
SUPPORT-GRAPH PRECONDITIONERS∗

MARSHALL BERN† , JOHN R. GILBERT∗, BRUCE HENDRICKSON‡ , NHAT NGUYEN§ ,
AND SIVAN TOLEDO¶

Abstract. We present a little-known preconditioning technique, called support-graph precondi-
tioning, and use it to analyze two classes of preconditioners. The technique was first described in
a talk by Pravin Vaidya, who did not formally publish his results. Vaidya used the technique to
devise and analyze a class of novel preconditioners. The technique was later extended by Gremban
and Miller, who used it in the development and analysis of yet another class of new preconditioners.
This paper extends the technique further and uses it to analyze two classes of existing precondi-
tioners: modified incomplete-Cholesky and multilevel diagonal scaling. The paper also contains a
presentation of Vaidya’s preconditioners, which was previously missing from the literature.

1. Introduction. This paper presents new applications of a little-known tech-
nique for constructing and analyzing preconditioners called support-graph precondi-
tioning. The technique was first proposed and used by Pravin Vaidya [11], who de-
scribed it in a talk in 1991, but did not publish a paper. Vaidya used the technique to
design a family of novel preconditioners. Later, Gremban, Miller, and Zagha [5, 6] ex-
tended the technique and used it to construct another family of preconditioners. This
paper explains the technique, extends it further, and uses it to analyze two classes of
known preconditioners for model problems. Specifically, we use the extended technique
to analyze certain modified-incomplete-Cholesky (MICC) preconditioners (see [8]) and
multilevel-diagonal-scaling (MDS) preconditioners (see [10], for example).

The principle goal of this paper is to bring these techniques to the attention of
a wider community of researchers. By doing so, we hope to encourage further work
in this promising area. The primary original content of this paper, analyzing known
preconditioners using the support-graph technique, serves several purposes. First,
the analysis of MICC preconditioners establishes bounds that have never been proved
before. Second, it shows that the technique is more widely applicable than previously
appreciated. Third, we feel that the new proofs provide useful insights into these
preconditioners; these insights can be used to improve the preconditioners and to
guide heuristics for the construction of additional preconditioners.

A secondary goal of this paper is to provide a complete presentation of the
support-graph technique and of Vaidya’s preconditioners. Vaidya’s important con-
tribution has never been published. Although most of the theory that he uses is pre-
sented in Gremban’s PhD thesis [6], Vaidya’s preconditioners have not been described
in any published form. We seek to rectify this situation. Our complete presenta-
tion of the support-graph technique is necessary since some important portions of the

∗This research was supported in part by DARPA contract number DABT63-95-C-0087 and by
NSF contract number ASC-96-26298. Hendrickson and Nguyen were supported by the Applied
Mathematical Sciences program, U.S. DOE, Office of Energy Research, and performed this work at
Sandia National Labs, operated for the U.S. DOE under contract No. DE-AC04-94AL85000. Toledo
was partially supported by the Israel Science Foundation founded by the Israel Academy of Sciences
and Humanities (grant number 572/00 and grant number 9060/99) and by the University Research
Fund of Tel-Aviv University. A preliminary version of this paper was presented at the Copper
Mountain Conference on Iterative Methods, Copper Mountain, Colorado, March 30–April 3, 1998.

†Xerox Palo Alto Research Center.
‡Sandia National Laboratories.
§Stanford University.
¶Tel Aviv University. Part of this research was performed while Sivan Toledo was with the Xerox

Palo Alto Research Center

1

theory are missing from Gremban’s thesis. Specifically, we present a formal proof
of the Congestion-Dilation Lemma and we state stronger versions of some important
lemmas. We also provide detailed constructions and complete proofs for Vaidya’s
preconditioners, which are missing from his 1991 manuscript.

The support-graph technique analyzes a preconditioner B for a matrix A by
splitting both A and B into A = A1 + A2 + · · ·+ Am and B = B1 + B2 + · · ·+ Bm.
Proving that τBi −Ai is positive semidefinite for all i shows that τB −A is positive
semidefinite and hence that the largest finite generalized eigenvalue of the matrix pair
(A,B) is bounded by τ . The bound on the smallest generalized eigenvalue is proved
by bounding the largest eigenvalue of (B, A) in the same way. The splittings of A
and B are guided by their underlying graphs; often this allows us to reduce a complex
problem to many problems with simple structures.

This paper has three main parts. The first part of the paper, §2 and §3, describes
support-graph theory. The second part of the paper, §4 and §5, describes the pre-
conditioners of Vaidya and of Gremban and Miller. The third part of the paper, §6
and §7, describes support-graph analysis of MICC and MDS preconditioners. Our
conclusions from this research are presented in §8.

1.1. A Summary of the Results. This subsection summarizes the results in
this paper. We start with a brief discussion of the strengths and weaknesses of the
preconditioners of Vaidya and of Gremban and Miller. We also discuss the significance
of our condition-number estimates for MICC and MDS preconditioners.

Vaidya proposed two classes of preconditioners. The first class, maximum-weight
spanning-tree preconditioners, guarantee a condition-number bound of O(n2) for any
n× n sparse diagonally-dominant symmetric matrices. They can be constructed and
factored at insignificant cost using relatively simple graph algorithms.

Vaidya’s second class of preconditioners is based on maximum-weight spanning
trees augmented with a few extra edges. They can be constructed at insignificant
cost using a slightly more complex algorithm than the first class. The cost of factor-
ing these preconditioners depends on how many edges are added to the tree. Vaidya
proposes that the factorization cost be balanced with the iteration costs, and he pro-
vides balancing guidelines for some classes of matrices. This class of preconditioners
guarantees that the work in the linear solver is bounded by O(n1.75) for any sparse
M-matrix, and by O(n1.2) for M-matrices whose underlying graphs are planar.

The strengths of Vaidya’s preconditioners, especially of his second class, is that
they are general, easy to construct and provide good condition-number bounds. For
example, the work required to solve a model Poisson problem in 2D using Vaidya’s
preconditioner is O(n1.2). This compares favorably with the O(n1.25) work required
for a solver based on a modified incomplete Cholesky. Coupled with the facts that
Vaidya’s preconditioners are guaranteed to work well on irregular problems, and that
the only numerical assumption they make is that the matrix is an M-matrix, these
are impressive results.

The main weaknesses of Vaidya’s preconditioners are that they require a high-
quality direct solver to factor the preconditioner, that balancing the preconditioner-
factorization costs and the iteration costs may be a nontrivial task, and that they are
not guaranteed to parallelize well.

The preconditioners that Gremban and Miller proposed are multilevel precondi-
tioners. They are based on a hierarchical partitioning of the matrix, so they may be
quite expensive to construct. The cost of preconditioning in every iteration is small,
and the preconditioners parallelize well. The condition number of the preconditioned

2

system is similar, for model problems, to the condition numbers offered by modified
incomplete factorizations.

Thus, even on model problems, these preconditioners do not offer convergence
rates as good as those of other multilevel preconditioners, like multigrid precondition-
ers. On the other hand, they are guaranteed to parallelize, so they may be preferable
to incomplete factorizations on some computers. Gremban and Miller do not present
condition number bounds for important classes of matrices other than regular grids
with constant coefficients. For such problems their preconditioned systems have con-
dition number bounds of O(n log n).

Our proofs of the condition-number bounds for modified incomplete factoriza-
tions are novel and significant. We show that the condition number for MICC for a
model Laplace problem in 2D with either Dirichlet or Neumann or mixed boundary
conditions is O(

√
n). The bound for a 3D model problem is O(n1/3), but this only

holds in the Dirichlet case and in some mixed boundary-condition cases.
To the best of our knowledge, these are the first such bounds for MICC without

diagonal perturbation. The proofs are relatively simple, requiring only elementary
linear algebra.

Our condition-number bound for a multilevel diagonal scaling preconditioner in
one dimension is O(log n), which is good; but the analysis seems difficult to generalize
to more realistic problems. Still, it provides some purely algebraic insight as to how
this preconditioner works.

2. Basic Support Graph Theory. This section describes the basic linear-
algebra tools that Vaidya and Gremban & Miller have developed to analyze their
preconditioners. These preconditioners are for M-matrices, symmetric, diagonally
dominant matrices with nonpositive off-diagonals. Vaidya and Gremban & Miller
extended some of their results to symmetric diagonally dominant matrices with mixed
off-diagonals. These extensions are specific to the preconditioners that they propose;
their extensions and preconditioners are described in §4 and §5. Our own extensions
are presented in §3.

The number of iterations of the Conjugate Gradient method for the solution of
systems of linear equations Ax = b is bounded above by the square root of the spectral
condition number κ(A) of A. (The actual number of iterations can be significantly
smaller in some cases.) The condition number is the ratio of the extreme eigenvalues
of A, κ(A) = λmax(A)/λmin(A). The Conjugate Gradient method can be used to
solve consistent linear systems with a singular coefficient matrix A when a basis for
the null space of A is known. In such cases, the number of iterations is proportional
to square root of the ratio of the extreme positive eigenvalues. When a preconditioner
B is used in the Conjugate Gradient method, the number of iterations is proportional
to the the square root of the ratio of the extreme finite generalized eigenvalues of the
pair (A,B), defined below.

Definition 2.1. The number λ is a finite generalized eigenvalue of the matrix
pencil (A,B) if there exists a vector x such that Ax = λBx and Bx 6= 0. We denote
the set of finite generalized eigenvalues by λf (A,B).

Henceforth whenever we refer to an “eigenvalue” of a matrix pencil, we mean a
finite generalized eigenvalue.

To bound the amount of work in the Preconditioned Conjugate Gradient method,
we need to bound the finite eigenvalues of (A,B). We need to prove two bounds:
an upper bound on max λf (A,B) and a lower bound on minλf (A,B). We will
prove the upper bound directly and the lower bound by proving an upper bound

3

on maxλf (B, A) = 1/ minλf (A,B). We therefore only need to show how to prove
upper bounds on the λf (A,B), since the lower bound is proved in essentially the same
way for the matrix pencil (B, A).

2.1. The Support Lemma: Bounding Eigenvalues of Matrix Pencils.
The main tool that we use to bound λf (A,B) is the so-called support of (A,B),
which is the smallest number τ such that τB−A is positive semidefinite. Informally,
we think of τ as the number of copies of B required to “support” the action of A.
If τ is small, B supports A well; if τ is large, B supports A weakly. We denote the
support of (A,B) by σ(A,B),

σ(A,B) = min{τ : τB −A is positive semidefinite} .

If there is no τ for which τB −A is positive semidefinite, then we take σ(A,B) = ∞.
The following lemma shows that the support of a pencil bounds its eigenvalues.

The lemma is used implicitly by Vaidya without a proof. Gremban states the lemma
and gives a proof [6, Lemma 4.4]. We state it under a weaker hypothesis than Grem-
ban, which is nevertheless strong enough for Gremban’s proof. A more general version
of this lemma can be found in Axelsson [1, Theorem 10.1].

Lemma 2.2 (Support Lemma [6]). If λ ∈ λf (A,B) where B is positive semidefi-
nite and null(A) ⊆ null(B), then λ ≤ σ(A,B).

Some pairs of matrices do not have a finite support σ(A,B). Let

A =
(

2 −1
−1 1

)
and let B =

(
1 0
0 0

)
.

We have λf (A,B) = {√2/2}, but τB − A has a negative eigenvalue for all τ .
(Lemma 2.12 shows how to bound the extreme eigenvalues in some of these cases.) If
a pair of matrices has finite support, however, then the Support Lemma is tight.

Lemma 2.3. If σ(A,B) is finite, then

σ(A,B) ∈ λf (A,B) .

Proof. The matrix σ(A,B) · B −A has a zero eigenvalue since the eigenvalues of
τB −A are continuous in τ . Therefore, there is a vector x such that

(σ(A,B) · B −A)x = 0

or

Ax = σ(A,B) · Bx .

We use the Support Lemma to prove an upper bound τ on λf (A,B) by proving
that τB −A is positive semidefinite. Much of the rest of the theory consists of tools
to prove that a matrix is positive semidefinite.

2.2. The Splitting Lemma: Proving Semidefiniteness by Decomposi-
tion. One way to prove that a matrix is positive semidefinite is to split it into a sum
of matrices and prove that each term is positive semidefinite. This lemma too was
implicitly used by Vaidya and stated and proved in Gremban’s thesis [6, Lemma 4.7].

4

Lemma 2.4 (Splitting Lemma). Let Q = Q1 + Q2 + · · ·+ Qm, where
Q1, Q2, . . . , Qm are all positive semidefinite. Then Q is positive semidefinite.

We first use the Splitting Lemma to reduce the problem of preconditioning sym-
metric diagonally dominant matrices to the problem of preconditioning symmetric
matrices with zero row sums.

Lemma 2.5. Let A be a symmetric diagonally dominant matrix and let A′ be
the matrix with the same off-diagonal entries but with zero row sums. Let B′ be a
preconditioner for A′ such that both βB′ −A′ and αA′ −B′ are positive semidefinite
and α, β ≥ 1. Let B = B′ + A − A′ be a preconditioner for A (B has the same
off-diagonal entries as B′ and the same row sums as A). Then βB −A and αA−B
are positive semidefinite.

Proof. We have

βB −A = β(B′ + A−A′)−A

= (βB′ −A′) + (β − 1)(A−A′) .

Both terms in the last sum are positive semidefinite: the first by the hypothesis,
and the second since it is a nonnegative scalar multiple of a diagonal matrix with
nonnegative entries. Similarly,

αA−B = αA− (B′ + A−A′)
= (αA′ −B′) + (α− 1)(A−A′)

is positive semidefinite.
The conditions α, β ≥ 1 do not limit the applicability of the lemma since the

condition number is 1 or more. Therefore, if either α or β is less than 1, we scale B′

without changing αβ, which is our bound on the condition number of the precondi-
tioned system.

Using this lemma, we assume from now on that both A and B have zero row
sums.

2.3. The Congestion-Dilation Lemma: Splitting by Paths in the Graph.
Vaidya and Gremban & Miller split τB−A in a special way to prove that it is positive
semidefinite. We assume that A and B are symmetric. Given a symmetric matrix A,
we define its underlying graph.

Definition 2.6. The underlying graph GA = (VA, EA) of an n-by-n symmetric
matrix A is a weighted undirected graph whose vertex set is VA = {1, 2, . . . , n} and
whose edge set is EA = {(i, j) : i 6= j, Ai,j 6= 0}. The weight of an edge (i, j) is Ai,j.
The weight of a vertex i is the sum of elements in row i of A.

Let GA be the undirected weighted graph underlying −A and GB the graph
underlying −B. Since both A and B have zero row sums, the graph structure and
the edge weights determine the matrices exactly, since all the vertex weights are 0. If
the off-diagonal elements of A and B are all negative, then the edge weights in GA

and GB are positive. Vaidya and Gremban & Miller interpret such graphs as resistive
networks where the edge weight is the conductance of a resistor. They split τB − A
into (τB1 − A1) + (τB2 − A2) + · · · + (τBm − Am) such that each Ai corresponds
to exactly one edge in GA, and each Bi corresponds to a simple path in GB . Both
the Ai’s and the Bi’s have nonpositive off-diagonals and zero row sums. Each Ai

represents the entire weight of one edge, and each corresponding Bi represents a path
that can contain fractions of edge weights. The endpoints of the path represented by
Bi are the endpoints of the edge represented by Ai. An example of such a splitting is

5

B −1

−1 −1

−1

−0.5 −0.5 −0.5 −0.5

B2 B3 B4B1

A −1

−1 −1

−1 A2 A3 A4A1

−1

−1

−1

−1

Fig. 2.1. A graph representation of a splitting of A = A1 + · · · + A4 and B = B1 + · · · + B4

such that each Ai is represents a single edge and each Bi is a path that supports the edge Ai. This
splitting proves that λf (A, B) ≤ σ(A, B) ≤ 4 since the worst congestion-dilation product is 2 · 2 = 4.

shown in Figure 2.1. Both Vaidya and Gremban & Miller use the Congestion-Dilation
lemma, which they neither state nor prove, to show that each term τBi−Ai is positive
semidefinite.

We prove the Congestion-Dilation Lemma in three steps.
Lemma 2.7. Let

A =

a 0 · · · 0 −a
0 0 0
...

. . .
...

0 0 0
−a 0 · · · 0 a

and

B =

a −a
−a 2a −a

· · ·
−a 2a −a

−a a

be (k + 1)-by-(k + 1) matrices with a > 0. Then kB −A is positive semidefinite.

Proof. We prove that kB−A is positive semidefinite by showing that the matrix

C = (1/a)(kB −A) =

k − 1 −k 1
−k 2k −k

· · ·
−k 2k −k

1 −k k − 1

is positive semidefinite.

We show by induction that C is positive semidefinite by performing symmetric
Gaussian elimination on rows/columns 2 through k − 1. The inductive claim is that
after we eliminate row and column i (or before we eliminate i + 1, when i = 1), the

6

matrix C becomes

−1 + k/i −k/i 1
2k

3k/2

ik/(i− 1)
−k/i (i + 1)k/i −k

−k 2k
. . .

1 2k

.

The claim is true before we eliminate row and column 2, since in that case i = 1.
Assume that the claim is true after we eliminate i but before i +1 The elimination of
row and column i+1 modifies three entries in C: C11, Ci+2,i+2, and C1,i+2 = Ci+2,1.
The new values are

C11 = −1 +
k

i
− (−k/i)(−k/i)

(i + 1)k/i
= −1 +

k

i + 1
,

Ci+2,i+2 = 2k − −k · −k

(i + 1)k/i
=

k(i + 2)
i + 1

,

and

C1,i+2 = 0− −k(−k/i)
(i + 1)k/i

=
k

i + 1
,

which proves the inductive claim
Therefore, after we eliminate row k the 2×2 submatrix consisting of the first and

last row and column becomes(−1 + k/k 1− k/k
1− k/k −1 + k/k

)
= 0

and the remainder of the matrix is positive diagonal, so C is positive semidefinite.
The combinatorial interpretation of Lemma 2.7 is that A represents a single edge

with weight a and B represents a path with the same endpoints and consisting of
edges of weight b. The lemma states that the support of A in B is k, the dilation of
the edge in the path, or simply the length of the path.

The next lemma is slightly more general.
Lemma 2.8. Let

A =

a 0 · · · 0 −a
0 0 0
...

. . .
...

0 0 0
−a 0 · · · 0 a

and

B =

b −b
−b 2b −b

· · ·
−b 2b −b

−b b

7

be (k + 1)-by-(k + 1) matrices with a > 0, b > 0. Then (k · a/b)B − A is positive
semidefinite.

Proof. This case reduces by scaling to Lemma 2.7.
This lemma states that in the more general case in which the weight of the edge

represented by A and the weight of the edges of the path represented by A are not the
same, the support is the dilation k multiplied by the ratio a/b of the edge weights.

Finally, we state and prove the full Congestion-Dilation Lemma.
Lemma 2.9 (Congestion-Dilation Lemma). Let

A =

a 0 · · · 0 −a
0 0 0
...

. . .
...

0 0 0
−a 0 · · · 0 a

 .

be a (k + 1)-by-(k + 1) matrix with a > 0 and let

B =

d1 −b1

−b1 d2 −b2

· · ·
−bk−1 dk −bk

−bk dk+1

be a matrix with zero row sums, and with di, bi > 0 for all i. Then (k ·a/ min(bi))B−A
is positive semidefinite.

Proof. Let b = min(bi). We split B into

B = B1 + B2 =

b −b
−b 2b −b

· · ·
−b 2b −b

−b b

+

d1 − b −b1 + b
−b1 + b d2 − 2b −b2 + b

· · ·
−bk−1 + b dk−1 − 2b −bk + b

−bk + b dk − b

 .

The matrix B2 is symmetric, diagonally dominant, and has nonpositive off-diagonals,
so it is positive semidefinite. We have

(k · a/ min(bi))B −A = (k · a/b)B −A

= [(k · a/b)B2] + [(k · a/b)B1 −A] .

The first term is positive semidefinite since B2 is positive semidefinite, and the second
term is positive semidefinite by Lemma 2.8. Therefore, the sum is positive semidefi-
nite.

The combinatorial interpretation of the Congestion-Dilation Lemma is that
a/ min(bi) is the congestion of the edge represented by A in the path represented
by B, and k is the dilation of the edge. In the example depicted in Figure 2.1 the
congestion of the edge A3 in the path B3 is 2 and the dilation is 2, for example.

8

The proof shows that the congestion-dilation bound k · (a/ min(bi)) on σ(A,B)
is tight only when all the edges along the path have the same weights; at the other
extreme when one edge has small weight b and the rest have very large weights, the
actual support σ(A,B) is closer to a/b than to k · (a/b).

The Support, Splitting, and Congestion-Dilation Lemmas are the only linear-
algebra tools that Vaidya uses in his construction. Given an M-matrix A, Vaidya
constructs a preconditioner B whose underlying graph GB consists of a subset of the
edges of GA and the same set of vertices. Vaidya uses the lemmas above to bound the
condition number of the preconditioned system. He splits GB into paths that support
each edge of GA. Since GB is a subset of GA, GA supports the edges of GB with
paths of length 1 and no congestion, so the small eigenvalue of (A,B) is at least 1.
The bound that Vaidya obtains, therefore, is the worst congestion-dilation product
for the edges of GA. The specific constructions that Vaidya proposes are described in
§4.

2.4. The Clique-Star Lemma. Gremban and Miller introduce another way of
bounding the support of one simple matrix by another. The matrix A being supported
represents a fully-connected subgraph, or a clique, of size k, and the supporting matrix
B represents a k-edge star whose endpoints coincide with the members of the clique.

Lemma 2.10 (Clique-Star Lemma). Let

A =

0 0 0 · · · 0
0 (k − 1)a −a · · · −a
0 −a (k − 1)a · · · −a
...

. . .
...

0 −a −a · · · (k − 1)a

and

B =

kb −b −b · · · −b
−b b 0 · · · 0
−b 0 b · · · 0
...

. . .
...

−b 0 0 · · · b

be (k + 1)-by-(k + 1) matrices with a > 0, b > 0. Then (k · a/b)B − A is positive
semidefinite.

Proof. Let C = (k · a/b)B −A. We have

1
a
C =

k2 −k −k · · · −k
−k k − (k − 1) 1 · · · 1
−k 1 k − (k − 1) · · · 1
...

. . .
...

−k 1 1 · · · k − (k − 1)

=

k2 −k −k · · · −k
−k 1 1 · · · 1
−k 1 1 · · · 1
...

. . .
...

−k 1 1 · · · 1

 .

9

After one step of symmetric Gaussian elimination on the first row and column,
the matrix (1/a)C befomes

k2 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

. . .
...

0 0 0 · · · 0

 ,

which is clearly positive semidefinite. Hence, C is positive semidefinite.
This lemma provides a stronger bound on the support than the bound that results

from splitting the clique into edges and the star into 2-edge paths that support the
edges.

2.5. Gaussian Elimination and Generalized Support: Preconditioning
in a Larger Space. Gremban and Miller construct their preconditioners in a space
of higher dimension (or, on a graph with more vertices) than the original matrix.
They introduced a few more linear-algebra tools into the support-graph theory to
deal with this.

The next lemma, stated under a stronger hypothesis by Gremban [6, Lemma 4.9],
shows that λf (A,B) is invariant under non-singular transformations that are applied
to both A and B.

Lemma 2.11. If G and H are nonsingular matrices (not necessarily symmetric)
then

λf (A,B) = λf (GAH, GBH) .

We define the generalized support σ̄(A,B) of (A,B) as

σ̄(A,B) = min
{
τ : xT (τB −A)x ≥ 0 for all x such that Ax 6= 0 and Bx 6= 0

}
.

Roughly speaking, σ̄(A,B) measures how well B supports A outside their null spaces.
Gremban does not use this lemma but a similar one that is tailored more precisely
to his technique. We state and prove here the more general case, which is a stronger
version of the Support Lemma.

Lemma 2.12. If λ ∈ λf (A,B) where A 6= 0, B 6= 0 are symmetric positive
semidefinite, then λ ≤ σ̄(A,B).

Proof. Let τ = σ̄(A,B). Note that the assumption A 6= 0 implies τ > 0. Assume
for contradiction that there is a λ ∈ λf (A,B) such that λ > τ , and let ε = λ− τ > 0.
Let y be an eigenvector corresponding to λ. We have Ay = λBy, so yT (A−λB)y = 0.
By definition of λf (), By 6= 0. If By 6= 0 and Ay = 0, then λ = 0 < τ , a contradiction.
So neither Ay nor By can be zero. By the definition of τ we have

0 ≤ yT (τB −A)y
= yT ((λ− ε)B −A)y
= yT (λB −A)y − yT (εB)y
= −yT (εB)y .

Since B is symmetric positive semidefinite and By 6= 0, yT By > 0. So −yT (εB)y < 0,
which is a contradiction.

10

These two lemmas allow us to use a preconditioner in a space of higher dimension
than the original matrix. We embed the original k-by-k matrix A11 in an n-by-n
matrix A, where n is the order of the preconditioner B.

A =
(

A11 0
0 0

)
, B =

(
B11 B12

BT
12 B22

)
.(2.1)

We cannot use congestion-dilation arguments directly to bound σ(B, A); since the
underlying graph of A has n− k disconnected vertices, so paths in A cannot support
all the edges of B.

Instead, we use Lemma 2.11 to reduce (2.1) to a simpler case

A =
(

A11 0
0 0

)
, B̃ =

(
B̃11 0

0 B̃22

)
(2.2)

using Gaussian elimination on the last n − k rows and columns of B. Note that the
Gauss transformations must also be applied to A, but they have no effect on it. We
complete the analysis of (2.2) using Lemma 2.12. For any τ , the space Rn can be
decomposed into two orthogonal subspaces that are invariant under τA−B. Vectors
in one subspace V1 (represented in the standard basis) have nonzeros only in the first
k elements, and vectors in the other subspace V2 have nonzeros only in the last n− k
elements. The subspace V2 is contained in the null space of A. Therefore, to prove
that λf (B, A) is bounded by τ , we only need to show that xT (τA − B)x ≥ 0 for
x ∈ V1, which is equivalent to showing that τA11 −B11 is positive semidefinite.

We will see in §5 how Gremban and Miller use this technique to analyze the
condition number of his preconditioners. The main drawback of this technique is that
the elimination of the last n−k rows and columns of B can significantly fill the leading
k-by-k block of B. Unless B is particularly simple, this fill is difficult to analyze. We
propose in the next section an alternative technique that leads to a simpler analysis of
some preconditioners, since it does not require a complete elimination of the trailing
block of B.

3. Support Graph Theory: Extensions. We now describe new tools that ex-
tend the support-graph theory developed by Vaidya and Gremban & Miller. (Lemma
2.12 too is an extension of a result of Gremban and Miller’s). In particular, these
tools enable or simplify the analysis of preconditioners with both positive and neg-
ative off-diagonal entries using support-graph theory. The results presented in §3.2
were also derived independently by Guattery [7].

3.1. Stepwise Gaussian Elimination. The first technique allows us to analyze
support graphs that are larger than A, like Gremban and Miller’s preconditioners, but
without performing a complete elimination of the extra vertices that are in B but not
in A. Our technique relies on the following two lemmas. The first lemma is a version
of Lemma 2.11 but for generalized support rather than eigenvalues.

Lemma 3.1. Let G be a nonsingular matrix. Then σ̄(A,B) = σ̄(GT AG,GT BG).
Proof. Let τ = σ̄(A,B). By the definition of σ̄(A,B) we have

xT (τGT BG−GT AG)x = (Gx)T (τB −A)(Gx) ≥ 0

for all x such that A(Gx) 6= 0 and B(Gx) 6= 0. But A(Gx) 6= 0 if and only if
(GT AG)x 6= 0, and similarly for GT BG. Therefore, we have

xT (τGT BG−GT AG)x ≥ 0
11

for all x such that GT AGx 6= 0 and GT BGx 6= 0, so σ̄(GT AG,GT BG) ≤ τ = σ̄(A,B).
The opposite inequality is proved in the exactly the same way.

The second lemma shows that we can subtract certain positive semidefinite ma-
trices from A without increasing σ̄(A,B). Subtracting a positive semidefinite matrix
C from A makes A easier to support, provided C’s null space includes A’s.

Lemma 3.2 (Shifting Lemma). Let A, B, and C be positive semidefinite matrices
such that null(A) ⊆ null(C). Then

σ̄(A− C, B) ≤ σ̄(A,B) .

Proof. Let τ = σ̄(A,B). By the definition of σ̄(A,B) we have

xT (τB −A)x ≥ 0

for all x such that Ax 6= 0 and Bx 6= 0. Therefore, we also have

xT (τB − (A− C))x = xT (τB −A)x + xT Cx ≥ 0

for all x such that Ax 6= 0 and Bx 6= 0. Assume for contradiction that

xT (τB − (A− C))x < 0

for some x such that (A − C)x 6= 0 and Bx 6= 0. Since xT Cx ≥ 0 for all x, we must
have

xT (τB −A)x < 0 ,

so Ax = 0. But null(A) ⊆ null(C) implies Cx = 0, contradicting (A − C)x 6= 0.
Hence,

σ̄(A− C, B) ≤ τ = σ̄(A,B) .

These lemmas allow us to reduce (2.1) to (2.2) in a series of phases. In each phase,
we perform one or more steps of Gaussian elimination on A, followed by a subtraction
of a negative semidefinite matrix from A (addition of a positive semidefinite matrix).
After all of these steps are complete, we prove a bound on the generalized support
of the resulting matrices. These lemmas allow us to then retrace the steps that we
have taken, performing transformations that reverse the effects of elimination steps
and subtracting positive semidefinite matrices, all without changing the bound on the
generalized support. Thus, the bound that we prove on the matrices after this series
of transformation is also a bound on the original matrix and preconditioner.

3.2. Positive Offdiagonal Elements. Positive off-diagonal entries in B require
a modification to the splitting strategy. Recall that the “canonical” use of the Splitting
Lemma is to split τB − A into (τB1 − A1) + · · · + (τBm − Am), where the Bi’s are
positive semidefinite. When the Congestion-Dilation Lemma is used, the Bi’s are
usually paths of negative edges, and the Ai’s are negative edges, all with zero row
sums (positive row sums can be handled separately as shown in Lemma 2.5). When
B has positive off-diagonal entries, this strategy must be modified. One way to prove
an upper bound on σ̄(A,B) in this case using the congestion-dilation framework is to

12

support both A and the positive edges of B with the negative edges of B. We split
τB −A into

τB −A = (τB1 − A1) + · · ·+ (τBm −Am)
+(τBm+1 + τBm+k+1) + · · ·+ (τBm+k + τBm+2k) ,

where each of Bm+k+1 through Bm+2k represents a single positive edge, and B1

through Bm+k represent paths of negative edges. Thus, B1 through Bm support
edges of A, while Bm+1 through Bm+k support the positive edges of B.

An important point is that, in this case, increasing τ does not necessarily make all
the terms positive semidefinite. Indeed, if τBm+j + τBm+k+j is indefinite or negative
definite, then it remains so for all τ ≥ 0. In other words, each positive edge of B must
be supported by a path with support at most 1.

We can make the analysis simpler when the precoditioner B can be represented
as B = A − R where R is also positive semidefinite. Some common preconditioners
that are produced by an incomplete factorization process can be represented in this
way, as explained in §6. The following lemma shows how to simplify the analysis.

Lemma 3.3. Let B = A−R such that A, B, and R are positive semidefinite. If
σ̄(R, A) = τ ′ < 1, then κ(B−1A) ≤ 1/(1− τ ′).

Proof. Let τ = 1/(1− τ ′). The matrix

τB −A = τA − τR −A

= (τ − 1)A− τR

=
τ ′

1− τ ′
A− 1

1− τ ′
R

is positive semidefinite since σ̄(R, A) = τ ′, so σ̄(A,B) ≤ τ . We also have σ̄(B, A) ≤ 1,
since A−B = A− (A−R) = R is positive semidefinite.

In such cases, the lemma can be interpreted as an application of the strategy
described in the previous paragraph. We use a τ ′ fraction of the negative edges of B
to support the positive edges. The negative edges of B are exactly the edges of A.
Therefore, we use a 1−τ ′ fraction of each edge of A to support itself, giving a support
bound of 1/(1− τ ′).

4. Vaidya’s Preconditioners. In this section we describe the two families of
combinatorial preconditioners developed by Vaidya [11]. Vaidya’s first family applies
to all symmetric, diagonally dominant matrices; the second family applies only to
M-matrices, but Vaidya suggests that it can be extended to all symmetric diagonally
dominant matrices. We begin the discussion by assuming that A is an n×n M-matrix
and describe the extension to symmetric diagonally dominant matrices later. Let m
be the number of off-diagonal nonzeros in A. If A has rows with positive row sums we
increase the diagonal elements of the preconditioner B so that A and B have the same
row sums. As shown in Lemma 2.5 in §2, this transformation does not change the
condition-number estimates (although it may change the condition number itself).

Both families use preconditioners B whose underlying graphs GB are subgraphs
of GA (same set of vertices and a subset of the edges), so we can always support
an edge of GB by the corresponding edge of GA. Therefore, the congestion-dilation
bound for σ(B, A), and hence for maxλf (B, A), is 1.

Vaidya’s first preconditioner is constructed by finding a maximum-weight span-
ning tree T in GA. In other words, T is a connected graph with no cycles (i.e., a
spanning tree), and the total weight of its edges is maximal among all spanning trees

13

A B V1 V2

V3 V4

B′

Fig. 4.1. A graph GA, a spanning tree GB of GA (middle), and a spanning tree augmented with
extra edges (GB′ , left). The augmentation is performed by cutting the tree into subgraphs V1, . . . , V4

of roughly equal size, and adding the heaviest edge between each pair of subgraphs.

of GA. As illustrated in Figure 4.1, rhe preconditioner B is the M-matrix whose
underlying graph is GB = T , and whose row sums are identical to those of A.

Let us analyze the congestion and dilation in T for an edge e of GA. Since T is a
maximum-weight spanning tree, there is exactly one path in T between the endpoints
of e. And furthermore, all the edges along the path have heavier edges than e. There
are at most m/2 edges in GA, where n is the order of A, so T is split into at most
m paths. We allocate a 2/m fraction of the weight of each edge of T to every path,
so the congestion of an edge-path pair is at most 2/m. The maximum length of
a path is n − 1, so the dilation is at most n − 1. Hence, the congestion-dilation
product for edge-path pairs is at most m(n−1)/2 = O(mn). By Lemmas 2.4 and 2.9,
σ(A,B) ≤ O(mn), and by Lemma 2.2, λ ≤ O(mn) for any λ ∈ λf (A,B). Since the
smallest positive eigenvalue of (A,B) is at least 1, we have λf (A,B) ∈ [1, O(mn)].

Computing B takes at most O(m log n) work, using an efficient minimum-weight
spanning tree algorithm. Since the underlying graph of B is a tree, B can be factored
in time O(n) without producing any fill. Consequently, the costs associated with
constructing and factoring the B are insignificant relative to the cost of the iterative
linear solver, and the cost of applying it in every iteration is O(n), which is no more
expensive than multiplying by A.

The maximum-weight spanning tree preconditioners can be extended to handle
any symmetric diagonally dominant matrix by taking GB to be a maximum-weight
basis for GA rather than a maximum-weight spanning tree. A maximum-weight basis
is a generalization of the maximum spanning tree; see [3, Section 17.4 and Problem
17-2] for background. We omit the details from this paper.

Vaidya’s second family of preconditioners achieves a better condition number,
but it is also more expensive to compute and apply. The construction, also illustrated
in Figure 4.1, starts with the same maximum-weight spanning tree T . Let t be an
integer parameter. We decompose GA into a set of t subgraphs V1, V2, . . . , Vt such
that each subgraph is spanned by a connected subgraph of T and has at most m/t
vertices. We form GB by adding to T the heaviest edge between Vi and Vj for all i
and j (we add nothing if there are no edges between Vi and Vj or if the heaviest edge
is already in T). To analyze this preconditioner, we need the additional assumption
that no row in A has more than d + 1 nonzeros for some constant d, which implies
that m ≤ dn. We decompose the augmented tree GB into a set of paths as follows.
If both endpoints of an edge e ∈ GA are in the same Vi, we use the single path in T
that connects them. If one endpoint belongs to Vi and the other to Vj , the path uses
T to get from one endpoint of e to the heaviest edge that connects Vi to Vj , then the
path uses this edge, and finally it uses T to get to the other endpoint of e. Again, the
edges along a path are all heavier than the edge that is supported by the path. Since

14

the paths now have length at most 1 + (2dn/t), and since each edge in GB carries at
most d2n/t paths, the condition number of (A,B) is bounded by O(n2/t2).

What is the cost of factoring B? Let us denote the endpoints of the edges that
connect Vi with the other Vj ’s by Ui. Since the Vi’s are disjoint, we have Ui ∩Uj = ∅.
We begin the factorization of B by eliminating all the degree-1 and degree-2 vertices
in B, until all the remaining vertices have degree greater than 2. This phase, which we
refer to as contraction, requires only O(n) work and generates only O(n) fill elements.
Once this is done, what remains of each Vi is a tree with no vertices of degree 1 or 2,
and whose leaves are all in Ui (these are leaves in Vi, but not in B). It follows that the
number of non-leaf vertices in Vi is at most |Ui|. Hence, the total number of vertices
in the contracted graph is at most 2(|U1|+ · · ·+ |Ut|). We now factor the contracted
graph, exploiting whatever structure it has; when it is planar, for example, we can
use nested dissection to factor it. Hence, the total cost of factoring B is O(n) plus
the cost of factoring the contracted graph.

In the worst case, each subgraph Vi has a connection to all others, and has (t−1)
vertices in Ui. In this case, the contracted graph has no more than 2 · t(t−1) vertices,
so factoring it requires at most O((t2)3) work.

When GA is planar, GB is planar and so is the contracted graph. Furthermore,
when GA is planar, the contracted graph has only O(t) vertices. This can be proved
by contracting each Vi to a single vertex, which still preserves planarity. Since GB

has at most one edge between between Vi and Vj , these edges do not disappear and
are not merged into other edges in the contraction process. This super-contracted
planar graph has only t vertices, so it has only O(t) edges. But each one of the edges
between the original subgraphs Vi, Vj is still represented in the super-contracted
graph, so there are only O(t) of them in B, which proves that there are only O(t)
vertices in |U1|+ · · ·+ |Ut|. The factors of a matrix who whose underlying graph is a
planar graph with O(t) vertices have O(t log t) nonzeros and the factorization can be
performed in O(t3/2) time.

The following lemma summarizes the discussion above. The result is used in
Vaidya’s manuscript, but without a proof.

Lemma 4.1. The cost of factoring the augmented-maximum-weight-spanning-tree
preconditioner B is O(n + t6) when A is a general M-matrix, and O(n + t1.5) when
A is planar. The factors of B have O(n + t4) nonzeros in the general case, and
O(n + t log t) when A is planar.

The choice of t should balance the costs of constructing and factoring B with the
cost of the iterations, which is determined by both the condition number and the cost
of applying B. The cost of constructing B is again insignificant. If A has no special
nonzero structure (beyond a bound of d + 1 nonzeros per row), then the optimal
t is Θ(n0.25). Factoring the preconditioner costs O(t6) = O(n1.5). The number of
iterations is bounded by O(

√
n2/t2) = O(n/t), and the cost of every iteration is

O(n + t4), so the total cost is O(n2/t + nt3) = O(n1.75). When A is planar, the cost
of factoring B is O(n+ t1.5), and the cost of every iteration is O(n+ t log t). The cost
is minimized near n2/t = t1.5, or t = n0.8. The total cost to solve the linear system is
O(n1.2), versus O(n1.75) in the general case.

Vaidya analyzes other cases using other estimates of work and fill during the
factorization of various classes of sparse matrices. Vaidya does not show, however,
bounds for regular meshes and finite-element grids in 3D that are better than the
O(n1.75) bound that applies to all bounded-degree graphs.

Vaidya also proposes a recursive scheme that uses the same idea to solve the
15

system Bz = r that must be solved in every iteration. That is, instead of factoring
the preconditioner B and performing two triangular solves in every iteration, Vaidya
proposes to construct a preconditioner for B that is even sparser than B, and to solve
Bz = r iteratively. Similar ideas have been proposed in other contexts, such as domain
decomposition solvers where an iterative solver can be used within each subdomain,
leading essentially to a multilevel preconditioner. Vaidya does not analyze this idea
in any detail.

One potential disadvantage of Vaidya’s preconditioners is that they are not guar-
anteed to parallelize. The maximum-weight trees that are constructed may have a
large diameter. The large diameter of the trees creates long chains of dependences in
the triangular factors, and these chains limit the parallelism that is available within
each iteration of the solver.

We are not aware of any numerical experiments using Vaidya’s preconditioners.

5. The Preconditioners of Gremban and Miller. This section presents sup-
port trees, the family of preconditioners that Gremban and Miller developed. We again
assume that A is symmetric, diagonally dominant, and its off-diagonal entries are all
non-positive. (Gremban and Miller also show a technique to convert a problem with
a symmetric diagonally dominant matrix to a larger problem in which the matrix has
only non-positive off-diagonals.) We will again assume that A and the preconditioner
both have zero row sums.

Like Vaidya’s method, Gremban and Miller’s approach is essentially a graph al-
gorithm that constructs GB′ given GA. However, Gremban and Miller construct a
graph GB′ with more vertices then GA, so GA is augmented with additional discon-
nected vertices so that both graphs use the same vertex set. In matrix terms, the
construction embeds A as the leading block of a larger zero matrix,

A′ =
(

A 0
0 0

)
and B′ =

(
B11 B12

BT
12 B22

)
.(5.1)

Gremban uses the Congestion-Dilation Lemma to bound σ(A′, B′). However, there is
no way to route all the edges of GB′ in GA′ , since GA′ is not connected. In other words,
σ(B, A) is infinite. Gremban, therefore, develops and uses Lemmas 2.11 and 2.12 to
eliminate the extra vertices in GB′ . Once these nodes are eliminated, Gremban uses
the Congestion-Dilation Lemma to bound σ(B22 −BT

12B
−1
11 B12, A), which provides a

lower bound on the smallest positive finite eigenvalue of (A,B).
The construction of GB′ , illustrated in Figure 5.1, is based on a hierarchical

decomposition of GA. The algorithm removes from GA a set of edges, known as
a separator, that breaks it into a small number of subgraphs G1, G2, . . . , Gk. The
algorithm then recursively partitions each Gi until the graph is decomposed into
single vertices. The separator is chosen so that all the Gi’s have roughly the same
number of vertices and such that the total weight of the separator is small. A variety
of graph-partitioning algorithms can be used to find good edge separators (see, for
example, [4]). The process is repeated until each subgraph consists of a single vertex.
The graph GB′ , which is a tree, is constructed using this hierarchical decomposition.
The algorithm assigns to each subgraph in the decomposition a vertex of GB′ . That
is, GB′ has one vertex that represents all of GA, a vertex for each subgraph of GA in
the first level of the decomposition, and so on, down to vertices that represent single
vertices of GA, which are the smallest subgraphs in the decomposition. A leaf of GB′

represents a single vertex of GA, and is considered to be the same as that vertex of
GA. The matrices A′ and B′ are ordered accordingly. A vertex that represents a

16

B

A

Fig. 5.1. An illustration of the preconditioners of Gremban and Miller. A is partitioned
hierarchically, and the vertices of B represent subgraphs in that partition. The circled vertex of B
represents the subgraph of A consisting of the two circled vertices. The weight of an edge of B is
the sum of the weights of the edges of A that connect the subgraph to the rest of A.

subgraph Gi in the decomposition is connected by edges to the subgraphs of Gi in the
decomposition Gi1, Gi2, . . . , Gi`, and to the subgraph that contains Gi in the previous
level of the decomposition. The weight that is assigned to the edge that connects Gi

to, say, Gi1 , is the total weight of the edges that connect Gi1 to the remainder of the
graph.

This construction makes it easy to prove a fairly low upper bound on λf (A,B).
We route each edge e of GA′ along the unique path in GB′ that connects its endpoints.
Each edge in this path allocates a weight of w to support e, where w is the weight of e.
This is always possible since if the path uses the edge between vertices that represent
Gi and Gi1 in the decomposition, then e is part of the separator that divides Gi1

from the rest of the graph, so the w is included in the weight of each edge in the
path. If every subgraph in the decomposition is split into at least k subgraphs whose
sizes differ by at most a constant factor, the length of the path is O(logk n), where
n is the order of A. It follows that the congestion-dilation product is bounded by
O((w/w) · logk n) = O(logk n), which is provides an upper bound on λf (A,B).

Proving a lower bound on λf (A,B) is more difficult. As explained above, the
bound results from applying the Congestion-Dilation Lemma to the Schur complement
S = B22−BT

12B
−1
11 B12 and to A. Specifically, Gremban and Miller prove upper bounds

on the weights of the edges of S (which is a dense matrix) and show how to route
them in A. For regular n1/d×· · ·n1/d grids in d dimensions with uniform edge weight,
Gremban and Miller essentially perform a symbolic elimination to bound the entries
of S. The bound that is obtained on σ(S, A) is O(d2n), leading to an overall condition
number bound O(n log n) for fixed d. They also prove similar bounds for somewhat
more general classes of matrices using some additional graph-theoretic tools. These
classes of matrices do not include, however, matrices that represent planar graphs or
finite element meshes.

Since GB′ is guaranteed to be a tree with diameter O(log n), factoring B′ and
applying the factors in every iteration requires only O(n) work and O(log n) parallel
steps. The cost of computing GB′ depends on the graph-partitioning algorithm that
is used and may be substantial in practice.

Gremban and Miller also show how to convert a problem with a symmetric diag-
onally dominant matrix to a problem with a symmetric diagonally dominant matrix
with nonpositive off-diagonals, so that their technique can be used. The graph of the
modified problem has twice as many vertices and edges as the original graph. The
modified graph represents each vertex of the original graph with two vertices and each
edge with two edges. The transformation preserves separators, so if the original graph
has a special structure that guarantees small separators, then the modified graph also

17

−1 −1 −1

−1−1−1

−1 −1 −1

−1−1−1

−1

−1

−1 −1

−1

−1 −1

−1

−1 −1

−1

−1

0.50.5 0.5 0.5

0.50.50.5

0.5 0.5 0.5

Fig. 6.1. An incomplete-factorization preconditioner for a model problem with zero row sums
(left). The model problem has the same underlying graph, but without the positive dashed edges. The
(complete) Cholesky factor of this matrix is the incomplete-Cholesky factor of the model problem.
The figure on the right shows the two paths that route each positive edge.

has good separators and the same algorithm can be used to find them.
Gremban and Miller describe numerical experiments that show that their method

outperforms a diagonal-scaling preconditioner and an incomplete-Cholesky precondi-
tioner. On matrices that represent 2D meshes, Gremban and Miller’s preconditioner
performs fewer iterations and solves systems faster the other preconditioners. On
a 3D problem, Gremban and Miller’s preconditioner requires more iterations than
incomplete Cholesky, but it leads to faster solution times on a vector computer.

6. Analysis of Incomplete Factorizations. This section describes our new
analysis of preconditioners based on modified incomplete factorizations. We have
recently learned that Guattery [7] has performed a somewhat similar analysis of un-
modified incomplete factorizations.

Let B = LLT be a level-0 modified incomplete factorization of an M-matrix A.
The incomplete factor L has the same nonzero structure as the lower triangle of A,
and B has the same row sums as A. We can write B = A−R, where R consists of the
fill elements that are dropped during the factorization plus the diagonal modification
that is performed in order to maintain the row sums. Since the elements that are
dropped are always negative and since A and B have the same row sums, R is an M-
matrix with zero row sums. A modified incomplete factorization of a model problem
is shown in Figure 6.1.

6.1. Analysis of a 2-Dimensional Model Problem. We first analyze the
modified incomplete Cholesky factorization for a 2-dimensional model problem, a
Laplace equation with Neumann boundary conditions on a regular grid. The following
result is, to the best of our knowledge, new. It is known, however, that this same
asymptotic condition-number bound holds for modified incomplete factorizations of a
perturbed matrix A + c/n with c > 0 [8]. We are aware of no previous proof for the
case when c = 0.

Consider the regular grid depicted by the solid lines in Figure 6.1. If we perform an
elimination of the vertices in the natural order and discard all fill, then the discarded
values will correspond to the dashed diagonals in the figure. If A is the Laplacian
matrix and B the modified incomplete Cholesky preconditioner, then B = A − R,
where R is the matrix of these discarded values. Using Lemma 3.3 we can bound
κ(B−1A) by supporting R with A. The sketch on the right of Figure 6.1 shows how
each entry of R can be supported by two paths of length two within A. If we were

18

to divide the weight of each A edge evenly, using half to support the R edge above
it and half to support the R edge below it, we would support every R edge exactly.
Unfortunately, this gives τ ′ = 1 in Lemma 3.3, which does not give a finite bound on
κ(B−1A). Rather, we must realize that this even division underutilizes the A edges
along the boundary of the grid, and use an uneven division that varies from the upper
left to the lower right.

We formalize this discussion to prove the following result.
Theorem 6.1. Let A represent a Laplace equation with Neumann boundary con-

ditions (i.e., zero row sums) discretized on a
√

n-by-
√

n grid, as shown in Figure 6.1.
Let B be a modified incomplete-Cholesky factorization of A with no fill, using the
natural (row-wise) ordering of the grid. Then κ(B−1A) ≤ 2

√
n− 2.

Proof. We will assume that both A and B have zero row sums. By the con-
struction of a modified incomplete factorization, they have the same row sums, and
by Lemma 2.5, a bound that is obtained for zero row sums also applies to other
nonnegative row sums.

We denote by (i, j) the vertex in row i and column j of the grid, and by (i, j) ↔
(k, l) an edge connecting the vertices (i, j) and (k, l). It is easy to see that B consists
of the edges of A plus edges with weight +1/2 that connect vi,j with vi+1,j−1, as
shown in Figure 6.1.

Using Lemma 3.3 we bound κ(B−1A) by bounding σ(R, A), where R = A−B is
the (positive semidefinite) matrix of dropped fill elements, the diagonal dashed lines in
the figure. Thus we must use A to support the edges of R. Each R edge is supported
by two paths of length 2 in A, as shown in Figure 6.1.

More formally, we split A and R as follows. The matrix A is split into 2(
√

n−1)2

submatrices with the following edge sets, each a path of length 2:

π∧(i, j) = {(i, j) ↔ (i, j + 1), (i, j) ↔ (i + 1, j)} for each i <
√

n, j <
√

n ,

and

π∨(i, j) = {(i, j) ↔ (i, j − 1), (i, j) ↔ (i− 1, j)} for each i > 1, j > 1 .

Except along the boundary, each edge of A is divided between one π∧ submatrix
and one π∨ submatrix. The weight of an edge in π∧(i, j) that is allocated to that
submatrix in the splitting is

w∧(i, j) =
2
√

n− 2
2
√

n− 3
− i + j − 1

2
√

n− 3
,

and the weight allocated to π∨(i, j) is

w∨(i, j) =
i + j − 3
2
√

n− 3
.

By Lemma 2.8, the submatrix π∧(i, j) supports exactly a w∧(i, j) fraction of the R
edge (i, j+1) ↔ (i+1, j), and the submatrix π∨(i+1, j+1) supports a w∨(i+1, j+1)
fraction of the same edge. Since

w∧(i, j) + w∨(i + 1, j + 1) =
i + j − 2
2
√

n− 3
,

we can apply Lemma 3.3 with τ ′ = (2
√

n− 3)/(2
√

n− 2) to conclude that

κ(B−1A) =
1

1− τ ′
= 2

√
n− 2 .

19

We now show that this splitting of A is feasible; that is, that the contribution of
each A edge to the paths that support R edges is not more than its weight. Each A
edge contributes to either one π± submatrix (if it is on the boundary of the grid),
or to two (if it is in the interior). The total contribution of an interior edge, say
(i, j) ↔ (i, j + 1), is

w∧(i, j) + w∨(i, j + 1) =
2
√

n− 2
2
√

n− 3
− i + j − 1

2
√

n− 3
+

i + (j + 1)− 3
2
√

n− 3
=

2
√

n− 3
2
√

n− 3
= 1 .

The contribution of a boundary edge is at most

max
{

2
√

n− 2
2
√

n− 3
− 1 + 1− 1

2
√

n− 3
,

√
n +

√
n− 3

2
√

n− 3

}
=

2
√

n− 3
2
√

n− 3
= 1 .

It is easy to see that the same condition-number upper bound holds for the same
model problem but with Dirichlet or mixed boundary conditions. The only difference
in the structure of A between the Neumann boundary-condition case and the Dirichlet
or mixed case is that row sums for vertices on the boundary of the grid may be
positive. Since B has the same row sums as A, they both can be split into a zero-row-
sum matrix and a positive diagonal matrix. The diagonal parts of A and B support
each other with support 1. The zero-row-sum parts are similar to the case that we
analyzed, except that the positive edges in B may be smaller than 0.5, but never
greater. Hence, it is “easier” to support them, so the same bound holds. That is, we
use Lemma 2.9 rather than Lemma 2.8 in the proof above.

The following theorem formalizes this result.
Theorem 6.2. Let A represent a model Laplace equation with non-negative row

sums discretized on a
√

n-by-
√

n grid, as shown in Figure 6.1. Let B be a modified
incomplete-Cholesky factorization of A with no fill. Then κ(B−1A) ≤ 2

√
n− 2.

6.2. Analysis of a 3-Dimensional Model Problem. We now analyze a mod-
ified incomplete Cholesky preconditioner for a 3-dimensional model problem. As in
the 2D case, we first analyze a model problem with boundary conditions that make
the analysis as simple as possible, then extend the results.

Consider an m×m×m grid, where m = 3
√

n. A 2-by-2-by-2 example is depicted
in Figure 6.2. If we perform elimination in the natural order and discard all the fill,
then the discarded values correspond to the dashed edges in Figure 6.2. In contrast
to the 2D case, in which each eliminated vertex had degree 2, the vertices that we
eliminate in the 3D case can have degree 3, 2 or 1. When we eliminate vertices with
degree 3, such as vertex number 1 in the figure, we drop from the Cholesky factor 3
nonzeros that correspond to 3 dashed edges. The vertex that we eliminate and its
three neighbors form a three-edge star graph. The discarded nonzeros form a three-
edge clique. When eliminate vertices with degree 2, we drop one nonzero, as in the
2D case. Vertices with grid coordinates (i, j, k) where i, j, k < m have degree 3 when
they are eliminated. Vertices with grid coordinates (i, j, k) with exactly one index
equals to m have degree 2 when they are eliminated.

Our analysis of the 3D case is similar to the analysis of the 2D case, but the
splitting is more complex. In the 2D case we supported single edges with paths of
length 2. In the 3D case we also use three-edge stars to support three-edge cliques.
We analyze the support of a clique by a star using Lemma 2.10. The rest of the proof
technique remains the same.

20

1 2

3 4

5 6

7 8

Fig. 6.2. A 2-by-2-by-2 example of the 3D model problem and its incomplete factorization. At
left is the graph of A. The numbers denote the order of elimination. The middle illustration shows
the three (dashed) edges that are dropped when we eliminate vertex (row/column) 1. The illustration
on the right shows the graph after the elimination of vertex 1 and the three (dashed) edges that are
dropped when we eliminated vertices 2, 3, and 5. The elimination of vertices 4, 6, 7, and 8 generates
no fill so no edges are dropped.

The proof of the following theorem analyzes a model problem with boundary
conditions that are simple to analyze.

Theorem 6.3. Let A represent a model Laplace equation discretized on an m-by-
m-by-m grid, where m = 3

√
n, and with boundary conditions that lead to zero row sums

when i, j, k ≤ 3
√

n and row sums of one when i, j, or k = 3
√

n. Let B be a modified
incomplete-Cholesky factorization of A with no fill. Then κ(B−1A) ≤ 3 3

√
n− 3.

Proof. We again use Lemma 3.3.
In the 3D model problem, the elimination of vertex (i, j, k), where i, j, k < m,

eliminates the three edges

Π∧(i, j, k) = {(i, j, k) ↔ (i + 1, j, k), (i, j, k) ↔ (i, j + 1, k), (i, j, k) ↔ (i, j, k + 1)}
for each i < m, j < m, k < m ,

and drops three fill edges of weight −1/3 which form a triangle. (as in the elimination
of vertex number 1 in Figure 6.2.) When exactly one of i, j, or k equals m, situation
is analogous to the 2D case, and the elimination of the vertex eliminates 2 edges that
we continue to denote by π∧, and drops one edge of weight −1/3. (The weight of the
dropped edge is −1/3 because we eliminate a degree-2 vertex with row sum 1; recall
that when at least one index is m, we set the row sum to 1.)

To support edges in R we use two sets of submatrices, Π∧(i, j, k) as defined above,
and

Π∨(i, j, k) = {(i, j, k) ↔ (i− 1, j, k), (i, j, k) ↔ (i, j − 1, k), (i, j, k) ↔ (i, j, k − 1)} .

We use the conventions that when i, j, or k equals m, Π∧ contains less than 3 edges,
and that when i, j, or k equals 1, Π∨ is empty. The Π subnmatrices represent star
subgraphs of GA.

The edge weights that are allocated to these submatrices are

W∧(i, j, k) =
3m− 3
3m− 4

− i + j + k − 2
3m− 4

and

W∨(i, j, k) =
i + j + k − 4

3m− 4
.

Using Lemma 2.10, each Π submatrix now supports a fraction of the weight of
three positive edges that form a clique when i, j, k < m, and a fraction of one edge
when exactly one of i, j, or k equals either 1 or m.

21

In particular, if i, j, k < m, then Π∧(i, j, k) supports a W∧(i, j, k) fraction of
the weight of the edges (i, j, k + 1) ↔ (i, j + 1, k), (i, j + 1, k) ↔ (i + 1, j, k), and
(i + 1, j, k) ↔ (i, j, k + 1). If one of i, j, or k equals m, say k = 1, then Π∧(i, j, k)
supports more than a W∧(i, j, k) fraction of the weight of the edge (i, j + 1, k) ↔
(i + 1, j, k). (More precisely, it supports weight (1/2)W∧(i, j, k) of the edge, whose
weight is 1/3.) The submatrix Π∨(i, j, k) always supports a W∨(i, j, k) fraction of
the weight of the edges (i, j, k − 1) ↔ (i, j − 1, k), (i, j − 1, k) ↔ (i − 1, j, k), and
(i− 1, j, k) ↔ (i, j, k − 1).

It is easy to verify that the entire weight of every R edge is supported by one
Π∧ submatrix and one Π∨ submatrix. For example, a positive edge (i + 1, j, k) ↔
(i, j + 1, k), is supported by Π∧(i, j, k) and by Π∨(i + 1, j + 1, k). The total support
for the edge by Π∧(i, j, k) and by Π∨(i + 1, j + 1, k) is at least a

W∧(i, j, k) + W∨(i + 1, j + 1, k) =
(

3m− 3
3m− 4

− i + j + k − 2
3m− 4

)
+

(
(i + 1) + (j + 1) + k − 4

3m− 4

)
=

3m− 3
3m− 4

fraction of its weight. Therefore, we can apply Lemma 3.3 with

τ ′ =
3m− 3
3m− 4

,

to conclude that κ(B−1A) = 3m− 3 = 3 3
√

n− 3.
We now show that the splitting is feasible. Every edge in A contributes to one

Π∧ and one Π∨, except that edges on the faces where i = 1, j = 1, or k = 1 do not
contribute to a Π∨. It is easy to verify that the total contribution of a negative edge
that contributes to both a Π∧ and a Π∨, say (i, j, k) ↔ (i, j, k + 1), is

W∧(i, j, k) + W∨(i, j, k + 1) =
3m− 3
3m− 4

− i + j + k − 2
3m− 4

+
i + j + (k + 1)− 4

3m− 4
= 1 .

The contribution of edges that contribute only to a Π∧ is also at most 1:

W∧(i, j, k) =
3m− 3
3m− 4

− i + j + k − 2
3m− 4

≤ 3m− 3
3m− 4

− 1
3m− 4

= 1

As in the 2D case, in an incomplete factorization of a problem with Dirichlet
boundary conditions, the dropped edges are lighter than in the case we just analyzed,
so the same Π∧ and Π∨ submatrices can support them as well. Therefore, the following
result holds:

Theorem 6.4. Let A represent a model Laplace equation discretized on a 3
√

n-
by- 3

√
n-by- 3

√
n grid, with mixed boundary conditions as follows: A’s row sums are zero

everywhere except at grid vertices (i, j, k) with one index equal to 3
√

n, where the row
sums are 1. Let B be a modified incomplete-Cholesky factorization of A with no fill
using the natural ordering. Then κ(B−1A) ≤ 3 3

√
n− 3.

22

We have also analyzed the pure Neumann-boundary-conditions case, in which A
and B have zero row sums everywhere. In this case, the dropped edges along the
“back” faces of the grid (i, j, or k = n1/3) have weight −1/2 and are, therefore, more
difficult to support. Since their weights are the same as in the 2D case, it is possible
to employ the 2D analysis to support them, but that leaves very little weight in the
negative edges of the back faces for supporting the dropped edges in the interior of
the grid. We have been able to prove a condition number bound of O(n2/3), but not
a O(n1/3) bound. We omit the details from this paper.

7. Support-Graph Analysis of a Simple Multilevel Preconditioner. In
this section we use support-graph theory to analyze a simple Multilevel Diagonal-
Scaling (MDS) preconditioner for linear systems arising from finite-element discretiza-
tions of a Poisson’s problem on a uniform grid. In one-dimension, we are able to show
a condition number bound logarithmic in the size of the grid. We have also ana-
lyzed similar preconditioners in two dimensions, but we have been unable to prove
polylogarithmic condition number bounds; we omit the details of the two dimensional
analysis.

A multilevel diagonal-scaling preconditioner [12] applies diagonal-scaling at mul-
tiple discretization levels. Consider a matrix A whose underlying graph is GA.
The diagonal-scaling preconditioner Bds for A is simply Bds = diag(A) or B−1

ds =
(diag(A))−1. Now suppose that we construct a coarse grid representation Ak−1 of A
on a graph GAk−1 using a restriction operator Rk−1 and an interpolation operator
Ik−1 = RT

k−1, Ak−1 = Rk−1AIk−1 = Rk−1ART
k−1. The restrition Rk−1 takes a vector

x defined on the vertices of GA and returns a coarse representation Rk−1x of the vector
on the vertices of GAk−1 . Given the restriction operator Rk−1, we can construct a 2-
level diagonal-scaling preconditioner B−1

2ds = (diag(A))−1+RT
k−1(diag(Ak−1))−1Rk−1.

Now suppose that we coarsen A even further using a restriction operator Rk−2Rk−1

that first coarsens a vector using Rk−1 and then again using a new operator Rk−2. If
we construct a series Rk−1, Rk−2, . . . , R0 of restriction operators in this way, we can
construct a multilevel diagonal-scaling preconditioner

B−1

mds = (diag(A))−1

+ RT
k−1(diag(Ak−1))−1Rk−1

+ RT
k−1R

T
k−2(diag(Ak−2))−1Rk−2Rk−1

+ · · ·

+
0∏

i=k−1

RT
i (diag(A0))−1

k−1∏
i=0

Ri .

Zhang [12] proposed this family of preconditioners and showed that for a certain class
of matrices arising from finite-element discretizations and for certain restriction opera-
tors, κ(B−1

mdsA) is bounded by a constant independently of how fine the discretization.
MDS preconditioners are a refinement of the so-called BPX preconditioners proposed
by Bramble, et al. [2], in which (diag(Aj))−1 is replaced by the identity. (See also [10]
for a discussion of MDS preconditioners).

MDS and BPX preconditioners are explicit, in the sense that the construction
gives B−1 directly. But we can also view them as augmented preconditioners on a
larger linear space that contains representations for all the coarse meshes, much like
the augmented preconditioner B′ of Gremban and Miller [5, 6]. When viewed as

23

an augmented preconditioner, the construction for an MDS preconditioner actually
gives its triangular decomposition. Suppose that we apply an MDS preconditioner by
applying all the restriction operators in a sequence to obtain all the coarse representa-
tions of the vector that we apply B−1 to, then scaling by the inverses of the diagonal
matrices, and then interpolating and adding contributions from the coarsest level to
the finest. This process amounts to solving a triangular linear system (the bottom-
up restriction process), scaling by a diagonal matrix, and solving another triangular
linear system. In effect, we are solving a linear system whose coefficient matrix B′ is
already factored into LDLT where L is lower triangular.

We have constructed Zhang’s MDS preconditioners for model finite-element prob-
lems in one dimension. We also computed B′ = LDLT explicitely and found that
its graph GB′ is a supergraph of GL. That is, augmented MDS preconditioners have
triangular factors that are sparser than the preconditioners themselves, much like the
incomplete-Cholesky preconditioners. We have been unable, however, to analyze ef-
fectively these preconditioners using the theory presented in this paper because they
have positive row sums on rows that correspond to coarse mesh vertices (These rows
are zero in aumented matrix A′ so the row sums are zero).

We have constructed instead MDS preconditioners that have the same row sums as
A′ and the same combinatorial structure as Zhang’s preconditioners. More specifically,
both our preconditioners have the same graph as Zhang’s and their factors have the
same graphs as the factors of Zhang’s augmented preconditioners. We analyze these
preconditioners in one dimension and show that λf (A′, B′) ∈ [1, log n].

7.1. Analysis of the One-Dimensional Case. Figure 7.1 shows the graph of
our preconditioner together with the graph of the model problem. We obtained the
matrix A from a finite-element discretization of a one-dimensional Laplace problem
with Neumann boundary conditions. We constucted the precondioner level by level
using the following algorithm:

1. Given a mesh with n = 2k + 1 vertices (including the boundary), define
2k−1 + 1 coarse-grid vertices, where evey other vertex in the fine grid is
represented by a new vertex in the coarse grid.

2. Construct a restriction operator based on the stencil [1/4 1/2 1/4]. The
restriction determines the edges between the finer and coarser grids. (The
weight of the edges is determined so that the row sum on the coarse grid
would be zero and the factorization of the preconditioner would give the
restriction operator.) For our model problem, the weight of edges between
the original grid and the first coarse grid have weights −1 and −2.

3. Compute the fill edges that are generated between coarse-grid vertices when
we factor the preconditioner bottom up. Since these edges are not part of the
graph of L, they must cancel out numerically. We therefore add edges between
coarse-grid vertices that exactly cancel out the fill. These fill-canceling edges
form a coarse-grid representation of A.

4. We now repeat the process, restricting to an even coarser grid. The restriction
operator is the same operator, only scaled according to the scaling factor of
the edges of A versus the fill-canceling edges. That is, if the edges of the
original grid have weights −1 and the fill-canceling edges of a coarse mesh
have weights α, then the weight of the edges to the next coarser mesh have
weights −α and −2α. We shall see later that this scaling ensures that the
spectum of the matrix pencil is bounded from below by 1.

We formalize and generalize this process in Section 7.2.
24

B

A−1 −1 −1 −1 −1 −1

−1−1 −2

0.5−1

−0.5−0.5

0.5

B

A

Fig. 7.1. An MDS preconditioner for a one-dimensional Laplace problem with Neumann bound-
ary conditions (left). In a larger problem, the positive edges in the next level would have weights
0.25. The paths that are used to support positive edges are shown on the right.

We now show that for a size-n model problem A whose augmented matrix is

Ã =
(

A11 0
0 0

)
,

the preconditioner B satisfies λf (Ã, B) ∈ [1, log(n + 1)]. Proving the upper bound
k = log(n + 1) on σB, Ã is intricate but not difficult. We simply show that kB − Ã
is nonnegative using the splitting lemma and the congestion-dilation lemma. The
positive edges in kB− Ã, which are the fill-cancling edges in B and the original edges
of A, are split and routed along length-2 paths of negative edges. Figure 7.1 shows how
each positive edge is split and routed. Proving the lower bound on λf (Ã, B) is more
difficult. We prove the lower bound using a sequence of elimination and subtraction
steps. The elimination steps always eliminate the current top-level vertices. According
to Lemma 2.11, this does not change the bound on the support. The subtraction steps
subtract from Ã−B the fill edges from the last elimination step plus the fill-canceling
edges in the next grid, as shown in Figure 7.2. We use Lemma 3.2 to show that the
lower bound is maintained under these subtractions.

Theorem 7.1. Let A be a tridiagonal matrix of size n = 2k − 1 with zero row
sums and off-diagonal elements Ai,i+1 = Ai+1,i = −1, and B be the corresponding
MDS support graph, as show in Figure 7.1. Then λf (Ã, B) ∈ [1, k].

Proof. We begin by proving that σ(B, Ã) ≤ k.
We split the vertices of B into k levels: the topmost vertex is at level 0, and the

bottommost vertices are at level k − 1.
We route each positive-weight edge through two paths of length 2, one using a

node one level above the edge and one using a node one level below the edge, as shown
in Figure 7.1. For a positive edge at level i, we route 1/(i + 1) of its weight through
level i− 1 and i/(i + 1) of its weight through level i + 1.

We prove that this is feasible by induction on i. In the proof, we use the facts that
the weight of the edge at level i is 21+i−k, that the path through level i−1 consists of
two edges of weight −21+i−k (the “vertical” edge has weight −22+i−k, which is split
between the two length-2 paths that use that edge), and that the path through level
i + 1 consists of two edges of weight −22+i−k.

We now assume for the inductive step that the positive-weight edges of levels
1, . . . , i− 1 can be routed in this manner, and that this routing leaves a 1/i fraction
of the weight of the diagonal edges between level i − 1 and i free for routing. This
is obviously true for i = 1, since there are no positive-weight edges at level 0, and
therefore 1/i = 1 of the weight of the edges between level 0 and 1 remains free. The
edges that we need to route at level i have weight 21+i−k, and we need to route them
through a path of length 2 consisting of one edge of weight−21+i−k (half of the vertical

25

⇓ Elimination

⇓ Splitting

}
B1

}
C1

Fig. 7.2. Alternating elimination and splitting steps in the analysis of the 1D MDS precondi-
tioner. See the proof of Theorem 7.1 for details.

edge, which supports two such routes), and one edge of weight (1/i)·(−21+i−k) (which
is what remains of the diagonal edge ofter it has supported its fraction of the positive
edge at level i− 1). This route can support a positive weight of(−21+i−k

)× 1
i

(−21+i−k
)

1
2 (−21+i−k) + 1

i (−21+i−k)
=

1
i + 1

(−21+i−k
)

.

Therefore, we need to route an i/(i + 1) fraction of the weight of the positive edge at
level i using the path through level i + 1. Since this path is also of length 2, we need
to allocate weight

2 · i

i + 1
(−21+i−k

)
for this path in each one of the edges that it uses, which is exactly i/(i + 1) of the
weight of these edges. This concludes the proof of the induction.

The support graph B does not have positive weight edges at the bottommost
level, k − 1, but we need to route (1/τ) of the weight of the edges of A through B in
order to prove that τB− Ã is positive semidefinite. According to our inductive claim,
the edges between level i = k − 1 and k − 2 can be used to route positive edges of
weight

1
i + 1

(−21+i−k
)

=
1
k

(−20
)

= −1
k

,

so by setting τ = k we can route the edges of A (which have weight −1). This
concludes the proof that σ(B, Ã) ≤ k, bounding λf (Ã, B) from above.

To establish the lower bound λf (Ã, B) ≥ 1 (or σ̄(B, Ã) ≤ 1), we use the fol-
lowing strategy. We eliminate the topmost node of B at level 0, and denote the
resulting matrix by B′. By Lemma 2.11, we have σ̄(B, Ã) = σ̄(B′, Ã). The elimi-
nation generates 3 fill edges, two of which are parallel to the positive edges of the
next level, and one which is a true fill edge, as shown in Figure 7.2. We split B′ into
B′ = B1 + C1, where C1 contains these these 3 edges, plus the two positive edges
in the next level, plus diagonal weight that is designed to maintain zero row sums
in C1. We subtract C1 from B′, and we show below that C1 is negative semidefinite
and that null(B′) ⊆ null(C1). Under these conditions, Lemma 3.2 guarantees that
σ̄(B1, Ã) ≥ σ̄(B′, Ã) = λf (B, Ã). Therefore, any upper bound we prove for λf (B1, Ã)
also upper bounds λf (B′, Ã) = λf (B, Ã).

26

We then continue to eliminate the nodes at level 1, subtract the fill that this
elimination generates and the positive edges of level 2, and so on. Since all of these
steps are identical except for scale, we only need to show once that C1 is negative
semidefinite and that B′ ⊆ C1.

The last four rows and columns of 2k−2B are
0 1 0 −1
1 0 1 −2
0 1 0 −1

−1 −2 −1 4

 .

Eliminating the last row and column (the top vertex) yields the corresponding sub-
matrix of 2k−2B′,

− 1
4

1
2 − 1

4 0
1
2 −1 1

2 0
− 1

4
1
2 − 1

4 0
0 0 0 4

 .

By Lemma 2.12, we can ignore the last row and column and focus on the leading
3-by-3 submatrix, which is the nonzero part of C1. It can be easily checked that it
is negative semidefinite, with eigenvalues 0, 0, and −3/2, and eigenvectors (1, 2, 3)T ,
(3, 2, 1)T , and (1,−2, 1)T .

We now show that B′ ⊆ C1. The preconditioner B has a one-dimensional null
space spanned by the vector (1, 1, . . . , 1)T . The null space of B′ is also one-dimensional
and essentially the same, spanned by the vector x = (1, 1, . . . , 1, 0)T (the element
corresponding to the top vertex of B is 0). It is easy to verify that C1x = 0 as well,
proving that B′ ⊆ C1.

After k − 1 alternating steps of elimination and subtraction, what remains of
the support graph is Bk−1, with σ̄(Bk−1, Ã) ≥ σ̄(B′, Ã). All the edges of Bk−1 are
adjacent to vertices of A, so we can route these edges. The support graph B does
not have edges between vertices at level k − 1, so the Schur complement is a sum of
submatrices of the form 3

4 − 1
2 − 1

4− 1
2

1 − 1
2− 1

4
− 1

2
3
4

 ,

which can be routed with congestion-dilation product τ = 1 in the corresponding
submatrices of A, 1 −1 0

−1 2 −1
0 −1 1

 .

This concludes the entire proof.

7.2. Generalizing the One-Dimensional Preconditioner. Although we
have been unable to prove similar bounds for more realistic problems, we have been
able to distill from this one-dimensional example a more general algorithm for con-
structing preconditioners. The algorithm leads to hierarchical preconditioners which
parallelize well and that are easy and efficient to construct. When applied to the 1-
dimensional model problem, this algorithm generates exactly the MDS precoditioner
that we analyzed in the previous section.

We sketch here the algorithm that we use to construct these preconditioners.
27

1. Initialize GB , the graph of the preconditioner, to have the same vertex set as
GA and no edges.

2. Decompose the vertices of GA into overlapping subdomains. The only condi-
tion on the decomposition is that for every edge of GA, some subdomain must
include both of the edge’s endpoints. (Clearly some decomposition will lead
to better preconditioners than other decomposions, but this condition is the
only one required to make the constrution itself work.) Edges can belong to
more than one subdomain. In our model problem, each subdomain consists
of exactly three adjacent vertices. Some vertices belong to one subdomain
and some to two. Every edge of GA belongs on exactly one subdomain in the
model preconditioner.

3. Augment GB with a new vertex vs for each subdomain s.
4. Add an edge (vs, v) for every subdomain s and for every vertex v ∈ s.
5. Decide how to route edges of GA in GB. Every edge (u, w) ∈ GA is routed

along one or more length-2 paths in GB . An edge that belongs to only one
subdomain s is routed along in GB using the path u ↔ vs ↔ w. If an edge
belongs to n subdomains, route 1/n of its weight in each subdomain.

6. Sum the total weight of GA edges that are routed on each GB edge. In our
model preconditioner, the sums are −1 for some GB edges and −2 for the
rest.

7. Assign weights to the edges of GB. The weights are the sums scaled by a
factor αs that may be different on each subdomain. The scale factor for a
subdomain s are determined by eliminating vs from GB and ensuring that
the edges of GA in the subdomain support the fill-edges that the elimination
generates with support at most 1. In the model preconditioner, the scale
factors all happen to be 1.

8. Generate fill-canceling edges between subdomain vertices vs in GB . to do
so, eliminate the edges of GA from GB (the non-subdomain vertices). This
generates fill edges between the remaining subdomain vertices. Add to GB

edges to exactly cancel these fill edges.
9. Repeat the construction recursively, decomposing the subdomain vertices

into coarser subdomains and adding edges that support the newly-added fill-
caceling edges.

It is not hard to see that the construction ensures that such a preconditioner has
two desirable properties. First, it can be factored bottom-up with no fill, since we add
explicitly fill-canceling edges to counteract any fill. Furthermore, since there would
be typically only Θ(log n) levels of recursion in the construction, the triangular solves
that apply the preconditioner have high levels of parallelism (e.g., they correspond to
down-up traversals of a shallow directed acyclic graph). Second, the spectrum of the
matrix pencil is bounded by 1 from below.

Unfortunately, we have not been able to prove strong upper bounds on the spec-
trum in more complex cases than the simple 1-dimensional model problem.

8. Conclusions. Support-graph theory has already motivated the design of two
novel families of preconditioners. Vaidya’s preconditioners, in particular, are more
general and guarantee lower condition-numbers bounds than modified incomplete fac-
torizations, a widely used class of preconditioners.

In this paper, we showed how the same theory can be used to prove tight condition-
number bounds for MICC preconditioners on model problems, and a low condition-
number bound for a simple MDS preconditioner. The bounds for MICC are new,

28

since the result does not depend on a diagonal perturbation.
There has been some work on support-graph preconditioning besides the results

presented in this paper. Guattery used support-graph theory to bound the condition
number of incomplete factorizations without diagonal modification [7]. Howle and
Vavasis generalized the preconditioners of Gremban and Miller to complex systems [9].
We are also aware that John Reif of Duke University is working on this subject, but
to the best of our knowledge he has not yet published his results.

We believe that support-graph theory provides a new, largely unexploited tool for
the analysis and design of preconditioners. We hope that this paper serves to make
the techniques more accessible to the numerical analysis community and to stimulate
further work in this promising area.

Acknowledgments. Thanks to Tony Chan for suggesting that we investigate
MDS preconditioners, and for many constructive discussions. Thanks also to Steve
Guattery and to Erik Boman for detailed comments on drafts of this paper. We are
also indebted to Howard Elman and Henk van der Vorst for enlightening and helpful
discussions.

REFERENCES

[1] O. Axelsson, Iterative Solution Methods, Cambridge University Press, 1994.
[2] J. H. Bramble, J. E. Pasciak, and J. Xu, Parallel multilevel preconditioners, Math. Comput.,

55 (1990), pp. 1–22.
[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press

and McGraw-Hill, 1989.
[4] U. Elsner, Graph partitioning: A survey, Tech. Report SFB393/97-27, Technische Universität

Chemnitz, Dec. 1997.
[5] K. Gremban, G. Miller, and M. Zagha, Performance evaluation of a parallel preconditioner,

in 9th International Parallel Processing Symposium, Santa Barbara, April 1995, IEEE,
pp. 65–69.

[6] K. D. Gremban, Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant
Linear Systems, PhD thesis, School of Computer Science, Carnegie Mellon University, Oct.
1996. Technical Report CMU-CS-96-123.

[7] S. Guattery, Graph embedding techniques for bounding condition numbers of incomplete fac-
tor preconditioners, Tech. Report ICASE Report 97-47, NASA Langley Research Center,
1997.

[8] I. Gustafsson, A class of first-order factorization methods, BIT, 18 (1978), pp. 142–156.
[9] V. E. Howle and S. A. Vavasis, Preconditioning complex-symmetric layered systems arising in

electrical power modeling, in Proceedings of the Copper Mountain Conference on Iterative
Methods, Copper Mountain, Colorado, Mar. 1998. 7 unnumbered pages.

[10] B. F. Smith, P. E. Bjorstad, and W. D. Gropp, Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations, Cambridge University Press, 1996.

[11] P. M. Vaidya, Solving linear equations with symmetric diagonally dominant matrices by con-
structing good preconditioners. Unpublished manuscript. A talk based on the manuscript
was presented at the IMA Workshop on Graph Theory and Sparse Matrix Computation,
October 1991, Minneapolis.

[12] X. Zhang, Multilevel Schwartz methods, Numerische Mathematik, 63 (1992), pp. 521–539.

29

