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We present lower bounds on the amount of communication that matrix-

multiplication algorithms must perform on a distributed-memory parallel

computer. We denote the number of processors by P and the dimension

of square matrices by n. We show that the most widely-used class of al-

gorithms, the so-called 2-dimensional (2D) algorithms, are optimal, in the

sense that in any algorithm that uses only O(n2/P ) words of memory per

processor, at least one processor must send or receive Ω(n2/
√

P ) words. We

also show that algorithms from another class, the so-called 3-dimensional

(3D) algorithms, are also optimal. These algorithm use replication to re-

duce communication. We show that in any algorithm that uses O(n2/P 2/3)

words of memory per processor, at least one processor must send or receive

Ω(n2/P 2/3) words. Furthermore, we show a continuous tradeoff between

the size of local memories and the amount of communication that must be

performed. The 2D and 3D bounds are essentially instantiations of this

tradeoff. We also show that if the input is distributed across memory-

processor nodes and if the input is not replicated, then Ω(n2) words must

cross any bisection cut of the machine. Our bounds apply only to con-

ventional Θ(n3) algorithms. They do not apply to Strassen’s algorithm or

other o(n3) algorithms.
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1. INTRODUCTION

Although communication is a bottleneck in many computations running on distributed-
memory parallel computers and on clusters of workstations or servers, few commu-
nication lower bounds have been proved. We know a great deal about the amount
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Sciences and Humanities (grant number 572/00 and grant number 9060/99) and by the University
Research Fund of Tel-Aviv University.
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of communication that specific algorithms perform, but we know little about how
much communication they must perform.

We present lower bounds on the amount of communication that is required to
multiply matrices using a conventional algorithm on a distributed-memory parallel
computer. The analysis uses a unified framework that also applies to the analysis
of capacity cache misses in sequential matrix-multiplication algorithm.

We use a simple yet realistic computational model to prove the lower bounds. We
model a parallel computer as a collection of P processor-memory nodes connected
by a communication network. That is, all the memory is distributed among the
nodes, which can communicate with each other over a network. Our analysis bounds
the number of words that must be sent and received by at least one of the nodes.
The bounds apply even if each processor-memory node include several processors,
which is a fairly common today in machines ranging from clusters of dual-processor
workstations to SGI Origin 2000s and IBM SPs.

Aggarwal, Chandra, and Snir [3] presented lower bounds on the amount of com-
munication in matrix multiplication and a number of other computations. Their
bounds, however, assume a shared-memory computational model that does not
model well existing computers. Their LPRAM model assumes that P processors,
each with a private cache, are connected to a large shared memory. Furthermore,
they assume that when a computation begins, the caches are empty, and that when
the computation ends, the output must be returned to the main memory. Their
analyses bound the amount of data that must be transferred between the shared
main memory and the private caches. Their bound for matrix multiplication essen-
tially quantifies the number of compulsory and capacity cache misses in a shared-
memory multiprocessor. The LPRAM model does not model well systems in which
all the memory is distributed among processing nodes. In particular, LPRAMs do
not model well clusters of workstations and parallel computers with memory which
is physically distributed, such as SGI Origin 2000s and IBM SPs.

This distinction between the LPRAM model and our model is highly relevant
to matrix-multiplication lower bounds. Matrix multiplication is nearly always a
subroutine in a larger computation. In a distributed-memory machine, the mul-
tiplicands are already distributed in some manner when the matrix-multiplication
subroutine is called, and the product must be left distributed in the processors’ lo-
cal memories when it ends. Thus, the LPRAM bound, which essentially shows that
each processor must access Ω(n2/P 2/3) input elements, is irrelevant to distributed-
memory machines, since these elements may already reside in the processor’s mem-
ory. The LPRAM lower bound does not depend on the amount of local memory;
if data is allowed to be stored and perhaps replicated in local memories when the
computation begins and ends, no communication may be necessary at all.

In contrast, our lower bounds allow for any initial data distribution of the in-
put matrices, including data distributions that replicate input elements, as 3D
algorithms do. That is, our lower bounds do not even count the communication
necessary to perform the replication of input elements! (Except in Section 6 where
we explicitly forbid replication to lower bound the communication across the bisec-
tion of the machine.) Our bounds also allow any distribution of the output matrix
C. The only constraint that we place on the algorithm is that every element of C

must reside in some processor’s local memory (possibly several).
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We state and prove lower bounds in this paper using concrete constants rather
than asymptotic notation. We do so since in most of the bounds the amount of
communication depends on three parameters: the size of the matrices n, the number
of processors P , and the size of the local memory, M . Asymptotic notation makes
it unclear which of the parameters must grow in order for the function to reach its
asymptotic behavior. Also, the use of concrete constants clarifies the dependence of
the amount of communication on each of the three parameters. The constants that
appear in the statement of lemmas and theorems, however, were chosen to make
the proofs as simple as possible; they were not chosen to be as tight as possible.

Some of our bounds assume that the matrices involved are square, whereas others
apply to matrices of any shape. We restrict matrices to a square shape where we
felt that bounds for rectangular matrices would complicate the statement of the
results or the proofs too much.

Our analysis applies only to conventional matrix-multiplication algorithms. It
does not apply to Strassen’s algorithm [23] or other o(n3) algorithms. Lower
bounds on the communication complexity of Strassen’s and other unconventional
algorithms are beyond the scope of this paper.

The paper is organized as follows. The next section, Section 2 presents a tech-
nical tool that underlies our unified approach to communication and cache-traffic
lower bounds. Section 3 presents the basic memory-communication tradeoff that
shows that lack of memory increases communication. Section 4 uses this prov-
able tradeoff to analyze so-called 2-dimensional (2D) matrix-multiplication algo-
rithms [6, 8, 9, 25]. These algorithms use only Θ(n2/P ) words of memory per
processor, just a constant factor more than required to store the input and output
(some of these algorithms use only 3n2/P +o(n2/P ) words per processor). We show
that the amount of communication that they perform per processor, O(n2/P 1/2),
is asymptotically optimal for this amount of memory. Section 5 uses a more so-
phisticated argument to show that so-called 3-dimensional (3D) algorithms are also
optimal. 3D algorithms [3, 4, 8, 10, 13] replicate the input matrices Θ(P 1/3) times,
so they need Θ(n2/P 2/3) words of memory per processor. But this allows them to
reduce the amount of communication to only Θ(n2/P 2/3) per processor. We show
that this amount of communication is optimal for the amount of memory that is
used. The argument in this case is somewhat more complex since the continuous
tradeoff that we prove in Section 3 does not apply to M = Ω(n2/P 2/3). Section 6
proves that if no replication of input elements is allowed, then Ω(n2) words must
cross the bisection of the machine. Finally, Section 7 uses the basic lemma that
underlies all of our results to prove a well-known lower bound on the number of
cache misses (sometimes referred to as page faults or I/O’s in the lower-bounds
literature). The main point of Section 7 is to show how other kinds of lower bounds
can be derived using our unified approach and how of I/O and communication lower
bounds are related.

2. THE BASIC LEMMA
This section presents the technical lemma that underlies all the lower bounds in

this paper. The lemma shows that a processor that accesses at most N elements
of A, at most N elements of B, and contributes to the computation of at most N
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elements of the product C = AB can perform at most O(N
√

N) useful arithmetic
operations.

Hong and Kung [12] proved a weaker form of this lemma. Their lemma only
considers access to elements of A and B, not to contributions to elements of C, so
it is too weak to be used in the proofs of our distributed-memory lower bounds.
Also, Hong and Kung stated the lemma using asymptotic notation, whereas we
state and prove the lemma using concrete constants.

But before we state and prove the lemma, we must define precisely the kinds of
algorithms that it applies to and the way that we count elements of the product
that are computed.

Definition 2.1. A conventional matrix-multiplication algorithm is one that
computes each element cij of C as a sum of products aikbkj for all k.

We need one more definition before we state and prove the lemma.

Definition 2.2. A useful multiplication in a conventional matrix-multiplication
algorithm is a scalar multiplication aikbkj that eventually contributes to the sum
that forms cij .

We are now ready to prove the basic lemma. Note that it holds for matrices of
any shape, as long as the shapes allow multiplication.

Lemma 2.1. Consider the conventional matrix multiplication C = AB, where
A is m-by-k, B is k-by-n, and C is m-by-n. A processor that contributes to NC

elements of C and accesses NA elements of A and NB elements of B can perform
at most

min
(
(NB + NC)

√
NA, (NA + NC)

√
NB, (NA + NB)

√
NC

)
useful scalar multiplications.

Proof. We denote by SA the set of elements (index pairs) of A that the processor
accesses, by SB the set of elements of B that the processor accesses, and by SC the
set of elements of C that the processor contributes to.

We first show that (NB + NC)
√

NA bounds the number of useful multiplications.
We partition the rows of A into two sets: the set MA contains the rows of A with
at least

√
NA elements in SA and FA contains the rest of the rows. There are at

most
√

NA rows in MA.
Since each row of C is a product of the corresponding row in A and all of B,

there can be at most NB

√
NA useful multiplications involving rows in MA. Since

each element of C is a product of a row of A and a column of B and since each
row in FA has less than

√
NA elements in SA, there can be at most NC

√
NA useful

multiplications involving rows in FA.
A similar argument shows that (NA + NC)

√
NB bounds the number of useful

multiplications. We partition the columns of B into a set MB, consisting of columns
with at least

√
NB elements in SB, and a set FB containing the rest of the columns.

Since each column of C is a product of A and the corresponding column of B,
there can be at most NA

√
NB useful multiplications involving rows in MB. Since
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each element of C is a product of a row of A and a column of B, there can be at
most NC

√
NB useful multiplications involving rows in FB .

Finally, we show that (NA + NB)
√

NC bounds the number of useful multiplica-
tions. We partition the rows of C into a sets MC and FC as we did for A.

Each row of C is a product of a row of A and all of B, so there can be at most
NB

√
NC useful multiplications involving rows in MC . An element of A is used in

the computation of elements from one row of C. If that row of C contains less than√
NC elements in SC , then the element of A us used in less than

√
NC multipli-

cations. Hence, the number of useful multiplications involving rows of C in FC is less

than NA

√
NC .

3. THE MEMORY-COMMUNICATION TRADEOFF
This section proves a tradeoff between memory and communication in matrix-

multiplication algorithms. The analysis shows that reducing the amount of memory
forces an algorithm to perform more communication. We shall use this provable
tradeoff in the next section to prove that 2D matrix-multiplication algorithms are
asymptotically optimal for the amount of memory that they use. These algorithms
use little extra memory beyond the storage required to store the matrices, and
hence, they lie at extreme end of the memory-communication tradeoff. In Section 5
we shall extend the tradeoff to deal with larger memory sizes, which will enable
us to prove that 3D algorithms are also asymptotically optimal for the amount of
memory that they use.

Lemma 3.1. Consider the conventional matrix multiplication C = AB, where
A is m-by-k, B is k-by-n, and C is m-by-n, on a P -processor distributed-memory
parallel computer. Consider a processor that has M words of local memory and
which performs at least εmnk/P scalar multiplications. The processor must send
or receive at least ⌊

ε

4
√

2
mnk

PM
√

M

⌋
M

words. The amount of communication is also bounded by

ε

4
√

2
mnk

P
√

M
−M .

Proof. We decompose the schedule of the computation on the processor into
phases. Phase ` begins when total number of words sent and received so far by the
processor is exactly `M . Thus, in each phase, except perhaps the last phase, the
processor send and receives exactly M words.

The number NA of elements of A that the processor may access during a phase is
at most 2M , since each one of these elements must reside in the processor’s memory
when the phase begins, or else it must have been received from another processor
during the phase. The same argument shows that NB ≤ 2M .

We define an element cij of the product C as live during a phase if: (1) the
processor computes aikbkj for some k during the phase, and (2) a partial sum
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containing aikbkj either resides in the processor’s memory at the end of the phase
or is sent to another processor during the phase.

The number NC of live elements of C during a phase is at most 2M , since each
live element either uses one word of memory at the end of the phase or it is sent to
another processor.

Lemma 2.1 shows that the number of useful multiplications during a phase is at
most

NB

√
NA + NC

√
NA ≤ 2M

√
2M + 2M

√
2M

= 4
√

2M
√

M .

The total number of scalar multiplications in the algorithm is mnk. Therefore,
the number of full phases (that is phases in which exactly M words are sent and
received) is at least ⌊

ε

4
√

2
mnk

PM
√

M

⌋
,

so the total amount of communication is at least⌊
ε

4
√

2
mnk

PM
√

M

⌋
M .

Since bxc ≥ x− 1 for any positive x, we also have

ε

4
√

2
mnk

PM
√

M
M ≥

(
ε

4
√

2
mnk

PM
√

M
− 1
)

M

=
ε

4
√

2
mnk

P
√

M
−M ,

which concludes the proof.

The lemma that we have just proved analyzes a parallel computation from the
point of view of one processor. The next theorem takes a more global view. The
running time is typically determined by the most heavily loaded processor. There-
fore, by showing that at least one processor must perform a lot of communication,
we essentially lower bound the amount of time that the algorithm must spend on
communication.

Theorem 3.1. (Memory-Communication Tradeoff) Consider the conven-
tional matrix multiplication C = AB, where A is m-by-k, B is k-by-n, and C is
m-by-n, on a P -processor distributed-memory parallel computer with M words of
local memory per processor. At least one of the processors must send or receive at
least ⌊

1
4
√

2
mnk

PM
√

M

⌋
M

words. The amount of communication is also bounded by

mnk

4
√

2P
√

M
−M .
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Proof. At least one of the processors must perform mnk/P multiplications. The

result follows from applying Lemma 3.1 with ε = 1.

4. A COMMUNICATION LOWER BOUND FOR
ALMOST-IN-PLACE ALGORITHMS

We are not aware of algorithms whose performance can match asymptotically
the lower bound in the memory-communication tradeoff for any value of M . That
is, we are not aware of adaptive algorithms that can utilize any amount of available
memory to reduce communication. But two classes of algorithms do match the
lower bounds for specific values of M . At one end of the spectrum we have 2D
algorithms that use little extra memory beyond that required to store the matri-
ces. At the other hand of the spectrum, we have so-called 3D algorithms that use
extra memory to replicate the input matrices and reduce communication. We now
specialize Theorem 3.1 to 2D algorithms; Section 5 analyzes algorithms that use
extra memory.

The first distributed-memory parallel matrix-multiplication algorithm is probably
the one due to Cannon [6]. Cannon originally proposed the algorithm for the
case P = n2 and for a parallel computer whose processors are connected as a
two-dimensional mesh. The generalization of Cannon’s algorithm to larger block-
distributed matrices is due to Dekel, Nassimi, and Sahni [8]. The algorithm has
also been generalized to hypercube and other interconnection topologies. Fox, Otto
and Hey [9] describe a different algorithm which, unlike Cannon’s algorithm, uses
broadcasts. Another 2D algorithm was proposed by van de Geijn and Watts [25].
This algorithm, called SUMMA, uses many broadcasts of small pieces of a matrix
(smaller than the block stored on a processor), which allows the broadcasts to be
pipelined and to occur concurrently with computation.

The storage required by 2D is proportional to the size of the matrices, so for
square matrices the amount M of memory per processor should only be propor-
tional to n2/P . Clearly, 3n2/P words per processor are necessary just to store the
multiplicands and the product. Most 2D algorithms only need o(n2/P ) temporary
storage beyond the storage required to store the matrices (e.g., SUMMA). Simpler
2D algorithms, such as blocked implementations of Cannon’s algorithm, require
2n2/P additional words per processor, in order to store 2 blocks of A and 2 blocks
of B. (This can be reduced to o(n2/P ) by breaking each communication phase into
many small messages, possibly at an increased overhead due to many small mes-
sages.) The next theorem shows that 2D algorithms are asymptotically optimal in
terms of the amount of communication per processor: any algorithm that uses only
O(n2/P ) words of memory per processor must perform Ω(n2

√
P ) communication

per processor. In order to keep the theorem simple, we only state and prove it for
square matrices.

Theorem 4.1. (2D Communication Lower-Bound) Consider the conven-
tional multiplication of two n-by-n matrices on a P -processor distributed-memory
parallel computer, where each processor has µn2/P words of local memory. If
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P ≥ (8
√

2)2µ3, then at least one of the processors must send or receive

1
8
√

2µ
n2
√

P

or more words.

Proof. By Theorem 3.1, the amount of communication in at least one of the
processors is bounded from below by

n3

4
√

2P
√

M
−M =

n3

4
√

2P
√

µn2/P
− µn2

P

=
n2

4
√

2µP
− µn2

P

≥ n2

4
√

2µP
− µn2

8
√

2µ
√

µ
√

P

=
n2

4
√

2µP
− n2

8
√

2µP

=
n2

8
√

2µP
.

The inequality relies on the fact that
√

P ≥ 8
√

2µ3/2.

5. EXTENDING THE TRADEOFF BEYOND M = Θ(N2/P 2/3)

The tradeoff that we analyzed in Section 3 fails to provide meaningful bounds
when M = Θ(n2/P 2/3). In this regime, there may not even be a single full phase,
in the sense of the proof of Lemma 3.1. Since the proof of Lemma 3.1 does not
analyze the amount of communication in the last phase, it provides no useful bound
in this case.

This section lower bounds the amount of communication that must be performed
when M = Θ(n2/P 2/3). We show that in this regime the amount of communication
per processor is Ω(n2/P 2/3).

This bound matches, asymptotically, the upper bounds that 3D algorithms achieve.
3D algorithms reduce communication over the more conventional 2D algorithms
using replication. Such algorithms were first proposed by Berntsen [4] and by
Aggarwal, Chandra, and Snir [3] at about the same time (Berntsen’s paper was
submitted to publication in 1988; The paper by Aggarwal, Chandra and Snir was
presented at a conference in 1988). Essentially the same algorithm that was pro-
posed in [3] was proposed again later, independently, by Gupta and Kumar [10]
and by Johnsson [13]. Berntsen described a somewhat more complex algorithm.
Although Dekel, Nassimi and Sahni [8] were perhaps the first to propose 3D algo-
rithms, their algorithms are not communication efficient: the total number of words
that are communicated is Θ(n3).

Aggarwal, Chandra, and Snir also prove an Ω(n2/P 2/3) bound on the amount
of communication per processor that matrix-multiplication algorithms must per-
form on a shared-memory parallel computer. As explained in the Introduction,
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their bound is irrelevant to matrix-multiplication on a distributed memory ma-
chine. Their bound relies on the private caches of the processors being empty when
the computation begins. But on a distributed-memory machine, the matrices are
typically already distributed when a matrix-multiplication subroutine is invoked.

The main result of this section hinges on the next lemma.

Lemma 5.1. Consider the conventional multiplication of two n-by-n matrices
on a P -processor distributed-memory parallel computer. Consider a processor that
has µn2/P 2/3 words of local memory and which performs at least εn3/P scalar
multiplications. Let

δ = min
(

µ,
1
32

· ε2

µ2

)
.

For any

P ≥ 1024
√

2
µ6

ε3
,

the processor must send or receive at least

δ
n2

P 2/3

words.

Proof. Let π be the number of multiplications that the processor performs.
Using Lemma 2.1 and its notation, we have

NB

√
NA + NC

√
NA ≥ π ≥ ε

n3

P
(1)

NA

√
NB + NC

√
NB ≥ π ≥ ε

n3

P
(2)

NA

√
NC + NB

√
NC ≥ π ≥ ε

n3

P
(3)

If NA ≥ (µ + δ)n2/P 2/3, then the theorem holds, since only µn2/P 2/3 elements
of A can reside in the processor’s local memory when the algorithm begins, so
the rest must be received from other processors. The same argument holds when
NB ≥ (µ + δ)n2/P 2/3. If NC ≥ (µ + δ)n2/P 2/3, then the theorem holds again,
since the processor must send contributions to at least δn2/P 2/3 elements of C to
other processors.

If both NA, NB, and NC are smaller than (µ + δ)n2/P 2/3, then we claim that
all three quantities must be larger than

1
4

(
ε

µ + δ

)2
n2

P 2/3
.

From (1) and the fact that both NA and NB are smaller than (µ + δ)n2/P 2/3, we
have

2
√

NC(µ + δ)
n2

P 2/3
> NA

√
NC + NB

√
NC ≥ ε

n3

P
,
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so

2
√

NC >
ε

µ + δ

n

P 1/3
,

and finally

NC >
1
4

(
ε

µ + δ

)2
n2

P 2/3
. (4)

An identical argument shows that the expression in (4) also lower bounds NA and
NB.

The number of elements of C that the processor can compute on its own without
any contributions from other processors is small. For each such cij , the processor
must access the entire ith row of A and the entire jth column of B. If NA and NB

are smaller than (µ + δ)n2/P 2/3, then the processor can compute at most(
(µ + δ)

n2

P 2/3
/n

)
×
(

(µ + δ)
n2

P 2/3
/n

)
= (µ + δ)2

n2

P 4/3
(5)

elements of C on its own.
Suppose that the processor participates in the computation of cij but does not

compute it on its own. If cij resides on our processor at the end of the computation,
then our processor must have received a contribution to cij from at least one other
processor. If cij resides on another processor, our processor must have sent its own
contribution to some other processor. Either way, one word of data must either be
received or sent for each such cij .

Therefore, the processor must send or receive at least

1
4

(
ε

µ + δ

)2
n2

P 2/3
− (µ + δ)2

n2

P 4/3
=

(
1
4

(
ε

µ + δ

)2

− (µ + δ)2

P 2/3

)
n2

P 2/3

words to participate in the computation of the elements of C (subtracting (5) from
(4)). By the hypotheses on P and δ, we have

1
4

(
ε

µ + δ

)2

− (µ + δ)2

P 2/3
≥ 1

4

(
ε

2µ

)2

− (µ + δ)2

P 2/3

=
1
16

(
ε

µ

)2

− (µ + δ)2

P 2/3

≥ 1
16

(
ε

µ

)2

− (2µ)2

P 2/3

≥ 1
32

(
ε

µ

)2

≥ δ .

The first two inequalities are true since δ < µ. The third holds since P ≥
1024

√
2µ6/ε3, which implies that P 2/3 ≥ 128µ4/ε2, which in turn implies that

(2µ)2

P 2/3
≤ 1

32

(
ε

µ

)2

.
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This shows that the number of words that must be sent or received is at least
δn2/P 2/3, as claimed.

We can now prove the main result of this section. Its proof is essentially the same
as that of Theorem 3.1 and is omitted.

Theorem 5.1. (3D Communication Lower Bound) Consider the conven-
tional multiplication of two n-by-n matrices on a P -processor distributed-memory
parallel computer, where each processor has µn2/P 2/3 words of local memory. For
any

P ≥ 1024
√

2µ6 ,

at least one processor must send or receive

min
(

µ,
1

32µ2

)
n2

P 2/3

words or more.

6. BISECTION-BANDWIDTH BOUNDS

This section analyzes the amount of data that must cross the bisection of a
distributed-memory parallel computer. That is, we split the memory-processor
nodes into two subsets and lower bound the amount of data that must cross any
cut that separates the subsets in the communication network of the computer.
We assume that each element of the input matrices is stored exactly once in the
distributed memory of the machine and that the input is evenly split between the
subsets. Indeed, if we allow replication of the input matrices, the output can be
computed without any communication across the bisection. For example, most 3D
algorithms perform no communication across some bisection cuts in the network
following the initial data replication phase.

Another way to derive lower bounds on the communication across cuts is to apply
the lower bounds in Section 4 and 5 to groups of processors. These bounds also
bound the amount of communication that a group of p processors must perform with
the other P−p processors in the machine. This communication must be transmitted
on any edge cut in the communication network between the two processor groups.
Hence, we can bound the amount of communication that must traverse cuts in the
network.

This technique, however, is unlikely to provide useful bounds for large p (say
p = P/2). First, some of our results (Theorems 4.1 and 5.1) only hold for large P .
Second, other results (Theorem 3.1) provides useless bounds for P = 2, since they
only guarantee that the amount of communication is greater than 0 or a negative
number.

Therefore, we need a specific bound on the communication across bisection cuts.
The theorem below assumes that A and B are evenly distributed. The proof can
be easily modified to show that same asymptotic behavior also applies when each
of the two processor subsets initially stores at most µn2 elements of A and µn2
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elements of B, for any constant µ < 1/
√

2. For µ ≥ 1/
√

2, a more complex proof
would be required.

Theorem 6.1. Consider the conventional multiplication of two n-by-n matrices
on a P -processor distributed-memory parallel computer, where each input element
is initially stored in the local memory of exactly one processor. At least

√
13− 3

4
n2 ≈ 0.1514n2

words must be transferred across any cut that splits the input distribution of the
multiplicands A and B evenly.

Proof. Let

δ =
√

13− 3
4

.

Consider a cut in the communication network that splits the nodes into two subsets,
each holding exactly n2/2 elements of A and n2/2 elements of B.

If more than δn2 elements of A or more than δn2 elements of B are transferred
across the cut, The theorem holds.

Otherwise, we claim that each part of the machine can compute at most(
1
2

+ δ

)2

n2

elements of C on its own (that is, by summing products aikbkj that are all computed
locally). Computing each such element requires access an entire row of A and an
entire column of B. If at most δn2 elements of A and B cross the cut, each part has
access to at most

(
n2

2 + δn2
)

/n rows of A and columns of B, so it can compute at
most (

1
2

+ δ

)2

n2

elements of C on its own.
Hence, the other

n2 − 2
(

1
2

+ δ

)2

n2 =
(
−2δ2 − 2δ +

1
2

)
n2

elements of C must be computed by the two parts of the machine together, which
means that at least that many words must cross the cut. Since δ = (

√
13−3)/4, we

have −2δ2 − 2δ + 1/2 = δ, so the theorem holds.

7. THE I/O LOWER BOUND
The next theorem and the corollary that follows it show how to use the Lemma 2.1

to bound the number of compulsory and capacity cache misses in matrix multipli-
cation. These results lower bound the number of words that must be transferred
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between a slow memory and a fast cache when arithmetic operations can only access
data in the cache.

The results themselves are not new, but they show how the proof technique
that we use for the parallel communication bounds can be applied to the analysis
of cache misses. Specifically, the bounds that we prove here are asymptotically
the same as those proved by Hong and Kung [12] and again by Toledo [24]. Our
bounds, however, specify constants, unlike Hong and Kung’s result which is stated
using asymptotic notation. The constants here are slightly stronger than those
given in [24], but the proof technique is similar. In effect, we are using Toledo’s
proof technique but the use of Lemma 2.1 simplifies the structure of the proof.

The lower bounds use a lax memory-system model that is equivalent to Hong
and Kung’s red-blue pebble game. Therefore, they apply to any cache organization.
The lower bounds also match, asymptotically, the performance of recursive matrix
multiplication and of blocked matrix multiplication, assuming that the block size
is chosen appropriately and when the cache is fully associative and uses the LRU
replacement policy.

Matrix-multiplication algorithms whose asymptotic performance matches the
lower bound are as old as computers. Rutledge and Rubinstein [22, 21] described
the library of blocked matrix subroutines that they designed (together with Her-
bert F. Mitchell) and implemented for the UNIVAC, a first-generation computer
that became operational in 1952. McKeller and Coffman [20] provided the first
rigorous analysis of data reuse in matrix computations, including matrix multipli-
cations. They showed that blocked algorithms transferred fewer words between fast
and slow memory than algorithms that operated by row or by column. High-quality
implementations of I/O-efficient matrix-multiplication algorithms are widely avail-
able and used [2, 1, 5, 7, 11, 14, 17, 15, 16, 18, 19, 26]

The proof of the next theorem is very similar to the proof of Lemma 3.1.

Theorem 7.1. Consider the conventional multiplication of two n-by-n matrices
on a computer with a large slow memory and a fast cache that can contain M words.
Arithmetic operations can only be performed on words that are in the cache. The
number of words that are moved between the slow memory and the fast cache is at
least ⌊

n3

4
√

2M
√

M

⌋
M

words. The number of words that are moved is also bounded by

n3

4
√

2
√

M
−M .

Proof. We decompose the schedule of the computation into phases. Phase `

begins when total number of words moved between the memory and the cache is
exactly `M . Thus, in each phase, except perhaps the last phase, exactly M words
are transferred between memory and the cache.

The number NA of elements of A that the processor may operate upon during
a phase is at most 2M , since each one of these elements must either reside in the
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cache when the phase begins, or it must be read into the cache during the phase.
The same argument shows that NB ≤ 2M .

We define an element cij of the product C as live during a phase if the processor
computes aikbkj for some k during the phase and if a partial sum containing aikbkj

either resides in the cache at the end of the phase or is written to slow memory
during the phase.

The number NC of live elements of C during a phase is at most 2M , since each
live element either uses one word of cache at the end of the phase or it is written
to slow memory.

Lemma 2.1 shows that the number of useful multiplications during a phase is at
most

NB

√
NA + NC

√
NA ≤ 2M

√
2M + 2M

√
2M

= 4
√

2M
√

M .

Therefore, the number of full phases (that is, phases in which exactly M words are
transferred) is at least ⌊

n3

4
√

2M
√

M

⌋
,

so the total number of words that are transferred is at least⌊
n3

4
√

2M
√

M

⌋
M .

Since bxc ≥ x− 1 for any positive x, we also have

n3

4
√

2M
√

M
M ≥

(
n3

4
√

2M
√

M
− 1
)

M

=
n3

4
√

2
√

M
−M .

which concludes the proof.

The next corollary shows that when the matrices are several times larger than
the cache, the number of cache misses is proportional to n3/

√
M . The constants

in the corollary are essentially an example; by picking a stronger bound on the size
of the matrices relative to the cache we could have proved a stronger bound on the
number of cache misses.

Corollary 7.1. (The I/O Lower Bound [12]) Under the conditions of The-
orem 7.1, and assuming that M ≤ n2/1282/3 < n2/5.039, the number of words that
must be transferred to and from the cache is at least

n3

8
√

2
√

M
= Θ

(
n3

√
M

)
.
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Proof. If M ≤ n2/1281/3 then
√

M ≤ n/1281/6 the number of words that must
be transferred is at least

n3

4
√

2
√

M
−M ≥ n3

4
√

2
√

M
− n2

1281/3

=
n3

4
√

2
√

M
− n3

1281/3n

≥ n3

4
√

2
√

M
− n3

1281/3 · 1281/6
√

M

=
n3

4
√

2
√

M
− n3

8
√

2
√

M

=
n3

8
√

2
√

M
.
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