First Order Optimization Methods Lecture 7 FOM Beyond Lipschitz Gradient Continuity

Marc Teboulle

School of Mathematical Sciences
Tel Aviv University

PGMO Lecture Series

January 25-26, 2017 Ecole Polytechnique, Paris

Recall: The Basic Pillar underlying FOM

 $X = \mathbb{R}^d$ Euclidean with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\| \cdot \|$.

$$\inf\{\Phi(x):=f(x)+g(x):\ x\in X\}, f,g \text{ convex}, \text{ with } g \text{ smooth}.$$

Key assumption: g admits L-Lipschitz continuous gradient on \mathbb{R}^d

A simple, yet crucial consequence of this is the so-called descent Lemma:

$$g(x) \le g(y) + \langle \nabla g(y), x - y \rangle + \frac{L}{2} ||x - y||^2, \ \forall x, y \in \mathbb{R}^d.$$

This inequality naturally provides

- 1. The upper quadratic approximation of g
- 2. A crucial pillar in the analysis of any current FOM.

Recall: The Basic Pillar underlying FOM

 $X = \mathbb{R}^d$ Euclidean with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\| \cdot \|$.

$$\inf\{\Phi(x):=f(x)+g(x):\ x\in X\}, f,g \text{ convex}, \text{ with } g \text{ smooth}.$$

Key assumption: g admits L-Lipschitz continuous gradient on \mathbb{R}^d

A simple, yet crucial consequence of this is the so-called descent Lemma:

$$g(x) \le g(y) + \langle \nabla g(y), x - y \rangle + \frac{L}{2} ||x - y||^2, \ \forall x, y \in \mathbb{R}^d.$$

This inequality naturally provides

- 1. The upper quadratic approximation of g
- 2. A crucial pillar in the analysis of any current FOM.

However, in many contexts and applications:

- \ominus the differentiable function g does not have a L-smooth gradient[e.g., in the broad class of Poisson inverse problems].
- **⊖** Hence precludes the use of basic FOM methodology and schemes.

Recall: The Basic Pillar underlying FOM

 $X = \mathbb{R}^d$ Euclidean with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\| \cdot \|$.

$$\inf\{\Phi(x):=f(x)+g(x):\ x\in X\}, f,g \text{ convex}, \text{ with } g \text{ smooth}.$$

Key assumption: g admits L-Lipschitz continuous gradient on \mathbb{R}^d

A simple, yet crucial consequence of this is the so-called descent Lemma:

$$g(x) \le g(y) + \langle \nabla g(y), x - y \rangle + \frac{L}{2} ||x - y||^2, \ \forall x, y \in \mathbb{R}^d.$$

This inequality naturally provides

- 1. The upper quadratic approximation of g
- 2. A crucial pillar in the analysis of any current FOM.

However, in many contexts and applications:

- \ominus the differentiable function g does not have a L-smooth gradient[e.g., in the broad class of Poisson inverse problems].
- **⊖** Hence precludes the use of basic FOM methodology and schemes.

Lecture 7 FOM without Lipschitz Gradient Continuity

Goal: Circumvent this longstanding and intricate question of Lipschitz continuity required in gradient based methods.

Lecture 7 FOM without Lipschitz Gradient Continuity

Goal: Circumvent this longstanding and intricate question of Lipschitz continuity required in gradient based methods.

- ▶ A New Descent Lemma without Lipschitz Gradient Continuity
- Non Euclidean Proximal Distances
- ▶ Proximal Gradient Algorithm free of Lipschitz Gradient Assmuption
- Convergence and Complexity
- Examples and Applications

Consider the descent Lemma for the smooth $g \in C^{1,1}_L$ on \mathbb{R}^d :

$$g(x) \le g(y) + \langle x - y, \nabla g(y) \rangle + \frac{L}{2} ||x - y||^2, \ \forall x, y \in \mathbb{R}^d.$$

Consider the descent Lemma for the smooth $g \in C_l^{1,1}$ on \mathbb{R}^d :

$$g(x) \le g(y) + \langle x - y, \nabla g(y) \rangle + \frac{L}{2} ||x - y||^2, \ \forall x, y \in \mathbb{R}^d.$$

Simple algebra shows that it can be equivalently written as:

$$\left(\frac{L}{2}\|x\|^2 - g(x)\right) - \left(\frac{L}{2}\|y\|^2 - g(y)\right) \ge \langle Ly - \nabla g(y), x - y \rangle \quad \forall x, y \in \mathbb{R}^d$$

Consider the descent Lemma for the smooth $g \in C_l^{1,1}$ on \mathbb{R}^d :

$$g(x) \le g(y) + \langle x - y, \nabla g(y) \rangle + \frac{L}{2} ||x - y||^2, \ \forall x, y \in \mathbb{R}^d.$$

Simple algebra shows that it can be equivalently written as:

$$\left(\frac{L}{2}\|x\|^2 - g(x)\right) - \left(\frac{L}{2}\|y\|^2 - g(y)\right) \ge \langle Ly - \nabla g(y), x - y \rangle \quad \forall x, y \in \mathbb{R}^d$$

Nothing else but the gradient inequality for the convex $\frac{L}{2}||x||^2 - g(x)$!

Consider the descent Lemma for the smooth $g \in C^{1,1}_L$ on \mathbb{R}^d :

$$g(x) \le g(y) + \langle x - y, \nabla g(y) \rangle + \frac{L}{2} ||x - y||^2, \ \forall x, y \in \mathbb{R}^d.$$

Simple algebra shows that it can be equivalently written as:

$$\left(\frac{L}{2}\|x\|^2 - g(x)\right) - \left(\frac{L}{2}\|y\|^2 - g(y)\right) \ge \langle Ly - \nabla g(y), x - y \rangle \quad \forall x, y \in \mathbb{R}^d$$

Nothing else but the gradient inequality for the convex $\frac{L}{2}||x||^2 - g(x)$! Thus, for a given smooth convex function g on \mathbb{R}^d

Descent Lemma
$$\iff \frac{L}{2} ||x||^2 - g(x)$$
 is convex on \mathbb{R}^d .

Consider the descent Lemma for the smooth $g \in C^{1,1}_I$ on \mathbb{R}^d :

$$g(x) \le g(y) + \langle x - y, \nabla g(y) \rangle + \frac{L}{2} ||x - y||^2, \ \forall x, y \in \mathbb{R}^d.$$

Simple algebra shows that it can be equivalently written as:

$$\left(\frac{L}{2}\|x\|^2 - g(x)\right) - \left(\frac{L}{2}\|y\|^2 - g(y)\right) \ge \langle Ly - \nabla g(y), x - y \rangle \quad \forall x, y \in \mathbb{R}^d$$

Nothing else but the gradient inequality for the convex $\frac{L}{2}||x||^2 - g(x)$! Thus, for a given smooth convex function g on \mathbb{R}^d

Descent Lemma
$$\iff \frac{L}{2} \|\mathbf{x}\|^2 - \mathbf{g}(\mathbf{x}) \text{ is convex on } \mathbb{R}^d.$$

To Capture the Geometry of a Constraint set ${\mathcal C}$ Naturally suggests to consider

- instead of the $\emph{squared norm}$ used for the unconstrained case $\emph{C} = \mathbb{R}^d$ -
- a more general convex function that captures the geometry of the constraint.

Marc Teboulle

Trading Gradient Lipschitz Continuity with Convexity

Capturing in a very simple way the geometry of the constraints

Following our basic observation: A convexity condition on the couple (g, h) replaces the usual Lipschitz continuity property required on the gradient of g.

Trading Gradient Lipschitz Continuity with Convexity

Capturing in a very simple way the geometry of the constraints

Following our basic observation: A convexity condition on the couple (g, h) replaces the usual Lipschitz continuity property required on the gradient of g.

A Lipschitz-like/Convexity Condition

(LC) $\exists L > 0$ with Lh - g convex on int dom h,

As just seen, when $h(x) = \frac{1}{2}||x||^2$, (LC) translates to the Descent Lemma.

Since g is assumed convex, this is equivalent to: ∇g is L-Lipschitz continuous.

Trading Gradient Lipschitz Continuity with Convexity

Capturing in a very simple way the geometry of the constraints

Following our basic observation: A convexity condition on the couple (g, h) replaces the usual Lipschitz continuity property required on the gradient of g.

A Lipschitz-like/Convexity Condition

(LC)
$$\exists L > 0$$
 with $Lh - g$ convex on int dom h ,

As just seen, when $h(x) = \frac{1}{2}||x||^2$, (LC) translates to the Descent Lemma.

Since g is assumed convex, this is equivalent to: ∇g is L-Lipschitz continuous.

- ▶ We shall see, that the mere translation of condition (LC) into its first-order characterization immediately yields **the new descent Lemma** we seek for.
- It naturally leads to the Non Euclidean Proximal Bregman distance, we introduce next.

Bregman Proximal Distance

Defintion: Bregman distance [Bregman (67)] Let $h: X \to (-\infty, \infty]$ be a closed proper strictly convex function, differentiable on int dom h. The Bregman distance associated to h (or with kernel h) is defined by

$$D_h(x,y) := h(x) - h(y) - \langle \nabla h(y), x - y \rangle, \ \forall x \in \text{dom } h, y \in \text{int dom } h.$$

Bregman Proximal Distance

Defintion: Bregman distance [Bregman (67)] Let $h: X \to (-\infty, \infty]$ be a closed proper strictly convex function, differentiable on int dom h. The Bregman distance associated to h (or with kernel h) is defined by

$$D_h(x,y) := h(x) - h(y) - \langle \nabla h(y), x - y \rangle, \ \forall x \in \text{dom } h, y \in \text{int dom } h.$$

Geometrically, it measures the vertical difference between h(x), the value at x of a linearized approximation of h around y.

Proposition: Distance-Like Properties

- \triangleright D_h is strictly convex with respect to its first argument.
- ▶ $D_h(x, y) > 0$ and " = 0" iff x = y.

Proof. Immediate by the gradient inequality.

Thus, D_h provides a natural distance measure.

However, note that D_h is in general asymmetric.

First Examples

- **Example 1** The choice $h(\mathbf{z}) = \frac{1}{2} \|\mathbf{z}\|^2$, dom $h = \mathbb{R}^d$ yields the usual squared Euclidean norm distance $D_h(\mathbf{x}, \mathbf{y}) = \frac{1}{2} \|\mathbf{x} \mathbf{y}\|^2$.
- **Example 2** The entropy-like distance defined on the simplex,

$$h(\mathbf{z}) = \sum_{j=1}^d z_j \ln z_j, \ ext{for } \mathbf{z} \in \operatorname{dom} h := \Delta_d = \{\mathbf{z} \in \mathbb{R}^d : \sum_{j=1}^d z_j = 1, \mathbf{z} \geq \mathbf{0}\}.$$

▶ In that case, $D_h(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^d x_j \ln \frac{x_j}{y_i}$.

More examples soon...

Legendre Functions - Useful Device to Handle constraints

Strategy to handle a constraint set is standard: Pick a Legendre function on C.

Definition (Legendre functions)[Rockafellar '70]. $h: X \to (-\infty, \infty]$, lsc proper convex is called *Legendre type* if h is essentially smooth and strictly convex on int dom h.

Recall

- ▶ Essentially smooth: if h is differentiable on int dom h, with $\|\nabla h(x^k)\| \to \infty$ for every sequence $\{x^k\}_{k\in\mathbb{N}} \subset \text{int dom } h$ converging to a boundary point of dom h as $k \to +\infty$.
- ▶ ∇h is a *bijection* from int dom $h \rightarrow$ int dom h^* and

$$(\nabla h)^{-1} = \nabla h^*$$

where $h^*(u) := \sup_{v} \{ \langle u, v \rangle - h(v) \}$ is the Fenchel conjugate of h.

A Descent Lemma without Lipschitz Gradient Continuity

Lemma[Descent lemma without Lipschitz Gradient Continuity]

Let $h: X \to (-\infty, \infty]$ be a Legendre function, and $g: X \to (-\infty, \infty]$ be convex function with dom $g \supset \text{dom } h$ which is C^1 on int dom h.

Then, the condition (LC): Lh - g convex on int dom h is equivalent to

$$g(x) \le g(y) + \langle \nabla g(y), x - y \rangle + LD_h(x, y), \ \forall (x, y) \in \operatorname{int} \operatorname{dom} \ h \times \operatorname{int} \operatorname{dom} \ h$$

where, D_h stands for the Bregman Distance associated to h.

A Descent Lemma without Lipschitz Gradient Continuity

Lemma[Descent lemma without Lipschitz Gradient Continuity]

Let $h: X \to (-\infty, \infty]$ be a Legendre function, and $g: X \to (-\infty, \infty]$ be convex function with dom $g \supset \text{dom } h$ which is C^1 on int dom h.

Then, the condition (LC): Lh - g convex on int dom h is equivalent to

$$g(x) \le g(y) + \langle \nabla g(y), x - y \rangle + LD_h(x, y), \ \forall (x, y) \in \operatorname{int} \operatorname{dom} \ h \times \operatorname{int} \operatorname{dom} \ h$$

where, D_h stands for the Bregman Distance associated to h.

Proof. Simply apply the gradient inequality for the convex function Lh - g:

- $Lh(y) g(y) (Lh(x) g(x)) \le \langle L\nabla h(y) \nabla g(y), y x \rangle$

A Descent Lemma without Lipschitz Gradient Continuity

Lemma[Descent lemma without Lipschitz Gradient Continuity]

Let $h: X \to (-\infty, \infty]$ be a Legendre function, and $g: X \to (-\infty, \infty]$ be convex function with dom $g \supset \text{dom } h$ which is C^1 on int dom h.

Then, the condition (LC): Lh - g convex on int dom h is equivalent to

$$g(x) \le g(y) + \langle \nabla g(y), x - y \rangle + LD_h(x, y), \ \forall (x, y) \in \text{int dom } h \times \text{int dom } h$$

where, D_h stands for the Bregman Distance associated to h.

Proof. Simply apply the gradient inequality for the convex function Lh - g:

- $Lh(y) g(y) (Lh(x) g(x)) \le \langle L\nabla h(y) \nabla g(y), y x \rangle$

Compactly, $\forall (x, y) \in \text{int dom } h \times \text{int dom } h$

$$Lh - g$$
 convex $\iff D_g(x, y) \le LD_h(x, y) \iff D_{Lh-g} \ge 0$.

Some Useful Examples for Bregman Distances D_h

Each example is a one dimensional h which is Legendre. The corresponding Legendre function \tilde{h} and Bregman distance in \mathbb{R}^d simply use the formulae

$$\tilde{h}(x) = \sum_{j=1}^{n} h(x_j) \text{ and } D_{\tilde{h}}(x,y) = \sum_{j=1}^{n} D_h(x_j,y_j).$$

Name	h	dom <i>h</i>
Energy	$\frac{1}{2}x^2$	$ m I\!R$
Boltzmann-Shannon entropy	$x \log x$	$[0,\infty]$
Burg's entropy	$-\log x$	$(0,\infty)$
Fermi-Dirac entropy	$x \log x + (1-x) \log(1-x)$	[0, 1]
Hellinger	$-(1-x^2)^{1/2}$	[-1, 1]
Fractional Power	$(px - x^p)/(1-p), p \in (0,1)$	$[0,\infty)$

▶ Other possible kernels h: Nonseparable Bregman, and for handling cone constraints e.g., PSD matrices, Lorentz cone etc.., see refs. for details.

(LC) There exists L > 0: Lh - g Convex - First Examples (LC) admits alternative reformulations which facilitates its checking; (see paper).

A useful one, is in the 1D case, with h is C^2 , h'' > 0 on int dom h. In this case :

(LC) is equivalent to
$$\sup \left\{ \frac{g''(x)}{h''(x)} : x \in \operatorname{int} \operatorname{dom} h \right\} < \infty.$$

(LC) There exists L > 0: Lh - g Convex - First Examples (LC) admits alternative reformulations which facilitates its checking; (see paper).

A useful one, is in the 1D case, with h is C^2 , h'' > 0 on int dom h. In this case :

$$(\mathit{LC}) \qquad \text{is equivalent to} \qquad \sup\left\{\frac{g''(x)}{h''(x)}: \ x \in \operatorname{int} \operatorname{dom} h\right\} < \infty.$$

Two examples with g is C^2 which does not have a classical L-smooth gradient, yet where (LC) holds.

▶ Let *h* be the Fermi-Dirac entropy. Then, (LC) reads

$$\sup_{0 < x < 1} x(1 - x)g''(x) < \infty,$$

which clearly holds when $[0,1] \subseteq \operatorname{int} \operatorname{dom} g$.

For instance, this holds with $g(x) = x \log x$ which *does not* have a Lipschitz gradient.

Let h be the Burg's entropy, and $g(x) = -\log x$ which does not have a Lipschitz gradient. Then, (LC) trivially holds!

More examples in important applications soon...

The Problem and Blanket Assumption

Our aim is to solve the composite convex problem

$$v(\mathcal{P}) = \inf\{\Phi(x) := f(x) + g(x) \mid x \in \overline{\mathsf{dom}}\,h\},\$$

where $\overline{\text{dom}} h \equiv C$ denotes the closure of dom h.

The following is our blanket assumption.

Standard..but now the "Hidden h" will handle constraint C...

Blanket Assumption

- (i) $g: X \to (-\infty, \infty]$ is proper lower semicontinuous (lsc) convex,
- (ii) $h: X \to (-\infty, \infty]$ is proper, lsc convex, and Legendre.
- (iii) $f: X \to (-\infty, \infty]$ is proper lsc convex with dom $g \supset \text{dom } h$, which is differentiable on int dom h,
- (iv) dom $f \cap \operatorname{int} \operatorname{dom} h \neq \emptyset$,
- (v) Solution set $S_* := \operatorname{argmin} \{ \Phi(x) : x \in C = \overline{\operatorname{dom}} h \} \neq \emptyset$.

Algorithm NoLips for $\inf\{f(x) + g(x) : x \in C\}$

Main Algorithmic Operator— [Reduces to classical prox-grad, when h quadratic]

$$\textbf{T}_{\lambda}(\textbf{x}) := \text{argmin} \left\{ \textbf{f}(\textbf{u}) + \textbf{g}(\textbf{x}) + \langle \nabla \textbf{g}(\textbf{x}), \textbf{u} - \textbf{x} \rangle + \frac{1}{\lambda} \textbf{D}_{\textbf{h}}(\textbf{u}, \textbf{x}) : \textbf{u} \in \textbf{X} \right\}.$$

Algorithm - NoLips

- 0. **Input.** Choose a Legendre function h with $C = \overline{\text{dom }} h$ such that there exists L > 0 with Lh g convex on int dom h.
- 1. **Initialization.** Start with any $x^0 \in \text{int dom } h$.
- 2. **Recursion.** For each $k \ge 1$ with $\lambda_k > 0$, generate $\left\{x^k\right\}_{k \in \mathbb{N}} \in \operatorname{int} \operatorname{dom} h$ via

$$x^{k} = T_{\lambda_{k}}(x^{k-1}) = \operatorname*{argmin}_{x \in \mathbb{R}^{d}} \left\{ f(x) + \left\langle \nabla g(x^{k-1}), x - x^{k-1} \right\rangle + \frac{1}{\lambda_{k}} D_{h}(x, x^{k-1}) \right\}$$

We shall systematically assume that $T_{\lambda} \neq \emptyset$, single-valued and maps int dom h in int dom h.

More precise technical details, see our paper.

Main Issues / Questions for NoLips

- ▶ Computation of $T_{\lambda}(\cdot)$?
- ▶ What is the complexity of NoLips?
- ▶ Does it converge? What is the step size λ_k ?

NoLips – Decomposition of $T_{\lambda}(\cdot)$ into Elementary Steps

 T_{λ} shares the same structural decomposition as the usual proximal gradient. It splits into "elementary" steps useful for computational purposes.

NoLips – Decomposition of $T_{\lambda}(\cdot)$ into Elementary Steps

 T_{λ} shares the same structural decomposition as the usual proximal gradient. It splits into "elementary" steps useful for computational purposes.

Define Bregman gradient step

$$p_{\lambda}(x) := \operatorname{argmin} \left\{ \langle \nabla g(x), u \rangle + \frac{1}{\lambda} D_h(u, x) : u \in X \right\} \equiv \nabla h^*(\nabla h(x) - \lambda \nabla g(x))$$

Clearly reduces to the usual explicit gradient step when $h = \frac{1}{2} || \cdot ||^2$.

Define the proximal Bregman operator

$$\operatorname{prox}_{\lambda f}^h(y) := \operatorname{argmin} \left\{ \lambda f(u) + D_h(u, y) : u \in \mathbb{R}^d \right\}, \ y \in \operatorname{int} \operatorname{dom} h$$

Then, one can show (simply write optimality condition) that **NoLips** simply reduces to the

composition of a Bregman proximal step with a Bregman gradient step:

NoLips Main Iteration:
$$x \in \operatorname{int} \operatorname{dom} h$$
, $x^+ = \operatorname{prox}_{\lambda f}^h \circ p_{\lambda}(x) \ (\lambda > 0)$

Examples for Bregman Gradient Step $p_{\lambda}(x) = \nabla h^*(v(x))$

Let $v(x) := \nabla h(x) - \lambda \nabla g(x)$.

1. Regularized Burg's Entropy - Nonnegative Constraints. Here all computations are 1-D. $h(t) := \frac{\sigma}{2}t^2 - \mu \log t$ with dom $h = (0, \infty), (\sigma, \mu > 0)$. Then, on can show that dom $h^* = \mathbb{R}$,

$$\nabla h^*(s) = (\sigma \rho^2(s) + \mu)(s^2 + 4\mu\sigma)^{-1/2}, \ \rho(s) := \frac{s + \sqrt{s^2 + 4\mu\sigma}}{2\sigma} > 0.$$

Marc Tehoulle

16 / 30

Examples for Bregman Gradient Step $p_{\lambda}(x) = \nabla h^*(v(x))$

Let $v(x) := \nabla h(x) - \lambda \nabla g(x)$.

1. Regularized Burg's Entropy - Nonnegative Constraints. Here all computations are 1-D. $h(t) := \frac{\sigma}{2}t^2 - \mu \log t$ with dom $h = (0, \infty), \ (\sigma, \mu > 0)$. Then, on can show that dom $h^* = \mathbb{R}$,

$$\nabla h^*(s) = (\sigma \rho^2(s) + \mu)(s^2 + 4\mu\sigma)^{-1/2}, \ \rho(s) := \frac{s + \sqrt{s^2 + 4\mu\sigma}}{2\sigma} > 0.$$

2. Hellinger-Like function - Ball Constraints.

 $h(x) = -\sqrt{1 - \|x\|^2}$; dom $h = \{x \in \mathbb{R}^d : \|x\| \le 1\}$ yields a nonseparable Bregman distance which is relevant for ball constraints. We then obtain,

$$p_{\lambda}(x) = (1 + v^2(x))^{-1/2} v(x); \text{ dom } h^* = \mathbb{R}^n.$$

Examples for Bregman Gradient Step $p_{\lambda}(x) = \nabla h^*(v(x))$

Let $v(x) := \nabla h(x) - \lambda \nabla g(x)$.

1. Regularized Burg's Entropy - Nonnegative Constraints. Here all computations are 1-D. $h(t) := \frac{\sigma}{2}t^2 - \mu \log t$ with dom $h = (0, \infty)$, $(\sigma, \mu > 0)$. Then, on can show that dom $h^* = \mathbb{R}$,

$$\nabla h^*(s) = (\sigma \rho^2(s) + \mu)(s^2 + 4\mu\sigma)^{-1/2}, \ \rho(s) := \frac{s + \sqrt{s^2 + 4\mu\sigma}}{2\sigma} > 0.$$

2. Hellinger-Like function - Ball Constraints.

 $h(x) = -\sqrt{1 - \|x\|^2}$; dom $h = \{x \in \mathbb{R}^d : \|x\| \le 1\}$ yields a nonseparable Bregman distance which is relevant for ball constraints. We then obtain,

$$p_{\lambda}(x) = (1 + v^2(x))^{-1/2} v(x); \text{ dom } h^* = \mathbb{R}^n.$$

- 3. Conic constraints. Bregman distances can be defined on S^d .
 - \oplus Example 1 SDP Constraints: $h(x) = -\log \det(x)$, dom $h = S_{++}^d$. Then we obtain,

$$p_{\lambda}(x) = v(x)^{-1}, \ v(x), \ x \in S^{d}_{\perp \perp}.$$

 \oplus Example 2 – SOC Constraints: can be similarly handled with adequate h.

Some Examples for $\operatorname{prox}_{\lambda f}^h(y)$

1. **Entropic thresholding.** Let f(u) = |u - a| where a > 0 and take $h(x) = x \log x$, dom $h = [0, \infty)$. Then,

$$\operatorname{prox}_{\lambda f}^{h}(y) = \begin{cases} \exp(\lambda)y & \text{if } y < \exp(-\lambda)a, \\ a & \text{if } y \in [\exp(-\lambda)a, \exp(\lambda)a], \\ \exp(-\lambda)y & \text{if } y > \exp(\lambda)a. \end{cases}$$

Some Examples for $\operatorname{prox}_{\lambda f}^h(y)$

1. **Entropic thresholding.** Let f(u) = |u - a| where a > 0 and take $h(x) = x \log x$, dom $h = [0, \infty)$. Then,

$$\operatorname{prox}_{\lambda f}^{h}(y) = \begin{cases} \exp(\lambda)y & \text{if } y < \exp(-\lambda)a, \\ a & \text{if } y \in [\exp(-\lambda)a, \exp(\lambda)a], \\ \exp(-\lambda)y & \text{if } y > \exp(\lambda)a. \end{cases}$$

2. **Log thresholding.** Let f(u) = |u - a| where a > 0 and take $h(x) = -\log x$, dom $h = (0, \infty)$. Assume $\lambda a < 1$. Then,

$$\operatorname{prox}_{\lambda f}^{h}(y) = \begin{cases} \frac{y}{1+\lambda y} & \text{if } y < \frac{a}{1-\lambda a}, \\ a & \text{if } y \in \left[\frac{a}{1-\lambda a}, \frac{a}{1+\lambda a}\right], \\ \frac{y}{1-\lambda y} & \text{if } y > \frac{a}{1+\lambda a}. \end{cases}$$

Similar formulas may be derived when $\lambda a > 1$.

Some Examples for $\operatorname{prox}_{\lambda f}^h(y)$

1. **Entropic thresholding.** Let f(u) = |u - a| where a > 0 and take $h(x) = x \log x$, dom $h = [0, \infty)$. Then,

$$\operatorname{prox}_{\lambda f}^{h}(y) = \begin{cases} \exp(\lambda)y & \text{if } y < \exp(-\lambda)a, \\ a & \text{if } y \in [\exp(-\lambda)a, \exp(\lambda)a], \\ \exp(-\lambda)y & \text{if } y > \exp(\lambda)a. \end{cases}$$

2. **Log thresholding.** Let f(u) = |u - a| where a > 0 and take $h(x) = -\log x$, dom $h = (0, \infty)$. Assume $\lambda a < 1$. Then,

$$\operatorname{prox}_{\lambda f}^{h}(y) = \begin{cases} \frac{y}{1+\lambda y} & \text{if } y < \frac{a}{1-\lambda a}, \\ a & \text{if } y \in \left[\frac{a}{1-\lambda a}, \frac{a}{1+\lambda a}\right], \\ \frac{y}{1-\lambda y} & \text{if } y > \frac{a}{1+\lambda a}. \end{cases}$$

Similar formulas may be derived when $\lambda a > 1$.

3. **Exponential.** Let $f(u) = ce^u$, c > 0, and take $h(x) = e^x$, dom $h = \mathbb{R}$. Then $\operatorname{prox}_{\lambda f}^h(y) = y - \log(1 + \lambda c)$.

Analysis of NoLips: Relies on 3 Basic Results

A Key Property for D_h : Pythagoras...Without Squares!

- ▶ A very simple, but key property of Bregman distances.
- Plays a crucial role in the analysis of any optimization method based on Bregman distances.

Lemma (The three points identity)

For any three points $x,y\in \text{int}(\text{dom}\,h)$ and $u\in \text{dom}\,h$, the following three points identity holds true

$$D_h(\mathbf{u}, \mathbf{y}) - D_h(\mathbf{u}, \mathbf{x}) - D_h(\mathbf{x}, \mathbf{y}) = \langle \nabla h(\mathbf{y}) - \nabla h(\mathbf{x}), \mathbf{x} - \mathbf{u} \rangle.$$

Proof. Simply follows by using the definition of $D_h!$

With $h(\mathbf{u}) := \|\mathbf{u}\|^2/2$ we recover the classical Pythagoras/Triangle identity:

$$\|\mathbf{z} - \mathbf{y}\|^2 - \|\mathbf{z} - \mathbf{x}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2 = 2\langle \mathbf{z} - \mathbf{x}, \mathbf{x} - \mathbf{y} \rangle.$$

Bregman Based Proximal Inequality

Extends a similar property of the Euclidean squared prox.

Lemma. Let $\varphi: X \to (-\infty, \infty]$ be a closed proper convex function. Given t > 0, and $\mathbf{z} \in \operatorname{int} \operatorname{dom} h$, define:

$$\mathbf{u}^+ := \operatorname*{argmin}_{\mathbf{u} \in \mathbb{E}} \left\{ arphi(\mathbf{u}) + rac{1}{t} D_h(\mathbf{u}, \mathbf{z})
ight\}.$$

Then, $t(\varphi(\mathbf{u}^+) - (\mathbf{u})) \leq [D_h(\mathbf{u}, \mathbf{z}) - D_h(\mathbf{u}, \mathbf{u}^+) - D_h(\mathbf{u}^+, \mathbf{z})], \forall \mathbf{u} \in \text{dom } h.$

Bregman Based Proximal Inequality

Extends a similar property of the Euclidean squared prox.

Lemma. Let $\varphi: X \to (-\infty, \infty]$ be a closed proper convex function. Given t > 0, and $\mathbf{z} \in \operatorname{int} \operatorname{dom} h$, define:

$$\mathbf{u}^+ := \operatorname*{argmin}_{\mathbf{u} \in \mathbb{E}} \left\{ arphi(\mathbf{u}) + rac{1}{t} D_h(\mathbf{u}, \mathbf{z})
ight\}.$$

Then, $t(\varphi(\mathbf{u}^+) - (\mathbf{u})) \leq [D_h(\mathbf{u}, \mathbf{z}) - D_h(\mathbf{u}, \mathbf{u}^+) - D_h(\mathbf{u}^+, \mathbf{z})], \forall \mathbf{u} \in \text{dom } h.$

Proof. $\mathbf{u} \mapsto t\varphi(\mathbf{u}) + D_h(\mathbf{u}, \mathbf{z})$ is strictly convex with unique minimizer \mathbf{u}^+ characterized via optimality condition. For any $\mathbf{u} \in \text{dom } h$:

$$\langle t\boldsymbol{\omega} + \nabla_{\mathbf{u}} D_h(\mathbf{u}^+, \mathbf{z}), \mathbf{u} - \mathbf{u}^+ \rangle \geq 0, \ \boldsymbol{\omega} \in \partial \varphi(\mathbf{u}^+).$$

Bregman Based Proximal Inequality

Extends a similar property of the Euclidean squared prox.

Lemma. Let $\varphi: X \to (-\infty, \infty]$ be a closed proper convex function. Given t > 0, and $\mathbf{z} \in \operatorname{int} \operatorname{dom} h$, define:

$$\mathbf{u}^+ := \operatorname*{argmin}_{\mathbf{u} \in \mathbb{E}} \left\{ arphi(\mathbf{u}) + rac{1}{t} D_h(\mathbf{u}, \mathbf{z})
ight\}.$$

Then, $t(\varphi(\mathbf{u}^+) - (\mathbf{u})) \leq [D_h(\mathbf{u}, \mathbf{z}) - D_h(\mathbf{u}, \mathbf{u}^+) - D_h(\mathbf{u}^+, \mathbf{z})], \forall \mathbf{u} \in \text{dom } h.$

Proof. $\mathbf{u} \mapsto t\varphi(\mathbf{u}) + D_h(\mathbf{u}, \mathbf{z})$ is strictly convex with unique minimizer \mathbf{u}^+ characterized via optimality condition. For any $\mathbf{u} \in \text{dom } h$:

$$\langle t\boldsymbol{\omega} + \nabla_{\mathbf{u}} D_h(\mathbf{u}^+, \mathbf{z}), \mathbf{u} - \mathbf{u}^+ \rangle \geq 0, \ \boldsymbol{\omega} \in \partial \varphi(\mathbf{u}^+).$$

Since $\nabla_{\mathbf{u}} D_h(\mathbf{u}^+, \mathbf{z}) = \nabla h(\mathbf{u}^+) - \nabla h(\mathbf{z})$, rearranging above reads as:

- $t\langle \omega, \mathbf{u}^+ \mathbf{u} \rangle < \langle \nabla h(\mathbf{u}^+) \nabla h(\mathbf{z}), \mathbf{u} \mathbf{u}^+ \rangle,$
- φ is convex: $\Rightarrow t(\varphi(\mathbf{u}^+) \varphi(\mathbf{u})) \le t\langle \omega, \mathbf{u}^+ \mathbf{u} \rangle$.
- ► Combine above: $t(\varphi(\mathbf{u}^+) \varphi(\mathbf{u})) \leq \langle \nabla h(\mathbf{z}) \nabla h(\mathbf{u}^+), \mathbf{u}^+ \mathbf{u} \rangle$
- Invoke the three points identity for D_h gives the desired result.

Key Estimation Inequality for $\Phi = f + g$

Lemma (Descent inequality for NoLips)

Let $\lambda > 0$. For all x in int dom h, let $x^+ := T_{\lambda}(x)$. Then,

$$\lambda\left(\Phi(x^+) - \Phi(u)\right) \leq D_h(u, x) - D_h(u, x^+) - (1 - \lambda L)D_h(x^+, x), \ \forall u \in dom \ h.$$

Key Estimation Inequality for $\Phi = f + g$

Lemma (Descent inequality for NoLips)

Let $\lambda > 0$. For all x in int dom h, let $x^+ := T_{\lambda}(x)$. Then,

$$\lambda\left(\Phi(x^+)-\Phi(u)\right)\leq D_h(u,x)-D_h(u,x^+)-(1-\lambda L)D_h(x^+,x),\ \forall u\in \text{dom }h.$$

Proof. Fix any $x \in \text{int dom } h$. With $(x^+, u, x) \in \text{int dom } h \times \text{dom } h \times \text{int dom } h$, we apply Appy the B-prox inequality to

$$u \to \varphi(u) := f(u) + g(x) + \langle \nabla g(x), u - x \rangle,$$

, followed by the NL-Lemma, and the convexity of g to obtain for every $u \in \text{dom } h$:

$$\lambda \big(f(x^+) - f(u)\big) \hspace{2mm} \leq \hspace{2mm} \lambda \big\langle \nabla g(x), u - x^+ \big\rangle + D_h(u,x) - D_h(u,x^+) - D_h(x^+,x)$$

$$\lambda(g(x^+) - g(x)) \leq \lambda(\nabla g(x), x^+ - x) + \lambda LD_h(x^+, x)$$

$$\lambda(g(x) - g(u)) \leq \lambda(\nabla g(x), x - u).$$

Add the 3 inequalities, recalling that $\Phi(x) = f(x) + g(x)$, we thus obtain

$$\lambda (\Phi(x^+) - \Phi(u)) \le D_h(u, x) - D_h(u, x^+) - (1 - \lambda L)D_h(x^+, x).$$

Complexity for NoLips: O(1/k)

Theorem (NoLips: Complexity)

(i) (Global estimate in function values) Let $\{x^k\}_{k\in\mathbb{N}}$ be the sequence generated by NoLips with $\lambda\in(0,1/L]$. Then

$$\Phi(x^k) - \Phi(u) \le \frac{LD_h(u, x^0)}{k} \quad \forall u \in dom h.$$

(ii) (Complexity for h with closed domain) Assume in addition, that $dom h = \overline{dom} h$ and that (\mathcal{P}) has at least a solution. Then for any solution \bar{x} of (\mathcal{P}) ,

$$\Phi(x^k) - \min_{C} \Phi \le \frac{LD_h(\bar{x}, x^0)}{k}$$

Notes \diamondsuit When $h(x) = \frac{1}{2}||x||^2$, $g \in C_L^{1,1}$, and we thus recover the classical sublinear global rate of the usual proximal gradient method.

 \Diamond The entropies of Boltzmann-Shannon, Fermi-Dirac and Hellinger are non trivial examples for which the assumption $(\overline{\text{dom }}h = \text{dom }h)$ is obviously satisfied.

Proof of O(1/k) Complexity for NoLips

Fix $k \ge 1$. Using our Descent inequality Lemma with $x^k = T_{\lambda}(x^{k-1})$, and $\lambda \le 1/L$, we obtain, for all $u \in \text{dom } h$,

$$\Phi(x^k) - \Phi(u) \le LD_h(u, x^{k-1}) - LD_h(u, x^k) \tag{1}$$

The claims easily follow from this inequality. Set $u = x^{k-1}$ in (1) we get

- $\Phi(x^k) \Phi(x^{k-1}) \le 0 \implies \sum_{k=1}^n (k-1) \{ \Phi(x^k) \Phi(x^{k-1}) \} \le 0$
- ▶ which reads $-\sum_{k=1}^{n} \Phi(x^{k}) + \sum_{k=1}^{n} k \Phi(x^{k}) (k-1)\Phi(x^{k-1}) \le 0$
- ▶ and hence, $-\sum_{k=1}^n \Phi(x^k) + n\Phi(x^n) \leq 0$.
- ► Sum (1) $\sum_{k=1}^{n} \Phi(x^k) n\Phi(u) \le LD_h(u, x^0) LD_h(u, x^n) \le LD(u, x^0)$.
- Add the above, proves (a), and when dom $h = \overline{\text{dom }} h$, plug $u = x^*$ yields (b).

Note: One can also deduce *pointwise convergence* for NoLips:

$$\{x^k\}_{k\in\mathbb{N}}$$
 converges to some solution x^* of (\mathcal{P})

via a more precise analysis, and with dynamic step-size λ_k expressed in terms of a symmetry measure for D_h , see the paper for details.

Applications: A Protototype Broad Class of Problems with Poisson Noise

A very large class of problems arising in Statistical and Image Sciences areas: inverse problems where data measurements are collected by counting discrete events (e.g., photons, electrons) contaminated by noise described by a Poisson process.

One then needs to recover a nonnegative signal/image for the given problem.

Huge amount of literature in many contexts:

- Astronomy,
- Nuclear medicine (PET)-Positron Emission Tomography; electronic microscropy,
- Statistical estimation (EM)-Expectation Maximization,
- ▶ Image deconvolution, denoising speckle (multiplicative) noise, etc...

Linear Inverse Problems - The Optimization Model

Problem:

- ▶ Given a matrix $A \in \mathbb{R}_+^{m \times n}$ describing the experimental protocol.
- ▶ $b \in \mathbb{R}_{++}^m$ is given vector of measurements.
- ▶ The goal is to reconstruct the signal $x \in \mathbb{R}^n_+$ from the noisy measurements b such that

$$Ax \simeq b$$
.

Moreover, there is often a need to regularize the problem through an appropriate choice of a regularizer f reflecting desired features of the solution.

Optimization Model to Recover x

(
$$\mathbb{E}$$
) minimize $\{\mathcal{D}(b, Ax) + \mu f(x) : x \in \mathbb{R}_+^n\}$

- $\oplus \mathcal{D}(\cdot,\cdot)$ a convex proximity measure that quantifies the "error" between b and Ax
- \oplus $\mu>0$ controls the tradeoff between matching the data fidelity criteria and the weight given to its regularizer. ($\mu=0$ when no regularizer needed.)

NoLips in Action : New Simple Schemes for Many Problems

The optimization problem will be of the form:

(E)
$$\min_{\mathbf{x}} \{ f(\mathbf{x}) + \mathcal{D}_{\phi}(\mathbf{b}, \mathbf{A}\mathbf{x}) \}$$
 or $\min_{\mathbf{x}} \{ f(\mathbf{x}) + \mathcal{D}_{\phi}(\mathbf{A}\mathbf{x}, \mathbf{b}) \}$

for some convex ϕ , and f(x) some nonsmooth convex regularizer.

NoLips in Action : New Simple Schemes for Many Problems

The optimization problem will be of the form:

(E)
$$\min_{x} \{f(x) + \mathcal{D}_{\phi}(b, Ax)\}\$$
 or $\min_{x} \{f(x) + \mathcal{D}_{\phi}(Ax, b)\}\$

for some convex ϕ , and f(x) some nonsmooth convex regularizer.

To apply NoLips:

- 1. Pick an h, to warrant an L in terms of problem's data, s.t. Lh g convex.
- 2. In turns, this determines the step-size λ defined through $\lambda \in (0, L^{-1}]$.
- 3. Compute $p_{\lambda}(\cdot)$ and $\operatorname{prox}_{\lambda f}^{h}(\cdot)$) Bregman-like [gradient and proximal] steps. Resulting algorithms for which our results can be applied lead to

Simple schemes via explicit map $M_i(\cdot)$:

$$x > 0,$$
 $x_i^+ = M_j(b, A, x) \cdot x_j,$ $j = 1, ..., n,$

with (λ, L) determined in terms of the problem data (A, b).

A Typical Linear Inverse Problem with Poisson Noise

A natural proximity measure in \mathbb{R}^n_+ - Kullback-Liebler Relative Entropy:

$$D_{\phi}(b, Ax) \equiv \mathcal{D}(b, Ax) := \sum_{i=1}^{m} \{b_{i} \log \frac{b_{i}}{(Ax)_{i}} + (Ax)_{i} - b_{i}\}, \ (\phi(u) = \sum_{i=1}^{m} u_{i} \log u_{i})$$

which (up to some constants) corresponds to the negative Poisson log-likelihood function.

A Typical Linear Inverse Problem with Poisson Noise

A natural proximity measure in \mathbb{R}^n_+ - Kullback-Liebler Relative Entropy:

$$D_{\phi}(b, Ax) \equiv \mathcal{D}(b, Ax) := \sum_{i=1}^{m} \{b_{i} \log \frac{b_{i}}{(Ax)_{i}} + (Ax)_{i} - b_{i}\}, \ (\phi(u) = \sum_{i=1}^{m} u_{i} \log u_{i})$$

which (up to some constants) corresponds to the negative Poisson log-likelihood function.

► The optimization problem:

(
$$\mathbb{E}$$
) minimize $\{g(x) + \mu f(x) : x \in \mathbb{R}_+^n\}$

- $g(x) \equiv \mathcal{D}(d, Ax)$, and f a regularizer, possibly nonsmooth
- ▶ $x \to \mathcal{D}(b, Ax)$ convex, but does not admit a globally Lipschitz continuous gradient.

Two Simple Algorithms for Poisson Linear Inverse Problems

Given $g(x) := D_{\phi}(b, Ax)$ ($\phi(u) = u \log u$), **to apply NoLips**, we need to identify an adequate h.

- ▶ We take the Burg's entropy $h(x) = -\sum_{j=1}^{n} \log x_j$, dom $h = \mathbb{R}_{++}^n$.
- ▶ We need to find L > 0 such that Lh g is convex in \mathbb{R}_{++}^n .

Two Simple Algorithms for Poisson Linear Inverse Problems

Given $g(x) := D_{\phi}(b, Ax)$ ($\phi(u) = u \log u$), **to apply NoLips**, we need to identify an adequate h.

- ▶ We take the Burg's entropy $h(x) = -\sum_{i=1}^{n} \log x_i$, dom $h = \mathbb{R}_{++}^{n}$.
- ▶ We need to find L > 0 such that Lh g is convex in \mathbb{R}_{++}^n .

Lemma. Let $g(x) = D_{\phi}(b, Ax)$ and h(x) as defined above. Then,

for any
$$L \ge \|b\|_1 = \sum_{i=1}^m b_i$$
, the function $Lh - g$ is convex on \mathbb{R}^n_{++} .

Two Simple Algorithms for Poisson Linear Inverse Problems

Given $g(x) := D_{\phi}(b, Ax)$ ($\phi(u) = u \log u$), **to apply NoLips**, we need to identify an adequate h.

- ▶ We take the Burg's entropy $h(x) = -\sum_{j=1}^{n} \log x_j$, dom $h = \mathbb{R}_{++}^n$.
- We need to find L > 0 such that Lh g is convex in \mathbb{R}^n_{++} .

Lemma. Let $g(x) = D_{\phi}(b, Ax)$ and h(x) as defined above. Then,

for any
$$L \ge \|b\|_1 = \sum_{i=1}^m b_i$$
, the function $Lh - g$ is convex on \mathbb{R}^n_{++} .

Thus, we can take $\lambda = L^{-1} = ||b||_1^{-1}$.

Applying NoLips, given $x \in \mathbb{R}^n_{++}$, the main algorithmic step $x^+ = T_{\lambda}(x)$ is then:

$$x^+ = \operatorname{argmin} \left\{ \mu f(u) + \langle \nabla g(x), u \rangle + \frac{1}{\lambda} \sum_{j=1}^n \left(\frac{u_j}{x_j} - \log \frac{u_j}{x_j} - 1 \right) : u > 0 \right\}.$$

We now show that the above abstract iterative process yields closed form algorithms for Poisson reconstruction problems with two typical regularizers used in applications.

Example 1 – Sparse Poisson Linear Inverse Problem

Sparse regularization. Let $f(x) := ||x||_1$, which is known to promote sparsity. Define,

$$c_j(x) := \sum_{i=1}^m b_i \frac{a_{ij}}{\langle a_i, x \rangle}, \ r_j := \sum_i a_{ij} > 0.$$

Then, NoLips yields the following explicit iteration to solve (\mathbb{E}) with $\lambda = \|b\|_1^{-1}$:

$$x_j^+ = \frac{x_j}{1 + \lambda (\mu x_j + x_j(r_j - c_j(x)))}, \ j = 1, \dots n$$

Example 1 – Sparse Poisson Linear Inverse Problem

Sparse regularization. Let $f(x) := ||x||_1$, which is known to promote sparsity. Define,

$$c_j(x) := \sum_{i=1}^m b_i \frac{a_{ij}}{\langle a_i, x \rangle}, \ r_j := \sum_i a_{ij} > 0.$$

Then, NoLips yields the following explicit iteration to solve ($\mathbb E$) with $\lambda=\|b\|_1^{-1}$:

$$x_j^+ = \frac{x_j}{1 + \lambda (\mu x_j + x_j(r_j - c_j(x)))}, \ j = 1, \dots n$$

Special Case: A New Scheme for the Poisson MLE problem

For $\mu=0$ problem ($\mathbb E$) is the <u>Poisson Maximum Likelihood Estimation Problem</u>. In that particular case the iterates of NoLips simply become

$$x_j^+ = \frac{x_j}{1 + \lambda x_i (r_i - c_i(x))}, j = 1, \dots n.$$

In contrast to the standard EM algorithm given by the iteration:

$$x_j^+ = \frac{x_j}{r_i} c_j(x), \ j = 1, \dots, n.$$

Example 2 - Thikhonov - Poisson Linear Inverse Problems

Tikhonov regularization. Let $f(x) := \frac{1}{2} ||x||^2$. We recall that this term is used as a penalty in order to promote solutions of Ax = b with *small Euclidean norms*.

Example 2 - Thikhonov - Poisson Linear Inverse Problems

Tikhonov regularization. Let $f(x) := \frac{1}{2} ||x||^2$. We recall that this term is used as a penalty in order to promote solutions of Ax = b with *small Euclidean norms*.

Using previous notation, NoLips yields a

" A log-Thikonov method" : Set $\lambda = \|b\|_1^{-1}$ and start with $x \in {\rm I\!R}_{++}^n$

$$x_{j}^{+} = \frac{\sqrt{\rho_{j}^{2}(x) + 4\mu\lambda x_{j}^{2}} - \rho_{j}(x)}{2\mu\lambda x_{j}}, \ j = 1, \dots, n.$$

where

$$\rho_j(x) := 1 + \lambda x_j (r_j - c_j(x)), j = 1, \ldots, n.$$

As just mentioned, many other interesting methods can be considered

- **b** By choosing different kernels for ϕ , or
- ▶ By reversing the order of the arguments in the proximity measure (which is not symmetric!..hence defining different problems.)

References

- ▶ Lecture is based on [1].
- ► Results on Bregman-prox [5].
- On the Subgradient/Mirror Descent [4]
- ▶ Much more.. on NonEuclidean prox in [2,3].
- 1. Bauschke H., Bolte J., and Teboulle, M. A Descent Lemma beyond Lipshitz Gradient Continuity: First Order Methods Revisited and Applications. *Mathematics of Operations Research*, (2016), 1–19. Available Online.
- 2. A. Auslender and M. Teboulle. Interior gradient and proximal methods in convex and conic optimization. *SIAM J. Optimization*, **16**, (2006), 697–725.
- 3. A. Auslender, M. Teboulle Interior projection-like methods for monotone variational inequalities. *Mathematical Programming*, **104**, (2005), 39–68.
- 4. A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. *Operations Research Letters*, 31 (2003), 167–175.
- 5. G. Chen and M. Teboulle. Convergence analysis of a proximal-like minimization algorithm using Bregman functions. *SIAM Journal on Optimization* 3 (1993), 538–543.

First Order Optimization Methods Lecture 8 - FOM beyond Convexity

Marc Teboulle

School of Mathematical Sciences
Tel Aviv University

PGMO Lecture Series

January 25-26, 2017 Ecole Polytechnique, Paris

Lecture 8 - FOM Beyond Convexity

Goal: Derive a simple self-contained convergence analysis framework for a broad class of nonconvex and nonsmooth minimization problems.

- ▶ A "Recipe" for proving global convergence to a critical point.
- ▶ A prototype of a simple/useful Algorithm: PALM.
- Many Applications: phase retrieval for diffractive imaging, dictionary learning,... Sparse nonnegative matrix factorization ... Regularized Structured Total Least Squares....

The Problem: An Abstract Formulation

Let $F: \mathbb{R}^d \to (-\infty, +\infty]$ be a proper, lsc and bounded from below function.

(P) inf
$$\{F(z): z \in \mathbb{R}^d\}$$
.

Suppose $\mathcal A$ is a generic algorithm which generates a sequence $\left\{\mathbf z^k\right\}_{k\in\mathbb N}$ via:

$$z^{0} \in \mathbb{R}^{d}, z^{k+1} \in \mathcal{A}(z^{k}), k = 0, 1, \dots$$

Goal: Prove that the whole sequence $\{z^k\}_{k\in\mathbb{N}}$ converges to a critical point of F.

Quick Recall

• (Limiting) Subdifferential $\partial \Psi(x)$:

$$x^* \in \partial F(x)$$
 iff $(x_k, x^*) \to (x, x^*)$ s.t. $F(x_k) \to F(x)$ and $F(u) > F(x_k) + \langle x_k^*, u - x_k \rangle + o(\|u - x_k\|)$

• $x \in \mathbb{R}^d$ is a critical point of F if $\partial F(x) \ni 0$.

A General Recipe in 3 Main Steps for Descent Methods

A sequence z^k is called a descent sequence for $F: \mathbb{R}^n \to (-\infty, +\infty]$ if

C1. Sufficient decrease property

$$\exists \rho_1 > 0 \quad \text{with} \quad \rho_1 \|z^{k+1} - z^k\|^2 \le F(z^k) - F(z^{k+1}), \quad \forall k \ge 0$$

C2. Iterates gap For each k there exists $w^k \in \partial F(z^k)$ such that:

$$\exists \rho_2 > 0 \quad \text{with} \quad ||w^{k+1}|| \le \rho_2 ||z^{k+1} - z^k||, \forall k \ge 0.$$

A General Recipe in 3 Main Steps for Descent Methods

A sequence z^k is called a descent sequence for $F: \mathbb{R}^n \to (-\infty, +\infty]$ if

C1. Sufficient decrease property

$$\exists \rho_1 > 0 \quad \text{with} \quad \rho_1 \|z^{k+1} - z^k\|^2 \le F(z^k) - F(z^{k+1}), \quad \forall k \ge 0$$

C2. Iterates gap For each k there exists $w^k \in \partial F(z^k)$ such that:

$$\exists \rho_2 > 0 \quad \text{with} \quad \|w^{k+1}\| \le \rho_2 \|z^{k+1} - z^k\|, \forall k \ge 0.$$

These two steps are typical for any descent type algorithms but lead only to subsequential convergence.

A General Recipe in 3 Main Steps for Descent Methods

A sequence z^k is called a descent sequence for $F: \mathbb{R}^n \to (-\infty, +\infty]$ if

C1. Sufficient decrease property

$$\exists \rho_1 > 0 \quad \text{with} \quad \rho_1 \|z^{k+1} - z^k\|^2 \le F(z^k) - F(z^{k+1}), \quad \forall k \ge 0$$

C2. Iterates gap For each k there exists $w^k \in \partial F(z^k)$ such that:

$$\exists \rho_2 > 0 \quad \text{with} \quad ||w^{k+1}|| \le \rho_2 ||z^{k+1} - z^k||, \forall k \ge 0.$$

- ► These two steps are typical for **any descent** type algorithms but lead **only to subsequential convergence**.
- ► To get **global convergence** to a critical point, we need a deep mathematical tool. [Łojasiewicz (68), Kurdyka (98)]

The Third Main Step of our Recipe

C3. The Kurdyka-Łojasiewicz property: Assume that F is a KL function. Use this property to prove that the generated sequence $\{z^k\}_{k\in\mathbb{N}}$ is a *Cauchy sequence*, and thus converges!

The Third Main Step of our Recipe

C3. The Kurdyka-Łojasiewicz property: Assume that F is a KL function. Use this property to prove that the generated sequence $\{z^k\}_{k\in\mathbb{N}}$ is a *Cauchy sequence*, and thus converges!

This general recipe

- ▶ Singles out the 3 main ingredients at play to derive global convergence in the nonconvex and nonsmooth setting.
- ► Applicable to any descent algorithm.

Main Convergence Result

Theorem - Abstract Global Convergence

- ▶ Let F be a KL function namely condition C3 holds.
- \triangleright z^k is a descent sequence for F namely conditions C1 and C2 hold.

If z^k is bounded, it converges to a critical point of F.

What is a KL function?

The KL Property – Informal

Let \bar{z} be critical, with $F(\bar{z}) = 0$ (true up to translation); $\mathcal{L} := \{z \in \mathbb{R}^d : 0 < F(z) < \eta\}$

Definition [Sharpness] A function $F : \mathbb{R}^d \to (-\infty, +\infty]$ is called sharp on \mathcal{L} if there exists c > 0 such that

$$\operatorname{dist}(0,\partial F(z)) := \min \{ \|\xi\| : \xi \in \partial F(z) \} \ge c > 0 \quad \forall z \in \mathcal{L}.$$

KL expresses the fact that a function can be made "sharp" by re-parametrization of its values.

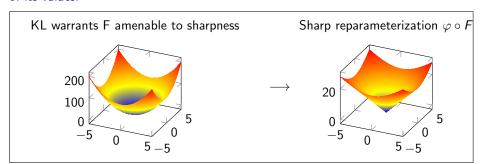
The KL Property – Informal

Let \bar{z} be critical, with $F(\bar{z}) = 0$ (true up to translation); $\mathcal{L} := \{z \in \mathbb{R}^d : 0 < F(z) < \eta\}$

Definition [Sharpness] A function $F : \mathbb{R}^d \to (-\infty, +\infty]$ is called sharp on \mathcal{L} if there exists c > 0 such that

$$\operatorname{dist}(0,\partial F(z)) := \min \{ \|\xi\| : \xi \in \partial F(z) \} \ge c > 0 \quad \forall z \in \mathcal{L}.$$

KL expresses the fact that a function can be made "sharp" by re-parametrization of its values.



The KL Property: (Łojasiewicz (68), Kurdyka (98))

Desingularizing functions on $(0, \eta)$. Let $\eta > 0$.

$$\Phi_{\eta} := \{ \varphi \in C[0,\eta) \cap C^1(0,\eta) : , \text{ concave with } \varphi' > 0, \varphi(0) = 0. \}$$

For $\bar{x} \in \operatorname{dom} \partial F$, $\mathcal{L} := \{ x \in \mathbb{R}^d : F(\bar{x}) < F(x) < F(\bar{x}) + \eta \}$

The KL Property F has the KL property on $\mathcal L$ if there exists a desingularizing function φ such that

$$\varphi'(F(x) - F(\bar{x})) \operatorname{dist}(0, \partial F(x)) \ge 1, \quad \forall x \in \mathcal{L}$$

Local version: KL at $\bar{x} \in \text{dom } F$, replace \mathcal{L} with: its intersection with a closed ball $B(\bar{x}, \varepsilon)$ for some $\varepsilon > 0$.

Meaning: Subgradients of $x \to \varphi \circ (F(x) - F(\bar{x}))$ have a norm greater than 1, no matter how close is x to the critical point \bar{x} (provided $F(x) > F(\bar{x})$) – This is sharpness.

Are there many functions satisfying KL? How we verify KL?

Are there Many Functions Satisfying KL?

Are there Many Functions Satisfying KL?

YES! Semi Algebraic Functions

Theorem

Let $\sigma: \mathbb{R}^d \to (-\infty, +\infty]$ be a proper and lsc function. If σ is semi-algebraic then it satisfies the KL property at any point of dom σ .

Recall: Semi-algebraic sets and functions

(i) A semialgebraic subset of \mathbb{R}^d is a finite union of sets

$$\{x \in \mathbb{R}^d : p_i(x) = 0, q_j(x) < 0, i \in I, j \in J\}$$

where $p_i, q_j : \mathbb{R}^d \to \mathbb{R}$ are real polynomial (analytic) functions and I, J are finite.

(ii) A function σ is semi-algebraic if its graph

$$\left\{ \left(u,t\right)\in\mathbb{R}^{n+1}:\ \sigma\left(u\right)=t\right\}$$

is a semi-algebraic subset of \mathbb{R}^{n+1} .

Operations on Semi-Algebraic Objects

Semi-Algebraic Property is Preserved under Many Operations

- ▶ If S is semi-algebraic, so is the closure \overline{S} .
- Unions/intersections of semi-algebraic sets are semi-algebraic.
- Indicator of a semi-algebraic set is semi-algebraic.
- ► Finite sums and product of semi-algebraic functions
- Composition of semi-algebraic functions;
- ▶ Sup/Inf type function, e.g., sup $\{g(u, v) : v \in C\}$ is semi-algebraic when g is a semi-algebraic function and C a semi-algebraic set.

There is a Wealth of Semi-Algebraic Functions!

Semi-Algebraic Sets/Functions "Starring" in Optimization/Applications

- ▶ Real polynomial functions: $||Ax b||^2$, $(A, B) \rightarrow ||AB M||_F^2$
- Any Polyhedral set is semi-algebraic
- In matrix theory: cone of PSD matrices, constant rank matrices, Stiefel manifolds...
- ▶ The function $x \to \operatorname{dist}(x, S)^2$ is semi-algebraic whenever S is a nonempty semi-algebraic subset of \mathbb{R}^n .
- ▶ The l_1 -norm $||x||_1$ is semi-algebraic, as sum of absolute values function. For example, to show that $\sigma(u) := |u|$ is semi-algebraic note that $\operatorname{Graph}(\sigma) = \overline{S}$, where

$$S = \{(u, s): u + s = 0, -u > 0\} \cup \{(u, s): u - s = 0, u > 0\}.$$

 $\|\cdot\|_0$ is semi-algebraic. Its graph can be shown to be a finite union of product sets.

A Broad Class of Nonsmooth Nonconvex Problems

A Useful Block Optimization Model

(B) minimize_{x,y}
$$\Psi(x,y) := f(x) + g(y) + H(x,y)$$

- ▶ $f: \mathbb{R}^n \to (-\infty, +\infty]$ and $g: \mathbb{R}^m \to (-\infty, +\infty]$ proper and lsc.
- ▶ $H: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is a C^1 function with gradient Lipschitz continuous on bounded subsets of $\mathbb{R}^n \times \mathbb{R}^m$ (e.g., true when $H \in C^2$).
- Partial gradients of H are $C^{1,1}$: $H(\cdot,y) \in C^{1,1}_{L(y)}$ and $H(x,\cdot) \in C^{1,1}_{L(x)}$.
- \spadesuit **NO convexity** assumed in the objective and the constraints (built-in through f and g extended valued).

Two blocks is only for the sake of simplicity. Same for the p-blocks case:

$$\mathsf{minimize}_{\mathsf{x}_1,\ldots,\mathsf{x}_p} H\left(\mathsf{x}_1,\mathsf{x}_2,\ldots,\mathsf{x}_p\right) + \sum_{i=1}^p f_i\left(\mathsf{x}_i\right),\; \mathsf{x}_i \in \mathbb{R}^{n_i}, n = \sum_{i=1}^p n_i$$

This optimization model covers many applications: signal/image processing, blind deconvolution, dictionary learning, matrix factorization, etc....Vast Literature...

PALM: Proximal Alternating Linearized Minimization

Cocktail Time! PALM "blends" old spices:

- ⊕ Space decomposition [á la Gauss-Seidel]
- \oplus Composite decomposition [á la Prox-Gradient].

PALM: Proximal Alternating Linearized Minimization

Cocktail Time! PALM "blends" old spices:

- ⊕ Space decomposition [á la Gauss-Seidel]
- ⊕ Composite decomposition [á la Prox-Gradient].

PALM Algorithm

1. Take $\gamma_1 > 1$, set $c_k = \gamma_1 L_1(y^k)$ and compute

$$x^{k+1} \in \operatorname{prox}_{c_k}^f \left(x^k - \frac{1}{c_k} \nabla_x H\left(x^k, y^k\right) \right).$$

2. Take $\gamma_2 > 1$, set $d_k = \gamma_2 L_2(x^{k+1})$ and compute

$$y^{k+1} \in \operatorname{prox}_{d_k}^{g} \left(y^k - \frac{1}{d_k} \nabla_y H\left(x^{k+1}, y^k\right) \right).$$

Stepsizes c_k^{-1} , d_k^{-1} are in $\left[0, 1/L_2(y^k)\right]$ & $\left[0, 1/L_1(x^{k+1})\right]$.

Main computational step: Computing the prox of a nonconvex function.

Convergence of PALM

Theorem [Global convergence to critical point]. Assume f, g, H semi-algebraic. Any bounded PALM sequence $\left\{z^k\right\}_{k\in\mathbb{N}}$ converges to a critical point $z^*=\left(x^*,y^*\right)$ of Ψ .

Note: The boundedness assumption on the generated sequence $\{z^k\}_{k\in\mathbb{N}}$ holds in several scenarios, e.g., when f,g have bounded level sets, or follows from the structure of the problem at hand.

- I will outline the 3 key building blocks for the analysis and proof of Theorem.
- But, first it is instructive to see how KL works for simple smooth descent methods.

Smooth case $f \in C_L^{1,1}$ - KL and Descent Methods.

Illustrating the Recipe for Sequences with Smooth Gradient.

- ▶ C1. Sufficient desc.: $\exists a > 0, f(x^{k+1}) \le f(x^k) a ||x^{k+1} x^k||^2$ (proved)
- ▶ Assume Iterates: $\exists b > 0 : b \|\nabla f(x^k)\| \le \|x^{k+1} x^k\|$. (f L-smooth, \Rightarrow C2 holds: $\exists \rho > 0 : \|\nabla f(x^{k+1})\| \le \rho \|x^{k+1} x^k\|$, $(\rho = b^{-1} + L)$.)
- ▶ C3. Assume KL: $\varphi'(f(x) f_*) \|\nabla f(x)\| \ge 1$, φ concave, $\varphi' > 0$

For convenience let $v^k := f(x^k) - f_*$. Using the above we then get:

$$\varphi(v^{k+1}) - \varphi(v^k) \le \varphi'(v^k)(v^{k+1} - v^k), \ (\varphi \text{ concave})$$

Smooth case $f \in C_L^{1,1}$ - KL and Descent Methods.

Illustrating the Recipe for Sequences with Smooth Gradient.

- ▶ C1. Sufficient desc.: $\exists a > 0, f(x^{k+1}) \le f(x^k) a ||x^{k+1} x^k||^2$ (proved)
- ▶ Assume Iterates: $\exists b > 0 : b \|\nabla f(x^k)\| \le \|x^{k+1} x^k\|$. (f L-smooth, \Rightarrow C2 holds: $\exists \rho > 0 : \|\nabla f(x^{k+1})\| \le \rho \|x^{k+1} x^k\|$, $(\rho = b^{-1} + L)$.)
- ▶ C3. Assume KL: $\varphi'(f(x) f_*) \|\nabla f(x)\| \ge 1$, φ concave, $\varphi' > 0$

For convenience let $v^k := f(x^k) - f_*$. Using the above we then get:

$$\begin{array}{rcl} \varphi(v^{k+1}) - \varphi(v^k) & \leq & \varphi'(v^k)(v^{k+1} - v^k), \;\; (\varphi \; \text{concave}) \\ v^{k+1} - v^k & \leq & -a\|x^{k+1} - x^k\|^2 \leq -ab\|x^{k+1} - x^k\| \cdot \|\nabla f(x^k)\| \\ \varphi'(v^k)(v^{k+1} - v^k) & \leq & -ab\|x^{k+1} - x^k\|\varphi'(v^k)\|\nabla f(x^k)\| \;\; (\varphi' > 0) \\ & \leq & -ab\|x^{k+1} - x^k\|, \;\; (\text{by KL}), \;\; \text{and hence} \\ \varphi(v^{k+1}) - \varphi(v^k) & \leq & -ab\|x^{k+1} - x^k\|. \end{array}$$

Smooth case $f \in C_L^{1,1}$ - KL and Descent Methods.

Illustrating the Recipe for Sequences with Smooth Gradient.

- ▶ C1. Sufficient desc.: $\exists a > 0, f(x^{k+1}) \le f(x^k) a ||x^{k+1} x^k||^2$ (proved)
- ▶ Assume Iterates: $\exists b > 0 : b \|\nabla f(x^k)\| \le \|x^{k+1} x^k\|$. (f L-smooth, \Rightarrow C2 holds: $\exists \rho > 0 : \|\nabla f(x^{k+1})\| \le \rho \|x^{k+1} x^k\|$, $(\rho = b^{-1} + L)$.)
- ▶ C3. Assume KL: $\varphi'(f(x) f_*) \|\nabla f(x)\| \ge 1$, φ concave, $\varphi' > 0$

For convenience let $v^k := f(x^k) - f_*$. Using the above we then get:

$$\begin{array}{rcl} \varphi(v^{k+1}) - \varphi(v^k) & \leq & \varphi'(v^k)(v^{k+1} - v^k), \;\; (\varphi \; \text{concave}) \\ v^{k+1} - v^k & \leq & -a\|x^{k+1} - x^k\|^2 \leq -ab\|x^{k+1} - x^k\| \cdot \|\nabla f(x^k)\| \\ \varphi'(v^k)(v^{k+1} - v^k) & \leq & -ab\|x^{k+1} - x^k\|\varphi'(v^k)\|\nabla f(x^k)\| \;\; (\varphi' > 0) \\ & \leq & -ab\|x^{k+1} - x^k\|, \;\; (\text{by KL}), \;\; \text{and hence} \\ \varphi(v^{k+1}) - \varphi(v^k) & \leq & -ab\|x^{k+1} - x^k\|. \end{array}$$

- ▶ Therefore, $||x^{k+1} x^k|| \le (ab)^{-1} (\varphi(v^k) \varphi(v^{k+1}))$, and by telescoping
- we get finite length $\sum_{k} ||x^{k+1} x^{k}||$, and x^{k} Cauchy and converges.

Proximal Map for Nonconvex Functions

Let $\sigma: \mathbb{R}^n \to (-\infty, +\infty]$ be a proper and lsc function. Given $x \in \mathbb{R}^n$ and t > 0, the proximal map defined by:

$$\operatorname{prox}_{t}^{\sigma}\left(x\right):=\operatorname{argmin}\left\{ \sigma\left(u\right)+\frac{t}{2}\left\Vert u-x\right\Vert ^{2}:\ u\in\mathbb{R}^{n}\right\} .$$

Proposition [Well-definedness of proximal maps] If $\inf_{\mathbb{R}^n} \sigma > -\infty$, then, for every $t \in (0,\infty)$, the set $\operatorname{prox}_{1/t}^{\sigma}(x)$ is nonempty and compact.

Here $\operatorname{prox}_t^{\sigma}$ is a set-valued map. When $\sigma := \delta_X$, for a nonempty and closed set X, the proximal map reduces to the set-valued projection operator onto X.

Thanks to the prox properties, since PALM is defined by two proximal computations, all we need to assume is:

$$\inf_{\mathbb{P}^n \vee \mathbb{P}^m} \Psi > -\infty, \quad \inf_{\mathbb{P}^n} f > -\infty \quad \text{and} \quad \inf_{\mathbb{P}^m} g > -\infty.$$

Thus, Problem (M) is inf-bounded and **PALM** is well defined.

1. A Key Nonconvex Proximal-Gradient Inequality

It extends to the nonconvex case the convex prox-gradient inequality.

Lemma [Sufficient decrease property]

- (i) $h: \mathbb{R}^n \to \mathbb{R}$ is $C^{1,1}$ with L_h -Lipschitz gradient.
- (ii) $\sigma: \mathbb{R}^n \to \overline{\mathbb{R}}$ is a proper and lsc function with $\inf_{\mathbb{R}^d} \sigma > -\infty$.

Then, for any $u \in \operatorname{dom} \sigma$ and any $u^+ \in \mathbb{R}^d$ defined by

$$u^{+} \in \operatorname{prox}_{t}^{\sigma}\left(u - \frac{1}{t}\nabla h\left(u\right)\right), \quad t > L_{h},$$

we have

$$h(u^+) + \sigma(u^+) \le h(u) + \sigma(u) - \frac{1}{2}(t - L_h) ||u^+ - u||^2$$
.

Proof. Follows along the same line of analysis as in the convex case.

2. PALM Properties: Standard Subsequences Convergence

From now on we assume that the sequence $\left\{z^k\right\}_{k\in\mathbb{N}}:=\{(x^k,y^k)\}$ generated by PALM is bounded.

 $\omega\left(z^{0}\right)$ denotes the set of all limit points.

Lemma. [Properties of the limit point set $\omega\left(z^{0}\right)$] Let $\left\{z^{k}\right\}_{k\in\mathbb{N}}$ be a sequence generated by PALM. Then

- (i) $\emptyset \neq \omega(z^0) \subset \operatorname{crit} \Psi$.
- (ii) $\lim_{k\to\infty} \operatorname{dist}\left(z^k,\omega\left(z^0\right)\right) = 0.$
- (iii) $\omega(z^0)$ is a nonempty, compact and connected set.
- (iv) The objective function Ψ is finite and constant on $\omega(z^0)$.

Proof. Deduced by showing that **C1**, **C2** hold for the sequence $\{z^k\}_{k\in\mathbb{N}}$ + standard analysis arguments, see paper [4].

3. A Uniformization of KL

Lemma [Uniformized KL property]

- ▶ Let $\sigma: \mathbb{R}^d \to (-\infty, \infty]$ be a proper and lower semicontinuous function.
- \blacktriangleright Let Ω be a compact set.
- Assume σ is constant on Ω and satisfies the KL property at each point of Ω .

Then, there exist $\varepsilon>0,\ \eta>0$ and $\varphi\in\Phi_\eta$ such that for all \overline{u} in Ω and all u in the following intersection

$$\mathbb{W} := \left\{ u \in \mathbb{R}^d : \operatorname{dist}(u, \Omega) < \varepsilon \right\} \cap \left[\sigma\left(\overline{u}\right) < \sigma\left(u\right) < \sigma\left(\overline{u}\right) + \eta \right] \tag{1}$$

one has,

$$\varphi'(\sigma(u) - \sigma(\overline{u})) \operatorname{dist}(0, \partial \sigma(u)) \ge 1.$$
 (2)

Proof. See reference [4].

Recall: Let $\eta \in (0, +\infty]$. Φ_{η} is the class of all concave C^1 functions s.t.: $\varphi(0) = 0$ and

Sketch of Proof for Global Convergence of PALM

Using the three described results, on can proceed as follows.

- ▶ Use sufficient decrease property and $\lim_{k\to\infty} \operatorname{dist}\left(z^k,\omega\left(z^0\right)\right) = 0$ to verify that there exists I such that $z^k \in \mathbb{W}$ for all k > I.
- ▶ Use the established facts: $\emptyset \neq \omega \left(z^0\right)$ and compact $+ \Psi$ finite and constant on $\omega \left(z^0\right)$, so that UKL Lemma can be applied with $\Omega \equiv \omega \left(z^0\right)$.

Sketch of Proof for Global Convergence of PALM

Using the three described results, on can proceed as follows.

- ▶ Use sufficient decrease property and $\lim_{k\to\infty} \operatorname{dist}\left(z^k,\omega\left(z^0\right)\right) = 0$ to verify that there exists I such that $z^k \in \mathbb{W}$ for all k > I.
- ▶ Use the established facts: $\emptyset \neq \omega\left(z^{0}\right)$ and compact $+\Psi$ finite and constant on $\omega\left(z^{0}\right)$, so that UKL Lemma can be applied with $\Omega \equiv \omega\left(z^{0}\right)$.
- ▶ Use property of φ (concave inequality) and KL inequality 2 of the Lemma to show that $\{z^k\}_{k\in\mathbb{N}}$ has finite length, that is

$$\sum_{k=1}^{\infty} \left\| z^{k+1} - z^k \right\| < \infty.$$

Sketch of Proof for Global Convergence of PALM

Using the three described results, on can proceed as follows.

- ▶ Use sufficient decrease property and $\lim_{k\to\infty} \operatorname{dist}\left(z^k,\omega\left(z^0\right)\right) = 0$ to verify that there exists I such that $z^k \in \mathbb{W}$ for all k > I.
- ▶ Use the established facts: $\emptyset \neq \omega\left(z^{0}\right)$ and compact $+\Psi$ finite and constant on $\omega\left(z^{0}\right)$, so that UKL Lemma can be applied with $\Omega \equiv \omega\left(z^{0}\right)$.
- ▶ Use property of φ (concave inequality) and KL inequality 2 of the Lemma to show that $\{z^k\}_{k\in\mathbb{N}}$ has finite length, that is

$$\sum_{k=1}^{\infty} \left\| z^{k+1} - z^k \right\| < \infty.$$

- ▶ Then, it follows that $\left\{z^k\right\}_{k\in\mathbb{N}}$ is a Cauchy sequence and hence is a convergent sequence.
- ► The result follows immediately from the previous fact $\emptyset \neq \omega \left(z^{0}\right) \subset \operatorname{crit} \Psi.$

Rate of Convergence Results

Theorem - Rate of Convergence for the sequence $\{z^k\}$ - Generic Let F be a function which satisfies the KL property with

$$\varphi(s) = cs^{1-\theta}, \quad , c > 0, \theta \in [0, 1),$$

and z^k a descent sequence for F. Then,

- (i) If $\theta = 0$ then the sequence z^k converges in a finite number of steps.
- (ii) If $\theta \in (0, 1/2] \exists b > 0$ and $\tau \in [0, 1)$ such that $||z^k \overline{z}|| \le b \tau^k$.
- (iii) If $\theta \in (1/2,1) \exists b > 0$ such that

$$||z^k - \overline{z}|| \le b k^{-\frac{1-\theta}{2\theta-1}}.$$

Finding θ can be difficult....

Applications: Nonnegative Matrix Factorization Problems

The NMF Problem: Given $A \in \mathbb{R}^{m \times n}$ and $r \ll \min\{m, n\}$. Find $X \in \mathbb{R}^{m \times r}$ and $Y \in \mathbb{R}^{r \times n}$ such that $A \approx XY, \ \ X \in \mathcal{K}_{m,r} \cap \mathcal{F}, \ \ Y \in \mathcal{K}_{r,n} \cap \mathcal{G},$

$$\mathcal{K}_{p,q} = \left\{ M \in \mathbb{R}^{p \times q} : M \ge 0 \right\}$$

$$\mathcal{F} = \left\{ X \in \mathbb{R}^{m \times r} : R_1(X) \le \alpha \right\}$$

$$\mathcal{G} = \left\{ Y \in \mathbb{R}^{r \times n} : R_2(Y) \le \beta \right\}.$$

 $R_1(\cdot)$ and $R_2(\cdot)$ are functions used to describe some additional/required features of X, Y.

(NMF) covers a very large number of problems in applications: Text Mining (data clusters in documents); Audio-Denoising (speech dictionnary); Bio-informatics (clustering gene expression); Medical Imaging,...Vast Literature.

The Optimization Approach

We adopt the Constrained Nonconvex Nonsmooth Formulation

(MF)
$$\min \left\{ \frac{1}{2} \|A - XY\|_F^2 : X \in \mathcal{K}_{m,r} \cap \mathcal{F}, Y \in \mathcal{K}_{r,n} \cap \mathcal{G} \right\},$$

This formulation fits our general nonsmooth nonconvex model (M) with obvious identifications for H, f, g.

We now illustrate with semi-algebraic data on two important cases.

Example: Applying PALM on NMF Problems

I. Nonnegative Matrix Factorization (NMF): $\mathcal{F} \equiv \mathbb{R}^{m \times r}$; $\mathcal{G} \equiv \mathbb{R}^{r \times n}$.

$$\min \left\{ \frac{1}{2} \|A - XY\|_F^2 : X \ge 0, Y \ge 0 \right\}.$$

Example: Applying PALM on NMF Problems

I. Nonnegative Matrix Factorization (NMF): $\mathcal{F} \equiv \mathbb{R}^{m \times r}$; $\mathcal{G} \equiv \mathbb{R}^{r \times n}$.

$$\min \left\{ \frac{1}{2} \|A - XY\|_F^2 : X \ge 0, Y \ge 0 \right\}.$$

II. Sparsity Constrained (SNMF): Useful in many applications

$$\min \left\{ \frac{1}{2} \|A - XY\|_F^2 : \|X\|_0 \le \alpha, \|Y\|_0 \le \beta, \ X \ge 0, Y \ge 0 \right\}.$$

Sparsity measure of matrix: $||X||_0 := \sum_i ||x_i||_0$, $(x_i \text{ column vector of } X)$.

Example: Applying PALM on NMF Problems

I. Nonnegative Matrix Factorization (NMF): $\mathcal{F} \equiv \mathbb{R}^{m \times r}$; $\mathcal{G} \equiv \mathbb{R}^{r \times n}$.

$$\min \left\{ \frac{1}{2} \|A - XY\|_F^2 : X \ge 0, Y \ge 0 \right\}.$$

II. Sparsity Constrained (SNMF): Useful in many applications

$$\min \left\{ \frac{1}{2} \|A - XY\|_F^2 : \|X\|_0 \le \alpha, \|Y\|_0 \le \beta, \ X \ge 0, Y \ge 0 \right\}.$$

Sparsity measure of matrix: $||X||_0 := \sum_i ||x_i||_0$, $(x_i \text{ column vector of } X)$.

For Both models the data is semi-algebraic, and fit our block model (M):

- ▶ For NMF f, g are indicator of the form $\delta_{U \ge 0}$. Trivial projection on nonnegative cone.
- ▶ For SNMF: f and $g \equiv \delta_{U \geq 0} + \delta_{\parallel U \parallel_0 \leq s}$. Also admit explict prox formula.
- ▶ PALM produces very simple practical schemes, proven to globally converge.

References - Lecture based on [4]

- 1. Attouch, H. and Bolte, J., On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, *Mathematical Programming* **116** (2009), 5–16.
- 2. Attouch, H., Bolte, J. and Svaiter, B. F., Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, *Mathematical Programming*, Ser. A **137** (2013), 91–129.
- Bolte, J., Daniilidis, A. and Lewis, A., The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems, SIAM Journal on Optimization 17 (2006), 1205–1223.
- 4. J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. *Mathematical Programming, Series A*, **146**, 459–494, (2014).
- 5. Kurdyka, K., On gradients of functions definable in o-minimal structures, *Annales de l'institut Fourier* **48** (1998), 769–783.
- Łojasiewicz, S., Une propriété topologique des sous-ensembles analytiques réels, Les Équations aux Dérivées Partielles. Éditions du centre National de la Recherche Scientifique, Paris, 87-89, (1963).