized supernode in the panel is stored in the same data structure as a
supernode on disk: compressed in rowwise order (rows are contiguous). A pending
supernode is stored in a large two dimensional array. Its rows are contigous,
but there are gaps between them. That is, a pending supernode is stored in
two dimensional array that has both more rows and more columns than the
supernode. This array is partitioned into a U area and an L area. This data
structure allows us to add more columns and more nonzero rows to the supernode
and to use it as an argument to BLAS subroutines.

When the algorithm reaches the factorization of column j, updates from all
the finalized supernodes have already been applied to it (right-looking updates
from supernodes within the panels and left-looking updates from earlier panels).
We explain below how this happens. But there may be column-column operations

4

involving the pending supernode that still need to be performed on column j.
To find them, we inspect h;. If it is empty, we do not need to update column
J, so we proceed to factor it. If h; is not empty, we empty it (the indices in it
must belong to the pending supernode s,) and copy the rows in column j which
are nonzero in s, to the compressed buffer B. We then use two level-2 BLAS
subroutines [6,5] to update column j and we copy it back to the panel’s main
data structure, updating r; and /; if the column gained new nonzeros.

To factor column j, we use r; to locate its nonzeros, to find the maximal
one (in absolute value), and to scale them. We denote the row index of this
maximal element by 7(j). We then exchange rows j and 7(j) in all the panel’s
data structure. We traverse rows j and 7(j) in the two-dimensional array that
stores the panel and swap elements (traversing only columns that have not yet
been factored). If both elements (j, k) and (7(j), k) are nonzero in some column
k, then the only other operation that we need to perform on column £ is to insert
J into hy. If only element (j, k) is nonzero, we swap it with the zero in (7 (j), k)
and change the index j somewhere in 7 to 7(j); this is what we need ¢, for, to
locate this index with a constant number of iterations. If only element (7 (j), k) is
nonzero, we swap it with the zero in (j, k), change it to j in 7y, and insert j into
hi.. In the special case of j = 7(7), no rows are exchanged, of course, but we still
need to traverse row j and to insert a nonzero in (j, k) to hy. For every column
k in the panel, we keep a boolean variable that indicates whether the column is
represented in the panel-wide queue q. Whenever we insert an index into hy we
inspect this indicator, and if false, we insert the pair (min hy, k) into ¢. Since we
add indices to hy in pivot order, if already k is represented in ¢ then (min hy, k)
is already in ¢. (The scheme can be simplified a bit, but this description keeps
the intra-panel updating rules similar to the inter-panel ones, so it is simpler.)

The traversal of the pivot row in the full two-dimensional array storing the
panel is somewhat inefficient; we discuss this issue later.

Now that j has been factored, we compare its nonzero structure to that of the
pending supernode. If the structures are similar enough (we describe the criteria
below), we add j to s,. This may require adding rows to the nonzero structure of
the pending supernode and possibly moving row 7 (j) (if it was already nonzero
in s,) from the L area of the supernode’s array to the U area. If the structure of
s, and j are dissimilar or if j is the last column in the panel, we finalize s,.

To finalize s,, we first copy it into a compressed two-dimensional array. We
then extract from the panel-wide ¢ the indices of all the columns in the panel
that s, must update. We copy these columns to B and use two level-3 BLAS
subroutine calls to update them. This operation is identical to updates from
supernodes from earlier panels. The finalized supernode can now be written to
disk and erased from memory.

The criteria that we use to decide whether a column should be added to a
pending supernode are as follows. If the supernode has fewer than 8 columns, we
always add the column (to avoid very narrow supernodes). Similarly, we limit
the size of supernodes to 80 columns. If the supernode has 8 to 79 columns, we
only add the column if the total number of nonzero rows in the supernode is less
than 8192.

This concludes the description of the algorithm. We omit discussion of how
the panel’s data structures are cleared in preparation for the processing of the

bt

next panel; this is done in a conventional way in time proportional to the number
of nonzero elements in the panel.

3 Discussion

The following points summarize the main points of the algorithm.

— The columns are statically partitioned into panels, and each panel is dynami-
cally partitioned into supernodes (groups of consecutive columns with similar
nonzero structure in L).

— During the factorization of a panel, each factored supernode that updates the
panel participates in one supernode-panel update. This operation is performed
by two calls to the level-3 BLAS. This rule applies both to supernodes from
earlier panels and to supernodes from the same panel.

— Before a supernode is finalized (before the set of columns that belong to
it has been determined), the supernode updates one column at a time using
supernode-column operations involving two calls to level-2 BLAS subroutines.

— The algorithm uses priority queues to determine which updating operations
must be performed.

— The algorithm uses two n-by-w arrays to store the elements of the current
panel, as well as a few smaller data structures; one array stores the nonzero
values and the other stores the pointer vectors ¢;.

There are two places where our algorithm gives up sparsity to obtain higher
performance. The first is the use of the n-by-w arrays to store the current panel.
This involves a one-time ©(nw) cost to set up these arrays initially (to clear
them) and it means that the algorithm consumes large amounts of memory if w
is large. The second is in the traversal of the full rows j and 7(7) of the remaining
columns of the panel after the factorization of column j. If the panel is very wide
(large w), these rows can be fairly sparse. This may cause our algorithm to
perform a significant amount of work on zeros. Asymptotically, the total cost of
these row scans is ©(2w?) = @(nw). Therefore, as long as we use a full array to
hold the panel, the row scans are not a dominant cost in the algorithm, due to
the cost of initializing the full array.

We did not explore the possibility of compressing the entire panel. Our goal
in this research has been to acheive high performance through the use of the
level-3 BLAS, and we did not find a way to do this with a compressed panel
without a large overhead.

Our algorithm builds on two earlier ones, SuperLU [4], which is an in-core
algorithm, and the Gilbert-Toledo sparse out-of-core LU algorithm [10] (we will
refer to it as GT). SuperLU uses fixed-width panels and dynamically construc-
tured supernodes. We use variable width panels and dynamically-constructed
supernodes. This allows SuperLU to use supernode-panel updates, which are
also used in our algorithm. The panels in SuperLLU are stored in an n-by-w full
data structure; we use the same strategy. However, instead of copying the rows
of the panel to a compressed array with the same row structure as the updating
supernode, SuperLLU performs the updating in-place. The in-place updating of
SuperLU saves some overhead and can acheive high data reuse in the registers
and caches, but it does not permit the use of standard BLAS libraries that can

6

be highly optimized. Another difference between our algorithm and SuperLLU
is that we use level-3 supernode-panel updates within panels (when the source
supernode has been finalized; we use supernode-column updates on pending su-
pernodes). This allows us to maintain efficiency even with very wide panels. The
wide panels are essential for reducing the amount of I/O traffic. Another differ-
ence between our algorithm and SuperLU is that we use priority queues to find
supernodes that must update columns in the panel, whereas SuperLLU uses the
depth-first-search strategy of [9].

As in [10], we prefer the priority-queue approach over the depth-first-search
(DFS) approach becasue the DFS repeatedly searches a graph whose size may
approach the size of the lower-triangular factor L. The graph may be smaller than
L, but there are no useful a priori bounds on its size. Therefore, we conservatively
assume that it may not fit in main memory. To avoid searches in a graph stored
on disks, we use the priority-queue approach.

The GT algorithm, which is also out-of-core does use priority queues. We also
used the overall strategy of GT of using a panel-oriented left-looking approach
in an out-of-core LU with partial pivoting. But GT does not use supernodes, so
its performance is much worse than that of our algorithm (we demonstrate this
below). Our new algorithm does use the out-of-core symbolic analysis phase of
GT, mostly as-is.

4 Experimental Results

This section presents experimental results that explore the performance of our
new algorithm.

All the experiments that we report on were performed on a 3.2 GHz Intel
Pentium 4 computer with 2 GB of main memory running Linux version 2.6.17.

We used GCC version 4.04 to compile all the codes. We linked all the same
high-performance implementation of the BLAS, ATLAS version 3.6. We used CO-
LAMD to order the columns of the matrices prior to factoring them. All the codes
used strict partial pivoting.

Our out-of-core code stored the factors on a Maxtor 160 GB serial-ATA disk.
The factors were stored in files on an EXT2 file system that occupies an 80 GB
partition on the disk. The same disk also hosts a 4 GB swap partition, but
nothing else (the rest of the disk was not used during these runs). The machine
was dedicated to these experiments and did not run any significant process during
the experiments.

We used for the experiments the 22 matrices that are described in Table 1.
The matrices are all available from Tim Davis’s sparse matrix collection!. The
table shows the size of the matrices, the size of the computed factors, the size of
panels that our code chose (automatically), and the factorization times.

The table shows that the code was able to factor a matrix whose factors are
much larger than main memory, sparsine. Its L and U factors have roughly the
same number of nonzeros, more than 500 million in each. Just the values of the
nonzeros in L take more than 4 GB to store, twice the amount of main memory
on the machine that factored the matrix. The code ran for more than 52 hours.

! nttp://www.cise.ufl.edu/research/sparse/matrices/

7

Table 1. The matrices that we used for the experiments.

1000’s of
1000’s of nonzeros Max 00C
nonzeros in L and columns factor
Name Order in A U in panel time (sec)
1 psmigr_1 3140 543 9181 15846 15.1
2 raefsky4 19779 1329 20142 2516 15.2
3 raefsky3 21200 1489 22628 2347 16.3
4 rim 22560 1015 20340 2206 17.1
5 ex11 16614 1097 21067 2995 17.2
6 fidap011 16614 1091 21938 2995 20.7
7 zhao2 33861 166 20627 1470 26.4
8 twotone 120750 1224 27543 413 30.8
9 fidapm11 22294 626 30134 2232 31.2
10 wang4 26068 177 29107 1909 41.2
11 cagelO 11397 151 27399 4366 52.8
12 bbmat 38744 1772 53961 1285 63.9
13 av41092 41092 1684 47863 1211 83.2
14 mark3jac140 64089 400 53891 T 95.6
15 xenonl 48600 1181 66641 1024 107.2
16 g7jac200 59310 838 65948 839 119.4
17 1i 22695 1350 71274 2193 167.8
18 ecl32 51993 380 82588 957 171.0
19 gupta3 16783 9323 82202 2965 227.6
20 xenon2 157464 3867 387103 316 1644.9
21 cagell 39082 560 285699 1274 3620.4
22 sparsine 50000 1549 1105720 996 187296.7

We were not able to find in sparse matrix collections additional matrices whose
factors are significantly larger than main memory.

The factorization of the largest matrix, sparsine, ran at much lower compu-
tation rates than the factorization of the smaller matrices. The factorization of
this matrix required a large amount of IO that slowed down the code by about
a factor of five.

Our code chose the panel size as follows. It broke the column elimination
tree into subtrees. The size of each subtree was limited by two constraints: a
maximal number of columns and a maximal number of predicted nonzeros in the
corresponding columns of L and U. The limit on the number of columns was
chosen so that the total size of the n-by-w array is at most 3/16 of the available
memory. The total number of predicted nonzeros in a subtree was limited to
820, 000. This is a fairly small number compared to the total amount of memory.
We selected this number experimentally to achive high performance. This is the
only tunable parameter in the code.

Figure 1 compares the running times of our new out-of-core code to those
of three other sparse LU factorization codes that all perform partial pivoting.
One code is the out-of-core code of Gilbert and Toledo [10]. Another is an in-
core unsymmetric-pattern multifrontal code [1] which is now part of TAUCS, a
library of sparse linear solvers that our group has developed. This code, denoted
MULTILU below, is based on the UMFPACK 4.0 algorithm [3]. The last code that
we use in this comparison is SuperLU [4], also an in-core algorithm. Our new
code is denoted in the figures by TSOOC. In these experiments, we used fixed-size
panels (fixed number of columns) in our code.

8

10°

—=—TSOO0C
5 -e-Gilbert-Toledo
-+~ SuperLU

+ MultiLU

Factorization Time (' sec)
5

1 1
1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22

Input Matrix Number

Fig. 1. The factorization times of our new code (TSOOC), along with the factorization times of several
existing codes: the out-of-core code of Gilbert and Toledo, the in-core unsymmetric multifrontal code
in TAUCS, denoted MultiL.U in the graphs), and SuperLU. The ordering of the matrices is according
to the ordering in Table 1.

The results show that our new code is usually slower than SuperLU and
MULTILU when these codes can factor the matrix, but not by a large factor. In
many cases the performance of our code is similar to that of SuperLU, but in
two cases SuperLU is more than twice as fast as our out-of-core code. In these
experiments, MULTILU is usually faster than SuperLU, and on one matrix it is five
times faster than our code. But on most matrices our code is within a factor of
2.5 of the performance of both SuperLU and MULTILU. On one matrix SuperLLU
was much slower than our code and on another MultiLU was much slower, but
these behaviors are likely to have been caused by excessive paging. Both codes
failed to factor some of the larger matrices due to lack of sufficient memory to
factor them in core.

The code of Gilbert and Toledo managed to factor some of the matrices that
were too large for SuperLU and MULTILU, but it was slower than the other codes
by a large factor (more than a factor of 8 slower than our new out-of-core code),
and it also failed on matrices that the other codes managed to factor in core.

Figure 2 shows the influence of the panel width on the performance of our
code on one matrix; experiments on other matrices led to graphs with the same
structure, sometimes with some fluctuations near the performance peak. Per-
formance first rises sharply when the panel size grows, and it eventually drops
slowly as it becomes very large.

5 Conclusions

We have presented a new out-of-core sparse LU factorization algorithm. The per-
formance of the new algorithm degrades gracefully as the problem gets larger.
The code factored two matrices that in-core codes failed to factor at computa-

9

Xenon2
1000 T

Factorization Rate (MFLOP/sec)

0 I I I I I I I

0 100 200 300 400 500 600 700 800

Panel Size (in columns)

Fig. 2. Performance of our algorithm as a function of the width of the panel on the matrix Xenon2.

tional rates (719 and 510 Mflop/s) that are comparable to the rates it achieved
on small matrices . Only on the largest matrix, sparsine, the performance of the
algorithm declined considerably, 90 Mflop/s, due to I0.

References

10.

11.

12.

. Haim Avron, Gil Shklarski, and Sivan Toledo. Parallel unsymmetric-pattern multifrontal sparse

LU with column preordering. Submitted for publication in ACM Transactions on Mathematical
Software, December 2004.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press and McGraw-Hill, 2nd edition, 2001.

Timothy A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method. ACM Trans. Math. Softw., 30(2):165-195, 2004.

James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H. Liu.
A supernodal approach to sparse partial pivoting. SIAM Journal on Matriz Analysis and Appli-
cations, 20:720-755, 1999.

Jack J. Dongarra, Jeremy Du Cruz, Sven Hammarling, and Ian Duff. Algorithm 656: An extended
set of Fortran basic linear algebra subprograms. ACM Transactions on Mathematical Software,
14:18-32, 1988.

Jack J. Dongarra, Jeremy Du Cruz, Sven Hammarling, and Tan Duff. An extended set of Fortran
basic linear algebra subprograms. ACM Transactions on Mathematical Software, 14:1-17, 1988.
Jack J. Dongarra, Jeremy Du Cruz, Sven Hammarling, and ITan Duff. Algorithm 679: A set of
level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1):18—
28, 1990.

Jack J. Dongarra, Jeremy Du Cruz, Sven Hammarling, and Ian Duff. A set of level 3 basic linear
algebra subprograms. ACM Transactions on Mathematical Software, 16(1):1-17, 1990.

John R. Gilbert and Tim Peierls. Sparse partial pivoting in time proportional to arithmetic
operations. SIAM Journal on Scientific and Statistical Computing, 9:862—-874, 1988.

John R. Gilbert and Sivan Toledo. High-performance out-of-core sparse LU factorization. In
Proceedings of the 9th SIAM Conference on Parallel Processing for Scientific Computing, San-
Antonio, Texas, 1999. 10 pages on CDROM.

John K. Reid and Jennifer A. Scott. The design of an out-of-core multifrontal solver for the 21st
century. In Proceedings of the Workshop on State-of-the-Art in Scientific and Paralell Computing,
Umea, Sweden, June 2006.

Vladimir Rotkin and Sivan Toledo. The design and implementation of a new out-of-core sparse
Cholesky factorization method. ACM Transactions on Mathematical Software, 30:19-46, 2004.

10

