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Recall: The Basic Pillar underlying FOM

X = RY Euclidean with inner product (-, -) and induced norm || - ||.

inf{®(x) := f(x) + g(x) : x € X}, f, g convex, with g smooth.

Key assumption: g admits L-Lipschitz continuous gradient on R? J

A simple, yet crucial consequence of this is the so-called descent Lemma:

L
g(x) < g(y) + (Ve x —y) + 5 lx - y|[% ¥x,y € RY.

This inequality naturally provides
1. The upper quadratic approximation of g
2. A crucial pillar in the analysis of any current FOM.
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L
g(x) < g(y) + (Ve x —y) + 5 lx - y|[% ¥x,y € RY.

This inequality naturally provides
1. The upper quadratic approximation of g
2. A crucial pillar in the analysis of any current FOM.

However, in many contexts and applications:
& the differentiable function g does not have a L-smooth gradient[e.g., in

the broad class of Poisson inverse problems].
© Hence precludes the use of basic FOM methodology and schemes.
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Lecture 7 FOM without Lipschitz Gradient Continuity

Goal: Circumvent this longstanding and intricate question of Lipschitz
continuity required in gradient based methods. J
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Lecture 7 FOM without Lipschitz Gradient Continuity

Goal: Circumvent this longstanding and intricate question of Lipschitz
continuity required in gradient based methods. J

A New Descent Lemma without Lipschitz Gradient Continuity

Non Euclidean Proximal Distances

Proximal Gradient Algorithm free of Lipschitz Gradient Assmuption
Convergence and Complexity

vV vV v v Y

Examples and Applications
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Main Observation: An Elementary Fact
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Main Observation: An Elementary Fact
Consider the descent Lemma for the smooth g € CLl’1 on RY:

L
g(x) <ely) + (x—y,Vey) + 5lx - y|I% ¥x,y € RY.
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Main Observation: An Elementary Fact
Consider the descent Lemma for the smooth g € CLl’1 on RY:

L
g(x) <ely) + (x—y,Vey) + 5lx - y|I% ¥x,y € RY.

Simple algebra shows that it can be equivalently written as:

(512 - £00) = (5112 = £0) = by = Tet)ox =) Wy €2
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Main Observation: An Elementary Fact
Consider the descent Lemma for the smooth g € CLl’1 on RY:

L
g(x) <ely) + (x—y,Vey) + 5lx - y|I% ¥x,y € RY.

Simple algebra shows that it can be equivalently written as:
L. .2 L. .2 d
SlIxI® =) ) = ( 5llyI® — &) ) = (Ly = Vely),x —y) ¥x,yeR

Nothing else but the gradient inequality for the convex %|/x||2 — g(x) !
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Main Observation: An Elementary Fact
Consider the descent Lemma for the smooth g € CLl’1 on RY:

L
g() <gy) + (x =y, VeW)) + 5 lx = y[*, ¥x,y € R,
Simple algebra shows that it can be equivalently written as:
L. .2 L. .2 d
SlIxI® =) ) = ( 5llyI® — &) ) = (Ly = Vely),x —y) ¥x,yeR

Nothing else but the gradient inequality for the convex 5|/x||> — g(x) !
Thus, for a given smooth convex function g on R

L
Descent Lemma <= §||x||2 — g(x) is convex on RY.
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Main Observation: An Elementary Fact
Consider the descent Lemma for the smooth g € CLl’1 on RY:

L
g() <gy) + (x =y, VeW)) + 5 lx = y[*, ¥x,y € R,
Simple algebra shows that it can be equivalently written as:
L. .2 L. .2 d
SlIxI® =) ) = ( 5llyI® — &) ) = (Ly = Vely),x —y) ¥x,yeR

Nothing else but the gradient inequality for the convex 5|/x||> — g(x) !
Thus, for a given smooth convex function g on R

L
Descent Lemma <= §||x||2 — g(x) is convex on RY.

To Capture the Geometry of a Constraint set C Naturally suggests to consider
- instead of the squared norm used for the unconstrained case C = RY -
a more general convex function that captures the geometry of the constraint.
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Trading Gradient Lipschitz Continuity with Convexity
Capturing in a very simple way the geometry of the constraints

Following our basic observation: A convexity condition on the couple (g, h)
replaces the usual Lipschitz continuity property required on the gradient of g.
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Trading Gradient Lipschitz Continuity with Convexity

Capturing in a very simple way the geometry of the constraints

Following our basic observation: A convexity condition on the couple (g, h)
replaces the usual Lipschitz continuity property required on the gradient of g.

A Lipschitz-like/Convexity Condition

(LC) 3L >0 with Lh— g convex on intdom h,

As just seen, when h(x) = 3||x||?, (LC) translates to the Descent Lemma.

Since g is assumed convex, this is equivalent to: Vg is L-Lipschitz continuous.
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Trading Gradient Lipschitz Continuity with Convexity

Capturing in a very simple way the geometry of the constraints

Following our basic observation: A convexity condition on the couple (g, h)
replaces the usual Lipschitz continuity property required on the gradient of g.

A Lipschitz-like/Convexity Condition

(LC) 3L >0 with Lh— g convex on intdom h,

As just seen, when h(x) = 3||x||?, (LC) translates to the Descent Lemma.

Since g is assumed convex, this is equivalent to: Vg is L-Lipschitz continuous.

> We shall see, that the mere translation of condition (LC) into its first-order
characterization immediately yields the new descent Lemma we seek for.

> It naturally leads to the Non Euclidean Proximal Bregman distance, we
introduce next.
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Bregman Proximal Distance

Defintion: Bregman distance [Bregman (67)] Let h : X — (—o00,00] be a
closed proper strictly convex function, differentiable on int dom h. The Bregman
distance associated to h (or with kernel h) is defined by

Dy(x,y) := h(x) — h(y) — (Vh(y),x — y), Vx € dom h, y € intdom h.
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Bregman Proximal Distance
Defintion: Bregman distance [Bregman (67)] Let h : X — (—o00,00] be a
closed proper strictly convex function, differentiable on int dom h. The Bregman

distance associated to h (or with kernel h) is defined by

Dy(x,y) := h(x) — h(y) — (Vh(y),x — y), Vx € dom h, y € intdom h.

Geometrically, it measures the vertical difference between h(x), the value at x of a
linearized approximation of h around y.

Proposition: Distance-Like Properties
» Dy is strictly convex with respect to its first argument.
> Dp(x,y) >0and "=0"iff x =y.
Proof. Immediate by the gradient inequality. O

Thus, Dy, provides a natural distance measure .

However, note that D is in general asymmetric. J
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First Examples

» Example 1 The choice h(z) = 1|z||2, dom h = R yields the usual squared
Euclidean norm distance Dx(x,y) = 3x — y||.

» Example 2 The entropy-like distance defined on the simplex,

d d
h(z):szlnzj, forzedomh::Ad:{zeRd:sz:LzZO}.
=1 j=1
d Xj
> In that case, Dx(x,y) = >_;_; X;In i

More examples soon...
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Legendre Functions - Useful Device to Handle constraints

Strategy to handle a constraint set is standard: Pick a Legendre function on C.

Definition (Legendre functions)[Rockafellar '70]. h : X — (—o0, 0], Isc
proper convex is called Legendre type if h is essentially smooth and strictly
convex on int dom h.

Recall
» Essentially smooth: if h is differentiable on intdom h, with [|[Vh(x¥)|| — oo
for every sequence {x*}scn C intdom h converging to a boundary point of
dom h as k — +o0.
» Vhis a bijection from intdom h — intdom h* and

(Vh)~™t = Vh*

where h*(u) := sup, {{u, v) — h(v)} is the Fenchel conjugate of h.
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A Descent Lemma without Lipschitz Gradient Continuity

Lemma[Descent lemma without Lipschitz Gradient Continuity]
Let h : X — (—o0,00] be a Legendre function, and g : X — (—o0, 0] be
convex function with dom g O dom h which is C* on int dom h.

Then, the condition (LC): Lh— g convex on intdom h is equivalent to

g(x) < gly) +(Vea(y),x —y) + LDn(x,y), ¥(x,y) € intdom h x intdom h

where, Dy, stands for the Bregman Distance associated to h.
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A Descent Lemma without Lipschitz Gradient Continuity

Lemma[Descent lemma without Lipschitz Gradient Continuity]
Let h : X — (—o0,00] be a Legendre function, and g : X — (—o0, 0] be
convex function with dom g O dom h which is C* on int dom h.

Then, the condition (LC): Lh— g convex on intdom h is equivalent to

g(x) < gly) +(Vea(y),x —y) + LDn(x,y), ¥(x,y) € intdom h x intdom h

where, Dy, stands for the Bregman Distance associated to h.

Proof. Simply apply the gradient inequality for the convex function Lh — g:
> Lh(y) — g(y) — (Lh(x) — g(x)) < (LVh(y) = V&(y),y — x)

> g(x)—g(y)—(Veg(y),x —y) < L(h(x) = h(y) = (Vh(y),x—y)) = LDn(x, y).
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A Descent Lemma without Lipschitz Gradient Continuity

Lemma[Descent lemma without Lipschitz Gradient Continuity]
Let h : X — (—o0,00] be a Legendre function, and g : X — (—o0, 0] be
convex function with dom g O dom h which is C* on int dom h.

Then, the condition (LC): Lh— g convex on intdom h is equivalent to

g(x) < gly) +(Vea(y),x —y) + LDn(x,y), ¥(x,y) € intdom h x intdom h

where, Dy, stands for the Bregman Distance associated to h.

Proof. Simply apply the gradient inequality for the convex function Lh — g:

> Lh(y) - g(y) — (Lh(x) — g(x)) < (LVA(y) — VE(y),y — x)

> g(x)—8(y)—(Valy),x —y) < L(h(x) = h(y) = (Vh(y),x —y)) = LDy(x, y).
Compactly, ¥(x,y) € intdom h x intdom h

Lh— g convex <= D,(x,y) < LDy(x,y) <= Dip_g > 0.
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Some Useful Examples for Bregman Distances D,

Each example is a one dimensional h which is Legendre. The corresponding
Legendre function h and Bregman distance in R? simply use the formulae

thj)andD X,¥) ZD”XJ’yJ

j=1

Name h dom h

Energy ;xz R
Boltzmann-Shannon entropy x log x [0, o]
Burg’s entropy — log x (0,00)
Fermi-Dirac entropy xlogx + (1 — x) log(1l — x) [0,1]
Hellinger —(1—x?)17? [-1,1]
Fractional Power (px —xP)/(1—p),p(0,1) | [0,00)

» Other possible kernels h: Nonseparable Bregman, and for handling cone
constraints e.g., PSD matrices, Lorentz cone etc.., see refs. for details.
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(LC) There exists L > 0: Lh— g Convex - First Examples

(LC) admits alternative reformulations which facilitates its checking; (see paper).

A useful one, is in the 1D case, with h is C27 h” > 0 on intdom h. In this case :

g"(x)
h//(X)

(LC) is equivalent to sup{ : x € intdom h} < 00.

Marc Teboulle First Order Optimization Methods Lecture 7 FOM Beyond Lipschitz Gradient Continuity 11 /30



(LC) There exists L > 0: Lh— g Convex - First Examples

(LC) admits alternative reformulations which facilitates its checking; (see paper).
A useful one, is in the 1D case, with h is C27 h” > 0 on intdom h. In this case :
g"(x)
h//(X)

Two examples with g is C? which does not have a classical L-smooth gradient,
yet where (LC) holds.

> Let h be the Fermi-Dirac entropy. Then, (LC) reads

(LC) is equivalent to sup{ : x € intdom h} < 00.

sup x(1—x)g"(x) < oo,
0<x<1

which clearly holds when [0,1] C intdom g.

For instance, this holds with g(x) = x log x which does not have a Lipschitz
gradient.

> Let h be the Burg's entropy, and g(x) = — log x which does not have a
Lipschitz gradient. Then, (LC) trivially holds!

More examples in important applications soon...
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The Problem and Blanket Assumption
Our aim is to solve the composite convex problem
v(P) = inf{®(x) := f(x) + g(x) | x € dom h},
where dom h = C denotes the closure of dom h.
The following is our blanket assumption.

Standard..but now the “Hidden h " will handle constraint C...

Blanket Assumption
(i) g: X — (—o00,00] is proper lower semicontinuous (Isc) convex,
(i) h: X — (—o0,00] is proper, Isc convex, and Legendre.

(iii) f: X — (—o0,00] is proper Isc convex with dom g O dom h, which is
differentiable on intdom h,

(iv) dom f Nintdom h # (),
(v) Solution set S, := argmin{®(x) : x € C = dom h} # 0.
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Algorithm NoLips for inf{f(x) + g(x) : x € C}

Main Algorithmic Operator— [Reduces to classical prox-grad, when h quadratic]
. 1
Ta(x) := argmin  f(u) + g(x) + (Vg(x),u — x) + XDh(u,x) tueXo.

Algorithm — NolLips
0. Input. Choose a Legendre function h with C = dom h such that there exists
L > 0 with Lh — g convex on intdom h.
1. Initialization. Start with any x° € intdom h.

2. Recursion. For each k > 1 with A\ > 0, generate {xk € intdom h via

}keN

xk = TAk(xk_l) = argg]gjn {f(x) <Vg( o D, x — xk >+ X Dh(x xk )

4

We shall systematically assume that T, # (), single-valued and maps
intdom h in intdom h.

More precise technical details, see our paper.
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Main Issues / Questions for NoLips

» Computation of T)(-)?
» What is the complexity of NoLips?
» Does it converge? What is the step size \?
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NoLips — Decomposition of T,(-) into Elementary Steps
T shares the same structural decomposition as the usual proximal gradient.
It splits into “elementary” steps useful for computational purposes.
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NoLips — Decomposition of T,(-) into Elementary Steps
T shares the same structural decomposition as the usual proximal gradient.
It splits into “elementary” steps useful for computational purposes.

@ Define Bregman gradient step
1
pa(x) := argmin {(Vg(x), u) + XDh(u,x) ‘U € X} = Vh*(Vh(x) — AVg(x))
Clearly reduces to the usual explicit gradient step when h = %|| |12
@ Define the proximal Bregman operator

proxis(y) := argmin {\f(u) + Dy(u,y) : u € R?}, y € intdom h

Then, one can show (simply write optimality condition) that NoLips simply
reduces to the

composition of a Bregman proximal step with a Bregman gradient step:

NoLips Main Iteration: x € intdom h, xt = proxi, o py(x) (A>0) J
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Examples for Bregman Gradient Step p)(x) = Vh*(v(x))
Let v(x):= Vh(x)— AVg(x).
1. Regularized Burg's Entropy - Nonnegative Constraints. Here all computations
are 1-D. h(t) := §t* — plog t with dom h = (0,00), (o, 1 > 0). Then, on
can show that dom h* = IR,

* - s+ /s?+4uo
Vh*(s) = (0p3(s) + 1)(s* + 4uo) /2, p(s) = Jﬁ o
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Examples for Bregman Gradient Step p)(x) = Vh*(v(x))
Let v(x):= Vh(x)— AVg(x).
1. Regularized Burg's Entropy - Nonnegative Constraints. Here all computations
are 1-D. h(t) := §t* — plog t with dom h = (0,00), (o, 1 > 0). Then, on

can show that dom h* = IR,
s++/s?+4uo 50

Vh(5) = (7%(s) + (5% + o) V2, p(s) 1= TV

2. Hellinger-Like function - Ball Constraints.

h(x) = —/1 = ||x]|?; dom h = {x € RY : ||x|| < 1} yields a nonseparable
Bregman distance which is relevant for ball constraints. We then obtain,

pa(x) = (1 + v3(x))Y2v(x); dom h* = R".
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Examples for Bregman Gradient Step p)(x) = Vh*(v(x))
Let v(x):= Vh(x)— AVg(x).
1. Regularized Burg's Entropy - Nonnegative Constraints. Here all computations
are 1-D. h(t) := §t* — plog t with dom h = (0,00), (o, 1 > 0). Then, on

can show that dom h* = IR,
244
Vh*(s) = (0p%(s) + p)(s* + 4po) V2, p(s) == H\/F > 0.

2. Hellinger-Like function - Ball Constraints.
1—||Ix||%; domh = {x € R? : ||x|| <1} yields a nonseparable

Bregman distance which is relevant for ball constraints. We then obtain,

pa(x) = (1 + v3(x))Y2v(x); dom h* = R".

3. Conic constraints. Bregman distances can be defined on S9.
@ Example 1 — SDP Constraints: h(x) = — logdet(x), dom h =S¢, . Then
we obtain,
pa(x) = v(x)7}, v(x), x € Sj_+.
@ Example 2 — SOC Constraints: can be similarly handled with adequate h.
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Some Examples for prox/(y)

1. Entropic thresholding. Let f(u) = |u — a| where a > 0 and take
h(x) = xlog x, dom h = [0,00). Then,

exp (A)y if y <exp(—\)a,

proxis(y) = { a if y € [exp(—))a,exp(A)a],
exp(—A)y if y >exp(A)a.
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Some Examples for prox/(y)

1. Entropic thresholding. Let f(u) = |u — a| where a > 0 and take
h(x) = xlog x, dom h = [0,00). Then,

exp (A)y if y <exp(—\)a,
proxe(y) = { a if y € [exp(—))a,exp(A)a],
exp(—A)y if y >exp(A)a.

2. Log thresholding. Let f(u) = |u — a| where a > 0 and take
h(x) = —log x, dom h = (0,00). Assume Aa < 1. Then,
Ty Y <1
proxh(y) =4 & ifye |3 5]
= fy>

Similar formulas may be derived when Aa > 1.
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Some Examples for prox/(y)

1.

Entropic thresholding. Let f(u) = |u — a| where a > 0 and take
h(x) = xlog x, dom h = [0,00). Then,

exp (A)y if y <exp(—\)a,
proxe(y) = { a if y € [exp(—))a,exp(A)a],
exp(—A)y if y >exp(A)a.

Log thresholding. Let f(u) = |u — a| where a > 0 and take
h(x) = —log x, dom h = (0,00). Assume Aa < 1. Then,

y .
Ty ify < %
h .
proxye(y) =4 a ifye [71 vl 71;")\3}.

< ify>

1-\y 1+/\a

Similar formulas may be derived when Aa > 1.

Exponential. Let f( ) = ce, ¢ >0, and take h(x) = e*, dom h =IR.
Then proxf (y) = y — log(1 + Ac).
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Analysis of NoLips: Relies on 3 Basic Results
A Key Property for D, : Pythagoras...Without Squares!
> A very simple, but key property of Bregman distances.

» Plays a crucial role in the analysis of any optimization method based on
Bregman distances.

Lemma (The three points identity)

For any three points x,y € int(dom h) and u € dom h, the following three
points identity holds true

D(u,y) — Dy(u,x) — Da(x,y) = (Vh(y) — Vh(x),x — u).

]

Proof. Simply follows by using the definition of Dp!

With h(u) := ||u]|?/2 we recover the classical Pythagoras/Triangle identity:

Iz =yl = llz = x| = [Ix = y[* = 2(z = x,x ~ ).
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Bregman Based Proximal Inequality

Extends a similar property of the Euclidean squared prox.

Lemma. Let ¢ : X — (—o00,00] be a closed proper convex function. Given
t > 0, and z € intdom h, define:

ut := argmin {w(u) + th(u,z)} :
uck t

Then, t(¢(uh) — (u)) < [Dp(u,z) — Dp(u,ut) — Dyp(u™, 2)],Vu € dom h.

Marc Teboulle First Order Optimization Methods Lecture 7 FOM Beyond Lipschitz Gradient Continuity 19 /30



Bregman Based Proximal Inequality

Extends a similar property of the Euclidean squared prox.

Lemma. Let ¢ : X — (—o00,00] be a closed proper convex function. Given
t > 0, and z € intdom h, define:

1
ut := argmin {(p(u) + —Dh(u,z)} :
uck t

Then, t(¢(uh) — (u)) < [Dp(u,z) — Dp(u,ut) — Dyp(u™, 2)],Vu € dom h.

4

Proof. u+ typ(u) + Dp(u,2) is strictly convex with unique minimizer u™ characterized
via optimality condition. For any u € dom h:

(tw + VuDyp(u™,2),u —u™) >0, w € dp(u™).
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Bregman Based Proximal Inequality

Extends a similar property of the Euclidean squared prox.

Lemma. Let ¢ : X — (—o00,00] be a closed proper convex function. Given
t > 0, and z € intdom h, define:

1
ut := argmin {(p(u) + —Dh(u,z)} :
uck t

Then, t(¢(uh) — (u)) < [Dp(u,z) — Dp(u,ut) — Dyp(u™, 2)],Vu € dom h.

4

Proof. u+ typ(u) + Dp(u,2) is strictly convex with unique minimizer u™ characterized
via optimality condition. For any u € dom h:

(tw + VuDyp(u™,2),u —u™) >0, w € dp(u™).
Since V,Dp(ut,z) = Vh(u™) — Vh(z), rearranging above reads as:
> t{w,u” —u) < (Vh(u") — Vh(z),u —ut),
> pis convex: = t(p(ut) —¢(u)) < t{w,ut —u).
» Combine above: t(¢(u™) — p(u)) < (Vh(z) — Vh(ut),u™ — u)
» Invoke the three points identity for Dy, gives the desired result.

]
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Key Estimation Inequality for ® = f + g

Lemma (Descent inequality for NoLips)
Let A > 0. For all x in intdom h, let x* := Tx(x). Then,

A (@(xT) — ®(u)) < Dy(u,x)—Dp(u, xT)—(1=AL)Dy(x ", x), Yu € dom h.
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Key Estimation Inequality for ® =f + g

Lemma (Descent inequality for NoLips)
Let A > 0. For all x in intdom h, let x* := Tx(x). Then,

A (®(xt) — &(u)) < Dp(u, x)—Dn(u,x")—(1=AL)Dy(x", x), Yu € dom h.

Proof. Fix any x € intdom h. With (x™, u,x) € intdom h x dom h X intdom h),
we apply Appy the B-prox inequality to

u— p(u) = f(u) +g(x) + (Vg(x), u — x),

, followed by the NL-Lemma, and the convexity of g to obtain for every u € dom h:
MF(xT) = f(u)) < MVg(x),u—xT)+ Dy(u,x) — Dp(u,xt) — Dp(x™, x)
AMe(x") —g(x)) < MVg(x).x" —x) + ALDx(x", x)

AMeg(x) —g(v)) < MVg(x),x —u).
Add the 3 inequalities, recalling that ®(x) = f(x) + g(x), we thus obtain
A (¢(x+) — CD(u)) < Dp(u,x) — Dp(u,xT) — (1 = AL)Dyp(xT, x). O
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Complexity for NoLips: O(1/k)

Theorem (NoLips: Complexity)

(i) (Global estimate in function values) Let {x*},cn be the sequence
generated by NoLips with A € (0,1/L]. Then

LDy(u,x%)

P Yu € dom h.

d(xF) — o (u) <
(i) (Complexity for h with closed domain) Assume in addition, that
dom h = dom h and that (P) has at least a solution. Then for any solution
x of (P),
. LDy(x,x°)
ky _ < SRS AT
d(x") min ¢ < P

Notes ¢ When h(x) = 1||x||?, g € C"', and we thus recover the classical
sublinear global rate of the usual proximal gradient method.

& The entropies of Boltzmann-Shannon, Fermi-Dirac and Hellinger are non trivial
examples for which the assumption (dom h = dom h) is obviously satisfied.
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Proof of O(1/k) Complexity for NoLips

Fix k > 1. Using our Descent inequality Lemma with x¥ = Ty (x*~1), and
A < 1/L, we obtain, for all u € dom h,

O(x*) — d(u) < LDp(u,x* 1) — LDh(u,xk) (1)
The claims easily follow from this inequality. Set u = x*~1 in (1) we get

v

O(xF) = O(x*) <0 = Fp (k- 1{o(xF) —o(x*1)} <0

which reads — > ®(x¥) + Y7 _; k®(xF) — (k —1)d(x<"1) <0

and hence, —>"/_; ®(x¥) + nd(x") < 0.

Sum (1) Yo7 _, &(x¥) — n®(u) < LDy(u, x°) — LDp(u,x") < LD(u, x°).

Add the above, proves (a), and when dom h = dom h, plug u = x* yields

(b). O

vV vVv.v .Yy

Note: One can also deduce pointwise convergence for NoLips:
{x*} ken converges to some solution x* of (P)

via a more precise analysis, and with dynamic step-size A expressed in terms of a
symmetry measure for Dy, see the paper for details.
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Applications: A Protototype Broad Class of Problems with
Poisson Noise

A very large class of problems arising in Statistical and Image Sciences
areas: inverse problems where data measurements are collected by counting

discrete events (e.g., photons, electrons) contaminated by noise described by a
Poisson process.

One then needs to recover a nonnegative signal /image for the given problem.
Huge amount of literature in many contexts:
» Astronomy,

> Nuclear medicine (PET)-Positron Emission Tomography; electronic
microscropy,

> Statistical estimation (EM)-Expectation Maximization,

» Image deconvolution, denoising speckle (multiplicative) noise, etc...
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Linear Inverse Problems - The Optimization Model

Problem:
» Given a matrix A € R7*" describing the experimental protocol.
» b e RT, is given vector of measurements.

» The goal is to reconstruct the signal x € R’} from the noisy
measurements b such that

Ax ~ b.

Moreover, there is often a need to regularize the problem through an appropriate
choice of a regularizer f reflecting desired features of the solution.

Optimization Model to Recover x

(E) minimize {D(b, Ax) + uf(x): x € R}

@ D(+,-) a convex proximity measure that quantifies the “error” between b and Ax

@ > 0 controls the tradeoff between matching the data fidelity criteria and the
weight given to its regularizer. ( = 0 when no regularizer needed.)
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NoLips in Action : New Simple Schemes for Many

Problems
The optimization problem will be of the form:

(E) mxin{f(x) + Dy(b,Ax)} or mXin{f(X) + Dy(Ax, b)}

for some convex ¢, and f(x) some nonsmooth convex regularizer.
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NoLips in Action : New Simple Schemes for Many

Problems
The optimization problem will be of the form:

(E) min{f(x) + Dy (b, Ax)} or min{f(x) + Dy (Ax, b)}
for some convex ¢, and f(x) some nonsmooth convex regularizer.

To apply NoLips :
1. Pick an h, to warrant an L in terms of problem's data, s.t. Lh — g convex.
2. In turns, this determines the step-size \ defined through X\ € (0, L71].
3. Compute py(-) and prox?,(-)) — Bregman-like [ gradient and proximal] steps.
Resulting algorithms for which our results can be applied lead to

Simple schemes via explicit map M;(-) :
x>0, Xj+=Mj(b7A,X)-Xj, j=1,...,n,

with (), L) determined in terms of the problem data (A, b).
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A Typical Linear Inverse Problem with Poisson Noise

A natural proximity measure in R] - Kullback-Liebler Relative Entropy:

m

Dy(b, Ax) = D(b, Ax) := Y {bjlog (Ab ’ + (Ax); — Z uj log u;)

i=1

which (up to some constants) corresponds to the negative Poisson log-likelihood
function.
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A Typical Linear Inverse Problem with Poisson Noise

A natural proximity measure in R] - Kullback-Liebler Relative Entropy:

m

Dy(b, Ax) = D(b, Ax) := Z{b,- log (Ab 7 + (Ax); — Z uj log u;)

i=1

which (up to some constants) corresponds to the negative Poisson log-likelihood
function.

» The optimization problem:
(E) minimize {g(x) + pf(x): x e R}

> g(x) = D(d, Ax), and f a regularizer, possibly nonsmooth

» x — D(b, Ax) convex, but does not admit a globally Lipschitz
continuous gradient.
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Two Simple Algorithms for Poisson Linear Inverse Problems
Given g(x) := Dy(b, Ax) ( ¢(u) = ulog u), to apply NoLips, we need to identify
an adequate h.

> We take the Burg's entropy h(x) = — Z}’zl log xj, domh =1R | .

> We need to find L > 0 such that Lh — g is convex in R’} | .
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Two Simple Algorithms for Poisson Linear Inverse Problems
Given g(x) := Dy(b, Ax) ( ¢(u) = ulog u), to apply NoLips, we need to identify
an adequate h.

> We take the Burg's entropy h(x) = — Z}’zl log xj, domh =1R | .

> We need to find L > 0 such that Lh — g is convex in R’} | .

Lemma. Let g(x) = Dy(b, Ax) and h(x) as defined above. Then,

m
for any L > ||b||; = Z bj, the function Lh — g is convex on IR | .
i=1

Marc Teboulle First Order Optimization Methods Lecture 7 FOM Beyond Lipschitz Gradient Continuity 27 /30



Two Simple Algorithms for Poisson Linear Inverse Problems
Given g(x) := Dy(b, Ax) ( ¢(u) = ulog u), to apply NoLips, we need to identify
an adequate h.

> We take the Burg's entropy h(x) = — Z}’Zl log xj, domh =1R | .

> We need to find L > 0 such that Lh — g is convex in R’} | .

Lemma. Let g(x) = Dy(b, Ax) and h(x) as defined above. Then,

m
for any L > ||b]|y = Z bj, the function Lh — g is convex on IR | .
i=1

Thus, we can take A = L=1 = || b7 *.
Applying NoLips, given x € IR}, the main algorithmic step x™ = Ty(x) is then:

1 [ u uj
. lj j .
xT = argmin uf(u)+<Vg(x),u>+—)\ jEl <Xj Iong 1) cu>0

We now show that the above abstract iterative process yields closed form
algorithms for Poisson reconstruction problems with two typical regularizers used

in applications.
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Example 1 — Sparse Poisson Linear Inverse Problem

Sparse regularization. Let f(x) := ||x||1, which is known to promote sparsity.
Define,
m
CJ(X) = ZbT, rj = Zau > 0.
i=1 X

Then, NoLips yields the following explicit iteration to solve (E) with A = ||b||;
X .
xJ+ = J s J

1+ A (g +x5(17 = ¢(x)))
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Example 1 — Sparse Poisson Linear Inverse Problem

Sparse regularization. Let f(x) := ||x||1, which is known to promote sparsity.
Define,
m
CJ(X) = ZbT, rj = Zau > 0.
i=1 X

Then, NoLips yields the following explicit iteration to solve (E) with A = ||b||;

xt = % j=1
TG+ (= G(x))
Special Case: A New Scheme for the Poisson MLE problem

For 1+ = 0 problem (E) is the Poisson Maximum Likelihood Estimation Problem.
In that particular case the iterates of NoLips simply become

Xj .
X = J =1

R R
In contrast to the standard EM algorithm given by the iteration:

y...n.

X; .
xj"':—{cj(x),le,...,n
fj

Marc Teboulle First Order Optimization Methods Lecture 7 FOM Beyond Lipschitz Gradient Continuity 28 /30



Example 2 - Thikhonov - Poisson Linear Inverse Problems

Tikhonov regularization. Let f(x) := 3 ||x||?>. We recall that this term is used as

a penalty in order to promote solutions of Ax = b with small Euclidean norms.
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Example 2 - Thikhonov - Poisson Linear Inverse Problems

Tikhonov regularization. Let f(x) := 3 ||x||?>. We recall that this term is used as

a penalty in order to promote solutions of Ax = b with small Euclidean norms.

Using previous notation, NoLips yields a

“ A log-Thikonov method” : Set \ = ||b||;! and start with x € IR/,

p7(x) + 4px? — pj(x)
20X

+ _
Xj_

,j=1...,n

where
pi(x) =1+ Xx(r; —ci(x)), j=1,...,n

As just mentioned, many other interesting methods can be considered
» By choosing different kernels for ¢, or
> By reversing the order of the arguments in the proximity measure (which is
not symmetric!..hence defining different problems.)
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Lecture 8 - FOM Beyond Convexity

Goal: Derive a simple self-contained convergence analysis framework for a
broad class of nonconvex and nonsmooth minimization problems.

» A "Recipe” for proving global convergence to a critical point.
> A prototype of a simple/useful Algorithm: PALM.

» Many Applications: phase retrieval for diffractive imaging, dictionary

learning,... .... Sparse nonnegative matrix factorization ... Regularized
Structured Total Least Squares....
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The Problem : An Abstract Formulation

Let F:R? — (—o0, +0oc] be a proper, Isc and bounded from below function.
(P) inf {F(z): zeRd}.
Suppose A is a generic algorithm which generates a sequence {z*}, _ via:
e R e A(ZF), k=0,1,....

Goal: Prove that the whole sequence {z*}, . converges to a critical point
of F.

Quick Recall
> (Limiting) Subdifferential OV (x):
x* € OF(x) iff  (xk,x™) = (x,x¥) s.t. F(xk) = F(x) and
Flu) = F(xi) + (6 u = xe) + of[Ju = xll)
» x € R is a critical point of F if 9F(x) > 0.
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A General Recipe in 3 Main Steps for Descent Methods

k

A sequence z“ is called a descent sequence for F : R" — (—o0, +o0] if

C1. Sufficient decrease property
Jp1 >0 with pg 2" — 2K < F(2) — F(Z*"Y), Yk >0

C2. Iterates gap For each k there exists w" € OF(z¥) such that:
dp> >0 with ||Wk+1|| < pol| 25Tt — 25|, Vk > 0.
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A General Recipe in 3 Main Steps for Descent Methods

k

A sequence z“ is called a descent sequence for F : R" — (—o0, +o0] if

C1. Sufficient decrease property
Jp1 >0 with pg 2" — 2K < F(2) — F(Z*"Y), Yk >0

C2. Iterates gap For each k there exists w" € OF(z¥) such that:
dp> >0 with ||Wk+1|| < pol| 25Tt — 25|, Vk > 0.

> These two steps are typical for any descent type algorithms but lead
only to subsequential convergence.
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A General Recipe in 3 Main Steps for Descent Methods

k

A sequence z“ is called a descent sequence for F : R" — (—o0, +o0] if

C1. Sufficient decrease property
Jp1 >0 with pg 2" — 2K < F(2) — F(Z*"Y), Yk >0

C2. Iterates gap For each k there exists w" € OF(z¥) such that:
dp> >0 with ||Wk+1|| < pol| 25Tt — 25|, Vk > 0.

> These two steps are typical for any descent type algorithms but lead
only to subsequential convergence.

> To get global convergence to a critical point, we need a deep mathematical
tool.[ Lojasiewicz (68), Kurdyka (98)]
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The Third Main Step of our Recipe

C3. The Kurdyka-tojasiewicz property: Assume that F is a KL function.
Use this property to prove that the generated sequence {z*}, _ isa Cauchy
sequence, and thus converges!
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The Third Main Step of our Recipe

C3. The Kurdyka-tojasiewicz property: Assume that F is a KL function.
Use this property to prove that the generated sequence {z*}, _ isa Cauchy
sequence, and thus converges!

This general recipe

> Singles out the 3 main ingredients at play to derive global convergence in the
nonconvex and nonsmooth setting.

» Applicable to any descent algorithm.
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Main Convergence Result

Theorem - Abstract Global Convergence

> Let F be a KL function — namely condition C3 holds.
k
> z

If z¥ is bounded, it converges to a critical point of F.

is a descent sequence for F — namely conditions C1 and C2 hold.

What is a KL function?
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The KL Property — Informal

Let Z be critical, with F(Z) = 0 (true up to translation); £:= {z € R?: 0 < F(z) < n}

Definition [Sharpness] A function F : RY — (—oc0, +00] is called sharp on L if
there exists ¢ > 0 such that

dist (0,0F(2)) :=min{||{]| : €€ 0F (2)} > c>0 VzelL.

KL expresses the fact that a function can be made “sharp” by re-parametrization
of its values.
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The KL Property — Informal

Let Z be critical, with F(Z) = 0 (true up to translation); £:= {z € R?: 0 < F(z) < n}

Definition [Sharpness] A function F : RY — (—oc0, +00] is called sharp on L if
there exists ¢ > 0 such that

dist (0,0F(2)) :=min{||{]| : €€ 0F (2)} > c>0 VzelL.

KL expresses the fact that a function can be made “sharp” by re-parametrization
of its values.

KL warrants F amenable to sharpness Sharp reparameterization ¢ o F|
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The KL Property: (Lojasiewicz (68), Kurdyka (98))

Desingularizing functions on (0,7). Let > 0.
¢, = {p € C[0,n) N C*(0,n) :, concave with ¢’ > 0,¢(0) = 0.}
For X € domdF, L := {x € R?: F(X) < F(x) < F(X) +n}

The KL Property F has the KL property on L if there exists a desingularizing
function ¢ such that

¢ (F(x) — F(x))dist (0,0F(x)) > 1, VxeL

Local version: KL at X € dom F, replace £ with: its intersection with a closed ball B(x,¢) for
some ¢ > 0.

Meaning: Subgradients of x — ¢ o (F(x) — F(x)) have a norm greater than 1,
no matter how close is x to the critical point X (provided F(x) > F(X)) — This is
sharpness.

Are there many functions satisfying KL? How we verify KL?
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Are there Many Functions Satisfying KL?
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Are there Many Functions Satisfying KL?
YES! Semi Algebraic Functions

Theorem

Let 0 : RY — (—o0, +00] be a proper and Isc function. If o is semi-algebraic then
it satisfies the KL property at any point of domo.

Recall: Semi-algebraic sets and functions

(i) A semialgebraic subset of RY is a finite union of sets
{xeR?: pi(x) =0, qi(x)<0,icl, jcJ}
where p;, q; : R — R are real polynomial (analytic) functions and /, J are
finite.

(ii) A function o is semi-algebraic if its graph

{(u,t) eR™ : o (u) =t}

is a semi-algebraic subset of R,
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Operations on Semi-Algebraic Objects

Semi-Algebraic Property is Preserved under Many Operations

vV V.V v v Y

If S is semi-algebraic, so is the closure S.
Unions/intersections of semi-algebraic sets are semi-algebraic.
Indicator of a semi-algebraic set is semi-algebraic.

Finite sums and product of semi-algebraic functions
Composition of semi-algebraic functions;

Sup/Inf type function, e.g., sup{g (u,v) : v € C} is semi-algebraic when g
is a semi-algebraic function and C a semi-algebraic set.
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There is a Wealth of Semi-Algebraic Functions!

Semi-Algebraic Sets/Functions " Starring” in Optimization/Applications

>

>

| 4

Real polynomial functions: ||Ax — b||?, (A, B) — ||[AB — M||2

Any Polyhedral set is semi-algebraic

In matrix theory: cone of PSD matrices, constant rank matrices, Stiefel
manifolds...

The function x — dist (x, S)2 is semi-algebraic whenever S is a nonempty
semi-algebraic subset of R".

The h-norm ||x||; is semi-algebraic, as sum of absolute values function. For
example, to show that o(u) := |u| is semi-algebraic note that Graph(c) =S,
where

S={(u,s): u+s=0,—u>0}U{(u,s): u—s=0,u>0}.

||-lg is semi-algebraic. Its graph can be shown to be a finite union of product
sets.
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A Broad Class of Nonsmooth Nonconvex Problems
A Useful Block Optimization Model

(B) minimize, ,V (x,y) = f (x) + g (y) + H(x,y)

> f:R" — (—o0,+0o0] and g : R™ — (—o0, +-00] proper and Isc.
» H:R"xR™ = Risa C! function with gradient Lipschitz continuous
on bounded subsets of R” x R™ (e.g., true when H € C?).

» Partial gradients of H are C'': H(-,y) € CLl(’;) and H(x,") € CLl(’)l().

& NO convexity assumed in the objective and the constraints
(built-in through f and g extended valued).

Two blocks is only for the sake of simplicity. Same for the p-blocks case:

p P
minimizex .. x, H (x1,x2, ..., xp) + E fi(xi), xi € R, n= Z n;
i=1 i=1

This optimization model covers many applications: signal/image processing, blind
deconvolution, dictionary learning, matrix factorization, etc....Vast Literature...
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PALM: Proximal Alternating Linearized Minimization

Cocktail Time! PALM "blends” old spices:
@ Space decomposition [4 la Gauss-Seidel]
@ Composite decomposition [ & la Prox-Gradient].
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PALM: Proximal Alternating Linearized Minimization

Cocktail Time! PALM "blends” old spices:
@ Space decomposition [4 la Gauss-Seidel]
@ Composite decomposition [ & la Prox-Gradient].

PALM Algorithm
1. Take y1 > 1, set cx = 11 Ly (y") and compute
1
xk+1 ¢ proxzk <Xk — C—VXH (Xk,yk)) .
k
2. Take v, > 1, set dx = 7,Lo (x**1) and compute

1
yktl e proxgk <yk _ d_kvyH (Xk+17yk)> .

Stepsies ey are n 0.1/, & 10,1/ (cH1)]
Main computational step: Computing the prox of a nonconvex function.
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Convergence of PALM

Theorem [Global convergence to critical point]. Assume f,g, H
semi-algebraic. Any bounded PALM sequence {z}, . converges to a crit-

ical point z* = (x*, y*) of W.

Note: The boundedness assumption on the generated sequence {z*}, . holds in
several scenarios, e.g., when f, g have bounded level sets, or follows from the

structure of the problem at hand.

> | will outline the 3 key building blocks for the analysis and proof of
Theorem.

» But, first it is instructive to see how KL works for simple smooth
descent methods.
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Smooth case f € CLl’1 - KL and Descent Methods.

lllustrating the Recipe for Sequences with Smooth Gradient.
» C1. Sufficient desc.: Ja > 0, f(x 1) < f(x*) — a||x**1 — x¥||? (proved)

» Assume lterates: 3b > 0: b||VF(x¥)|| < [|x<+ — xK|.
(f L-smooth, = C2 holds: 3p > 0 : || VF(x*t1)|| < p||xkT1 — xK||, (p = b1 +L).)

» C3. Assume KL: ¢'(f(x) — £,.)||Vf(x)|| > 1, ¢ concave, ¢’ >0
For convenience let vk := f(xk) — f,. Using the above we then get:

p(V ) — (V) < (VYT = V9, (@ concave)
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1,1
Smooth case f € ;" - KL and Descent Methods.
lllustrating the Recipe for Sequences with Smooth Gradient.
» C1. Sufficient desc.: Ja > 0, f(x 1) < f(x*) — a||x**1 — x¥||? (proved)

» Assume lterates: 3b > 0: b||VF(x¥)|| < [|x<+ — xK|.
(f L-smooth, = C2 holds: 3p > 0 : || VF(x*t1)|| < p||xkT1 — xK||, (p = b1 +L).)

» C3. Assume KL: ¢'(f(x) — £,.)||Vf(x)|| > 1, ¢ concave, ¢’ >0

For convenience let vk := f(xk) — f,. Using the above we then get:

(V) — (V) < PV = V), (v concave)
Vk+1 o Vk < 7a||xk+1 . Xk||2 < 7abHXk+1 o XkH . va(xk)”
@)=V < —ab X XK (V) IV (¢ > 0)
< —ab|x* — xK||, (by KL), and hence
PV = p(vk) < —abllxE -
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1,1
Smooth case f € ;" - KL and Descent Methods.
lllustrating the Recipe for Sequences with Smooth Gradient.
» C1. Sufficient desc.: Ja > 0, f(x 1) < f(x*) — a||x**1 — x¥||? (proved)

» Assume lterates: 3b > 0: b||VF(x¥)|| < [|x<+ — xK|.
(f L-smooth, = C2 holds: 3p > 0 : || VF(x*t1)|| < p||xkT1 — xK||, (p = b1 +L).)

» C3. Assume KL: ¢'(f(x) — £,.)||Vf(x)|| > 1, ¢ concave, ¢’ >0

For convenience let vk := f(xk) — f,. Using the above we then get:

(V) — (V) < G (V) = V), (i concave)
Vk+1 _ Vk < 7a||xk+1 _ Xk||2 < 7abHXk+1 _ XkH . va(xk)”
Y=V < —abl T XK (VOIIV ()| (¢ > 0)
< —ab|x* — xK||, (by KL), and hence
PV = p(vk) < —abllxE -

> Therefore, ||x*™ — x*|| < (ab)~* (p(v¥) — ¢(v*T1)), and by telescoping
» we get finite length >, ||x**1 — x¥||, and x* Cauchy and converges.

Marc Teboulle First Order Optimization Methods Lecture 8 - FOM beyond Convexity 15 /25



Proximal Map for Nonconvex Functions

Let 0 : R" — (—o00, +00] be a proper and Isc function. Given x € R” and t > 0,
the proximal map defined by:

t
proxy (x) := argmin {O’(U) + 5 lu—x|?: ue R”} .

Proposition [Well-definedness of proximal maps]If infg. o > —o0, then, for
every t € (0,00), the set proxy, (x) is nonempty and compact.

Here proxy is a set-valued map. When o := dx, for a nonempty and closed set X,
the proximal map reduces to the set-valued projection operator onto X.

Thanks to the prox properties, since PALM is defined by two proximal
computations, all we need to assume is:

inf U> —o0, inff>-oo and infg> —o0.
R XR™ R" R

Thus, Problem (M) is inf-bounded and PALM is well defined.
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1. A Key Nonconvex Proximal-Gradient Inequality

It extends to the nonconvex case the convex prox-gradient inequality.

Lemma [Sufficient decrease property]
(i) h:R" — Ris CY! with Lj-Lipschitz gradient.
(ii) o : R" — R is a proper and Isc function with infgs o > —o0.

Then, for any u € dom ¢ and any u™ € RY defined by
+ o 1
u" € proxy (u— ?Vh(u) , t>Lp,

we have

h(u'*‘)—i—o(u*) < h(“)"‘a(u)_%(t—Lh)|}u+—ul|2.

Proof. Follows along the same line of analysis as in the convex case. ]
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2. PALM Properties: Standard Subsequences Convergence

From now on we assume that the sequence {z*}, . := {(x*,y*)} generated by
PALM is bounded.

w (zo) denotes the set of all limit points.

Lemma. [Properties of the limit point set w (z°)] Let {z*}, _ be a se-
quence generated by PALM. Then

(i) 0 #w(2°) Ccrit V.
(ii) limg— oo dist (z w( 0)) =0.
(iil) w (z ) is a nonempty, compact and connected set.
)

(iv) The objective function W is finite and constant on w (z°).

Proof. Deduced by showing that C1, C2 hold for the sequence {z*}, . +

standard analysis arguments, see paper [4]. O
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3. A Uniformization of KL

Lemma [Uniformized KL property]
» Let 0 : RY — (—o0, 00] be a proper and lower semicontinuous function.
> Let Q be a compact set.
» Assume o is constant on Q and satisfies the KL property at each point of
Q.
Then, there exist ¢ > 0, n > 0 and ¢ € ®,, such that for all @ in Q2 and all u
in the following intersection

W:={uveR?: dist(v,Q)<e}n[o(@<o(u)<o(@+n (1)

one has,
¢ (o (u) — o (u))dist (0,90 (u)) > 1. (2)

Proof. See reference [4]. O
Recall: Let n € (0, +00]. &, is the class of all concave C! functions s.t.: ¢ (0) =0 and
¢’ (s) > 0 for all s € (0,n).

19 / 25
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Sketch of Proof for Global Convergence of PALM

Using the three described results, on can proceed as follows.

> Use sufficient decrease property and limy_. dist (z¥,w (2°)) = 0 to verify
that there exists / such that z¥ € W for all k > /.

> Use the established facts: () # w (z°) and compact + W finite and constant
on w (2°), so that UKL Lemma can be applied with Q = w (2°).
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Sketch of Proof for Global Convergence of PALM

Using the three described results, on can proceed as follows.
> Use sufficient decrease property and limy_. dist (z¥,w (2°)) = 0 to verify
that there exists / such that z¥ € W for all k > /.

> Use the established facts: () # w (z°) and compact + W finite and constant
on w (2°), so that UKL Lemma can be applied with Q = w (2°).

» Use property of ¢ (concave inequality) and KL inequality 2 of the Lemma to
show that {zk}keN has finite length, that is

o0
S || = 2 < .
k=1
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Sketch of Proof for Global Convergence of PALM

Using the three described results, on can proceed as follows.
> Use sufficient decrease property and limy_. dist (z¥,w (2°)) = 0 to verify
that there exists / such that z¥ € W for all k > /.

> Use the established facts: () # w (z°) and compact + W finite and constant
on w (2°), so that UKL Lemma can be applied with Q = w (2°).

» Use property of ¢ (concave inequality) and KL inequality 2 of the Lemma to
show that {zk}keN has finite length, that is

o0
S || = 2 < .
k=1

> Then, it follows that {z*}, . is a Cauchy sequence and hence is a
convergent sequence.

» The result follows immediately from the previous fact
0#w (2% Ceritw. O
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Rate of Convergence Results

Theorem - Rate of Convergence for the sequence {z¥} - Generic
Let F be a function which satisfies the KL property with

o(s)=cs'™? | c>0,0€]0,1),

and z¥ a descent sequence for F. Then,
(i) If = 0 then the sequence z*
(i) If 6 € (0,1/2] 3b> 0 and 7 € [0,1) such that ||z¥ — Z|| < b7k

(iii) If 0 € (1/2,1)3b > 0 such that

|25 —2|| < bk~ 31

converges in a finite number of steps.

Finding 6 can be difficult....

Marc Teboulle First Order Optimization Methods Lecture 8 - FOM beyond Convexity

21 /25



Applications: Nonnegative Matrix Factorization Problems

The NMF Problem: Given A € R™*" and r < min {m, n}.
Find X € R™" and Y € R"*" such that

Ax XY, XEKn,NF, YEK,aNG,

Kpgq = {MeRP*: M>0}
= {XER"’W: Rl(X)ga}
G = {YeER™: R(Y)<B}.

Ri(-) and Ry(:) are functions used to describe some additional /required features
of X,VY.

(NMF) covers a very large number of problems in applications: Text Mining
(data clusters in documents); Audio-Denoising (speech dictionnary);
Bio-informatics (clustering gene expression); Medical Imaging,...Vast Literature.
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The Optimization Approach

We adopt the Constrained Nonconvex Nonsmooth Formulation

1
(MF)  min {5 A= XY|2: X €Km,NF,Y €K n g} :

This formulation fits our general nonsmooth nonconvex model (M) with obvious
identifications for H, f, g.

We now illustrate with semi-algebraic data on two important cases.
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Example: Applying PALM on NMF Problems

I. Nonnegative Matrix Factorization (NMF): F = R™*";, G = R"™*".

min{;||A—XY2F:X>O,Y>O}.
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Example: Applying PALM on NMF Problems

I. Nonnegative Matrix Factorization (NMF): F = R™*";, G = R"™*".

min{;||A—XY2F:X>O7Y>O}.

1. Sparsity Constrained (SNMF): Useful in many applications
1
min {214~ XY 51Xl < . [ Yo < 5. X 20, 0}

Sparsity measure of matrix: || X||y := > |Ixillo, (xi column vector of X).
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Example: Applying PALM on NMF Problems

I. Nonnegative Matrix Factorization (NMF): F = R™*";, G = R"™*".

1
min{2||A—XY2F:X>07Y>O}.

1. Sparsity Constrained (SNMF): Useful in many applications
1
min {214~ XY 51Xl < . [ Yo < 5. X 20, 0}

Sparsity measure of matrix: || X||y := > |Ixillo, (xi column vector of X).

For Both models the data is semi-algebraic, and fit our block model (M):

» For NMF f, g are indicator of the form Jy>p. Trivial projection on
nonnegative cone.

» For SNMF: f and g = dy>0 + djju|j,<s- Also admit explict prox formula.

» PALM produces very simple practical schemes, proven to globally converge.
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