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Recall: The Basic Pillar underlying FOM
X = Rd Euclidean with inner product 〈·, ·〉 and induced norm ‖ · ‖.

inf{Φ(x) := f (x) + g(x) : x ∈ X}, f , g convex, with g smooth.

Key assumption: g admits L-Lipschitz continuous gradient on Rd

A simple, yet crucial consequence of this is the so-called descent Lemma:

g(x) ≤ g(y) + 〈∇g(y), x − y〉+
L

2
‖x − y‖2, ∀x , y ∈ IRd .

This inequality naturally provides

1. The upper quadratic approximation of g
2. A crucial pillar in the analysis of any current FOM.

However, in many contexts and applications:

	 the differentiable function g does not have a L-smooth gradient[e.g., in

the broad class of Poisson inverse problems].
	 Hence precludes the use of basic FOM methodology and schemes.
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Lecture 7 FOM without Lipschitz Gradient Continuity

Goal: Circumvent this longstanding and intricate question of Lipschitz
continuity required in gradient based methods.

I A New Descent Lemma without Lipschitz Gradient Continuity

I Non Euclidean Proximal Distances

I Proximal Gradient Algorithm free of Lipschitz Gradient Assmuption

I Convergence and Complexity

I Examples and Applications
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Main Observation: An Elementary Fact

Consider the descent Lemma for the smooth g ∈ C 1,1
L on Rd :

g(x) ≤ g(y) + 〈x − y ,∇g(y)〉+
L

2
‖x − y‖2, ∀x , y ∈ Rd .

Simple algebra shows that it can be equivalently written as:(
L

2
‖x‖2 − g(x)

)
−
(
L

2
‖y‖2 − g(y)

)
≥ 〈Ly −∇g(y), x − y〉 ∀x , y ∈ Rd

Nothing else but the gradient inequality for the convex L
2‖x‖

2 − g(x) !
Thus, for a given smooth convex function g on Rd

Descent Lemma ⇐⇒ L

2
‖x‖2 − g(x) is convex on Rd.

To Capture the Geometry of a Constraint set C Naturally suggests to consider
- instead of the squared norm used for the unconstrained case C = Rd -
a more general convex function that captures the geometry of the constraint.
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Trading Gradient Lipschitz Continuity with Convexity
Capturing in a very simple way the geometry of the constraints

Following our basic observation: A convexity condition on the couple (g , h)
replaces the usual Lipschitz continuity property required on the gradient of g .

A Lipschitz-like/Convexity Condition

(LC) ∃L > 0 with Lh − g convex on int dom h,

As just seen, when h(x) = 1
2‖x‖

2, (LC) translates to the Descent Lemma.

Since g is assumed convex, this is equivalent to: ∇g is L-Lipschitz continuous.

I We shall see, that the mere translation of condition (LC) into its first-order
characterization immediately yields the new descent Lemma we seek for.

I It naturally leads to the Non Euclidean Proximal Bregman distance, we
introduce next.
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Bregman Proximal Distance

Defintion: Bregman distance [Bregman (67)] Let h : X → (−∞,∞] be a
closed proper strictly convex function, differentiable on int dom h. The Bregman
distance associated to h (or with kernel h) is defined by

Dh(x , y) := h(x)− h(y)− 〈∇h(y), x − y〉, ∀x ∈ dom h, y ∈ int dom h.

Geometrically, it measures the vertical difference between h(x), the value at x of a
linearized approximation of h around y .

Proposition: Distance-Like Properties

I Dh is strictly convex with respect to its first argument.

I Dh(x , y) ≥ 0 and “ = 0” iff x = y .

Proof. Immediate by the gradient inequality.

Thus, Dh provides a natural distance measure .

However, note that Dh is in general asymmetric.
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First Examples

I Example 1 The choice h(z) = 1
2‖z‖

2, dom h = Rd yields the usual squared
Euclidean norm distance Dh(x, y) = 1

2‖x− y‖2.

I Example 2 The entropy-like distance defined on the simplex,

h(z) =
d∑

j=1

zj ln zj , for z ∈ dom h := ∆d = {z ∈ Rd :
d∑

j=1

zj = 1, z ≥ 0}.

I In that case, Dh(x, y) =
∑d

j=1 xj ln
xj
yj

.

More examples soon...
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Legendre Functions - Useful Device to Handle constraints

Strategy to handle a constraint set is standard: Pick a Legendre function on C .

Definition (Legendre functions)[Rockafellar ’70]. h : X → (−∞,∞], lsc
proper convex is called Legendre type if h is essentially smooth and strictly
convex on int dom h.

Recall

I Essentially smooth: if h is differentiable on int dom h, with ‖∇h(xk)‖ → ∞
for every sequence {xk}k∈N ⊂ int dom h converging to a boundary point of
dom h as k → +∞.

I ∇h is a bijection from int dom h→ int dom h∗ and

(∇h)−1 = ∇h∗

where h∗(u) := supv{〈u, v〉 − h(v)} is the Fenchel conjugate of h.
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A Descent Lemma without Lipschitz Gradient Continuity

Lemma[Descent lemma without Lipschitz Gradient Continuity]
Let h : X → (−∞,∞] be a Legendre function, and g : X → (−∞,∞] be
convex function with dom g ⊃ dom h which is C 1 on int dom h.

Then, the condition (LC): Lh − g convex on int dom h is equivalent to

g(x) ≤ g(y) + 〈∇g(y), x − y〉+ LDh(x , y), ∀(x , y) ∈ int dom h × int dom h

where, Dh stands for the Bregman Distance associated to h.

Proof. Simply apply the gradient inequality for the convex function Lh − g :

I Lh(y)− g(y)− (Lh(x)− g(x)) ≤ 〈L∇h(y)−∇g(y), y − x〉
I g(x)−g(y)−〈∇g(y), x − y〉 ≤ L(h(x)−h(y)−〈∇h(y), x−y〉) = LDh(x , y).

Compactly, ∀(x , y) ∈ int dom h × int dom h

Lh − g convex⇐⇒ Dg (x , y) ≤ LDh(x , y) ⇐⇒ DLh−g ≥ 0.
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Some Useful Examples for Bregman Distances Dh

Each example is a one dimensional h which is Legendre. The corresponding
Legendre function h̃ and Bregman distance in Rd simply use the formulae

h̃(x) =
n∑

j=1

h(xj) and Dh̃(x , y) =
n∑

j=1

Dh(xj , yj).

Name h dom h
Energy 1

2x
2 IR

Boltzmann-Shannon entropy x log x [0,∞]
Burg’s entropy − log x (0,∞)

Fermi-Dirac entropy x log x + (1− x) log(1− x) [0, 1]
Hellinger −(1− x2)1/2 [−1, 1]

Fractional Power (px − xp)/(1− p), p ∈ (0, 1) [0,∞)

I Other possible kernels h: Nonseparable Bregman, and for handling cone
constraints e.g., PSD matrices, Lorentz cone etc.., see refs. for details.
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(LC) There exists L > 0 : Lh− g Convex - First Examples
(LC) admits alternative reformulations which facilitates its checking; (see paper).

A useful one, is in the 1D case, with h is C 2, h′′ > 0 on int dom h. In this case :

(LC ) is equivalent to sup

{
g ′′(x)

h′′(x)
: x ∈ int dom h

}
<∞.

Two examples with g is C 2 which does not have a classical L-smooth gradient,
yet where (LC) holds.

I Let h be the Fermi-Dirac entropy. Then, (LC) reads

sup
0<x<1

x(1− x)g ′′(x) <∞,

which clearly holds when [0, 1] ⊆ int dom g .
For instance, this holds with g(x) = x log x which does not have a Lipschitz
gradient.

I Let h be the Burg’s entropy, and g(x) = − log x which does not have a
Lipschitz gradient. Then, (LC) trivially holds!

More examples in important applications soon...
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The Problem and Blanket Assumption

Our aim is to solve the composite convex problem

v(P) = inf{Φ(x) := f (x) + g(x) | x ∈ dom h},

where dom h ≡ C denotes the closure of dom h.

The following is our blanket assumption.

Standard..but now the “Hidden h ” will handle constraint C ...

Blanket Assumption

(i) g : X → (−∞,∞] is proper lower semicontinuous (lsc) convex,

(ii) h : X → (−∞,∞] is proper, lsc convex, and Legendre.

(iii) f : X → (−∞,∞] is proper lsc convex with dom g ⊃ dom h, which is
differentiable on int dom h,

(iv) dom f ∩ int dom h 6= ∅,
(v) Solution set S∗ := argmin{Φ(x) : x ∈ C = dom h} 6= ∅.
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Algorithm NoLips for inf{f (x) + g(x) : x ∈ C}
Main Algorithmic Operator– [Reduces to classical prox-grad, when h quadratic]

Tλ(x) := argmin

{
f(u) + g(x) + 〈∇g(x),u− x〉+

1

λ
Dh(u, x) : u ∈ X

}
.

Algorithm – NoLips

0. Input. Choose a Legendre function h with C = dom h such that there exists
L > 0 with Lh − g convex on int dom h.

1. Initialization. Start with any x0 ∈ int dom h.

2. Recursion. For each k ≥ 1 with λk > 0, generate
{
xk
}
k∈N ∈ int dom h via

xk = Tλk
(xk−1) = argmin

x∈Rd

{
f (x) +

〈
∇g(xk−1), x − xk−1

〉
+

1

λk
Dh(x , xk−1)

}

We shall systematically assume that Tλ 6= ∅, single-valued and maps
int dom h in int dom h.

More precise technical details, see our paper.
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Main Issues / Questions for NoLips

I Computation of Tλ(·)?

I What is the complexity of NoLips?

I Does it converge? What is the step size λk?
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NoLips – Decomposition of Tλ(·) into Elementary Steps
Tλ shares the same structural decomposition as the usual proximal gradient.
It splits into “elementary” steps useful for computational purposes.

⊕ Define Bregman gradient step

pλ(x) := argmin

{
〈∇g(x), u〉+

1

λ
Dh(u, x) : u ∈ X

}
≡ ∇h∗(∇h(x)− λ∇g(x))

Clearly reduces to the usual explicit gradient step when h = 1
2‖ · ‖

2.

⊕ Define the proximal Bregman operator

proxhλf (y) := argmin
{
λf (u) + Dh(u, y) : u ∈ Rd

}
, y ∈ int dom h

Then, one can show (simply write optimality condition) that NoLips simply
reduces to the
composition of a Bregman proximal step with a Bregman gradient step:

NoLips Main Iteration: x ∈ int dom h, x+ = proxhλf ◦ pλ(x) (λ > 0)
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Examples for Bregman Gradient Step pλ(x) = ∇h∗(v(x))
Let v(x) := ∇h(x)− λ∇g(x).

1. Regularized Burg’s Entropy - Nonnegative Constraints. Here all computations
are 1-D. h(t) := σ

2 t
2 − µ log t with dom h = (0,∞), (σ, µ > 0). Then, on

can show that dom h∗ = IR,

∇h∗(s) = (σρ2(s) + µ)(s2 + 4µσ)−1/2, ρ(s) :=
s +

√
s2 + 4µσ

2σ
> 0.

2. Hellinger-Like function - Ball Constraints.
h(x) = −

√
1− ‖x‖2; dom h = {x ∈ IRd : ‖x‖ ≤ 1} yields a nonseparable

Bregman distance which is relevant for ball constraints. We then obtain,

pλ(x) = (1 + v2(x))−1/2v(x); dom h∗ = IRn.

3. Conic constraints. Bregman distances can be defined on Sd .
⊕ Example 1 – SDP Constraints: h(x) = − log det(x), dom h = Sd

++. Then
we obtain,

pλ(x) = v(x)−1, v(x), x ∈ Sd
++.

⊕ Example 2 – SOC Constraints: can be similarly handled with adequate h.
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Some Examples for proxhλf (y)

1. Entropic thresholding. Let f (u) = |u − a| where a > 0 and take
h(x) = x log x , dom h = [0,∞). Then,

proxhλf (y) =

 exp (λ)y if y < exp(−λ)a,
a if y ∈ [exp(−λ)a, exp(λ)a],
exp (−λ)y if y > exp(λ)a.

2. Log thresholding. Let f (u) = |u − a| where a > 0 and take
h(x) = − log x , dom h = (0,∞). Assume λa < 1. Then,

proxhλf (y) =


y

1+λy if y < a
1−λa ,

a if y ∈
[

a
1−λa ,

a
1+λa

]
,

y
1−λy if y > a

1+λa .

Similar formulas may be derived when λa > 1.

3. Exponential. Let f (u) = ceu, c > 0, and take h(x) = ex , dom h = IR.
Then proxhλf (y) = y − log(1 + λc).

Marc Teboulle First Order Optimization Methods Lecture 7 FOM Beyond Lipschitz Gradient Continuity 17 / 30



Some Examples for proxhλf (y)

1. Entropic thresholding. Let f (u) = |u − a| where a > 0 and take
h(x) = x log x , dom h = [0,∞). Then,

proxhλf (y) =

 exp (λ)y if y < exp(−λ)a,
a if y ∈ [exp(−λ)a, exp(λ)a],
exp (−λ)y if y > exp(λ)a.

2. Log thresholding. Let f (u) = |u − a| where a > 0 and take
h(x) = − log x , dom h = (0,∞). Assume λa < 1. Then,

proxhλf (y) =


y

1+λy if y < a
1−λa ,

a if y ∈
[

a
1−λa ,

a
1+λa

]
,

y
1−λy if y > a

1+λa .

Similar formulas may be derived when λa > 1.

3. Exponential. Let f (u) = ceu, c > 0, and take h(x) = ex , dom h = IR.
Then proxhλf (y) = y − log(1 + λc).

Marc Teboulle First Order Optimization Methods Lecture 7 FOM Beyond Lipschitz Gradient Continuity 17 / 30



Some Examples for proxhλf (y)

1. Entropic thresholding. Let f (u) = |u − a| where a > 0 and take
h(x) = x log x , dom h = [0,∞). Then,

proxhλf (y) =

 exp (λ)y if y < exp(−λ)a,
a if y ∈ [exp(−λ)a, exp(λ)a],
exp (−λ)y if y > exp(λ)a.

2. Log thresholding. Let f (u) = |u − a| where a > 0 and take
h(x) = − log x , dom h = (0,∞). Assume λa < 1. Then,

proxhλf (y) =


y

1+λy if y < a
1−λa ,

a if y ∈
[

a
1−λa ,

a
1+λa

]
,

y
1−λy if y > a

1+λa .

Similar formulas may be derived when λa > 1.

3. Exponential. Let f (u) = ceu, c > 0, and take h(x) = ex , dom h = IR.
Then proxhλf (y) = y − log(1 + λc).

Marc Teboulle First Order Optimization Methods Lecture 7 FOM Beyond Lipschitz Gradient Continuity 17 / 30



Analysis of NoLips: Relies on 3 Basic Results
A Key Property for Dh : Pythagoras...Without Squares!

I A very simple, but key property of Bregman distances.

I Plays a crucial role in the analysis of any optimization method based on
Bregman distances.

Lemma (The three points identity)
For any three points x, y ∈ int(dom h) and u ∈ dom h, the following three
points identity holds true

Dh(u, y)− Dh(u, x)− Dh(x, y) = 〈∇h(y)−∇h(x), x− u〉.

Proof. Simply follows by using the definition of Dh!

With h(u) := ‖u‖2/2 we recover the classical Pythagoras/Triangle identity:

‖z− y‖2 − ‖z− x‖2 − ‖x− y‖2 = 2〈z− x, x− y〉.
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Bregman Based Proximal Inequality
Extends a similar property of the Euclidean squared prox.

Lemma. Let ϕ : X → (−∞,∞] be a closed proper convex function. Given
t > 0, and z ∈ int dom h, define:

u+ := argmin
u∈E

{
ϕ(u) +

1

t
Dh(u, z)

}
.

Then, t(ϕ(u+)− (u)) ≤ [Dh(u, z)− Dh(u,u+)− Dh(u+, z)],∀u ∈ dom h.

Proof. u 7→ tϕ(u) + Dh(u, z) is strictly convex with unique minimizer u+ characterized
via optimality condition. For any u ∈ dom h:

〈tω +∇uDh(u
+, z), u− u+〉 ≥ 0, ω ∈ ∂ϕ(u+).

Since ∇uDh(u+, z) = ∇h(u+)−∇h(z), rearranging above reads as:

I t〈ω,u+ − u〉 ≤ 〈∇h(u+)−∇h(z),u− u+〉,
I ϕ is convex: ⇒ t(ϕ(u+)− ϕ(u)) ≤ t〈ω,u+ − u〉.
I Combine above: t(ϕ(u+)− ϕ(u)) ≤ 〈∇h(z)−∇h(u+),u+ − u〉
I Invoke the three points identity for Dh gives the desired result.
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Key Estimation Inequality for Φ = f + g

Lemma (Descent inequality for NoLips)
Let λ > 0. For all x in int dom h, let x+ := Tλ(x). Then,

λ
(
Φ(x+)− Φ(u)

)
≤ Dh(u, x)−Dh(u, x+)−(1−λL)Dh(x+, x), ∀u ∈ dom h.

Proof. Fix any x ∈ int dom h. With (x+, u, x) ∈ int dom h × dom h × int dom h),
we apply Appy the B-prox inequality to

u → ϕ(u) := f (u) + g(x) + 〈∇g(x), u − x〉,

, followed by the NL-Lemma, and the convexity of g to obtain for every u ∈ dom h:

λ(f (x+)− f (u)) ≤ λ〈∇g(x), u − x+〉+ Dh(u, x)− Dh(u, x+)− Dh(x+, x)

λ(g(x+)− g(x)) ≤ λ〈∇g(x), x+ − x〉+ λLDh(x+, x)

λ(g(x)− g(u)) ≤ λ〈∇g(x), x − u〉.

Add the 3 inequalities, recalling that Φ(x) = f (x) + g(x), we thus obtain

λ
(
Φ(x+)− Φ(u)

)
≤ Dh(u, x)− Dh(u, x+)− (1− λL)Dh(x+, x).
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Complexity for NoLips: O(1/k)

Theorem (NoLips: Complexity)

(i) (Global estimate in function values) Let {xk}k∈N be the sequence
generated by NoLips with λ ∈ (0, 1/L]. Then

Φ(xk)− Φ(u) ≤ LDh(u, x0)

k
∀u ∈ dom h.

(ii) (Complexity for h with closed domain) Assume in addition, that
dom h = dom h and that (P) has at least a solution. Then for any solution
x̄ of (P),

Φ(xk)−min
C

Φ ≤ LDh(x̄ , x0)

k

Notes ♦ When h(x) = 1
2‖x‖

2, g ∈ C 1,1
L , and we thus recover the classical

sublinear global rate of the usual proximal gradient method.

♦ The entropies of Boltzmann-Shannon, Fermi-Dirac and Hellinger are non trivial
examples for which the assumption (dom h = dom h) is obviously satisfied.
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Proof of O(1/k) Complexity for NoLips
Fix k ≥ 1. Using our Descent inequality Lemma with xk = Tλ(xk−1), and
λ ≤ 1/L, we obtain, for all u ∈ dom h,

Φ(xk)− Φ(u) ≤ LDh(u, xk−1)− LDh(u, xk) (1)

The claims easily follow from this inequality. Set u = xk−1 in (1) we get

I Φ(xk)− Φ(xk−1) ≤ 0 ⇒
∑n

k=1(k − 1){Φ(xk)− Φ(xk−1)} ≤ 0

I which reads −
∑n

k=1 Φ(xk) +
∑n

k=1 kΦ(xk)− (k − 1)Φ(xk−1) ≤ 0

I and hence, −
∑n

k=1 Φ(xk) + nΦ(xn) ≤ 0.

I Sum (1)
∑n

k=1 Φ(xk)− nΦ(u) ≤ LDh(u, x0)− LDh(u, xn) ≤ LD(u, x0).

I Add the above, proves (a), and when dom h = dom h, plug u = x∗ yields
(b).

Note: One can also deduce pointwise convergence for NoLips:

{xk}k∈N converges to some solution x∗ of (P)

via a more precise analysis, and with dynamic step-size λk expressed in terms of a
symmetry measure for Dh, see the paper for details.
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Applications: A Protototype Broad Class of Problems with
Poisson Noise

A very large class of problems arising in Statistical and Image Sciences
areas: inverse problems where data measurements are collected by counting
discrete events (e.g., photons, electrons) contaminated by noise described by a
Poisson process.

One then needs to recover a nonnegative signal/image for the given problem.

Huge amount of literature in many contexts:

I Astronomy,

I Nuclear medicine (PET)-Positron Emission Tomography; electronic
microscropy,

I Statistical estimation (EM)-Expectation Maximization,

I Image deconvolution, denoising speckle (multiplicative) noise, etc...
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Linear Inverse Problems - The Optimization Model
Problem:

I Given a matrix A ∈ Rm×n
+ describing the experimental protocol.

I b ∈ Rm
++ is given vector of measurements.

I The goal is to reconstruct the signal x ∈ Rn
+ from the noisy

measurements b such that
Ax ' b.

Moreover, there is often a need to regularize the problem through an appropriate
choice of a regularizer f reflecting desired features of the solution.

Optimization Model to Recover x

(E) minimize {D(b,Ax) + µf (x) : x ∈ IRn
+}

⊕ D(·, ·) a convex proximity measure that quantifies the “error” between b and Ax

⊕ µ > 0 controls the tradeoff between matching the data fidelity criteria and the
weight given to its regularizer. ( µ = 0 when no regularizer needed.)
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NoLips in Action : New Simple Schemes for Many
Problems
The optimization problem will be of the form:

(E) min
x
{f (x) +Dφ(b,Ax)} or min

x
{f (x) +Dφ(Ax , b)}

for some convex φ, and f (x) some nonsmooth convex regularizer.

To apply NoLips :

1. Pick an h, to warrant an L in terms of problem’s data, s.t. Lh − g convex.

2. In turns, this determines the step-size λ defined through λ ∈ (0, L−1].

3. Compute pλ(·) and proxhλf (·)) – Bregman-like [ gradient and proximal] steps.

Resulting algorithms for which our results can be applied lead to

Simple schemes via explicit map Mj(·) :

x > 0, x+j = Mj(b,A, x) · xj , j = 1, . . . , n,

with (λ, L) determined in terms of the problem data (A, b).
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A Typical Linear Inverse Problem with Poisson Noise

A natural proximity measure in Rn
+ - Kullback-Liebler Relative Entropy:

Dφ(b,Ax) ≡ D(b,Ax) :=
m∑
i=1

{bi log
bi

(Ax)i
+ (Ax)i − bi}, (φ(u) =

m∑
i=1

ui log ui )

which (up to some constants) corresponds to the negative Poisson log-likelihood
function.

I The optimization problem:

(E) minimize {g(x) + µf (x) : x ∈ Rn
+}

I g(x) ≡ D(d ,Ax), and f a regularizer, possibly nonsmooth

I x → D(b,Ax) convex, but does not admit a globally Lipschitz
continuous gradient.
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Two Simple Algorithms for Poisson Linear Inverse Problems
Given g(x) := Dφ(b,Ax) ( φ(u) = u log u), to apply NoLips, we need to identify
an adequate h.

I We take the Burg’s entropy h(x) = −
∑n

j=1 log xj , dom h = IRn
++.

I We need to find L > 0 such that Lh − g is convex in IRn
++.

Lemma. Let g(x) = Dφ(b,Ax) and h(x) as defined above. Then,

for any L ≥ ‖b‖1 =
m∑
i=1

bi , the function Lh − g is convex on IRn
++.

Thus, we can take λ = L−1 = ‖b‖−11 .
Applying NoLips, given x ∈ IRn

++, the main algorithmic step x+ = Tλ(x) is then:

x+ = argmin

µf (u) + 〈∇g(x), u〉+
1

λ

n∑
j=1

(
uj
xj
− log

uj
xj
− 1

)
: u > 0

 .

We now show that the above abstract iterative process yields closed form
algorithms for Poisson reconstruction problems with two typical regularizers used
in applications.
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Example 1 – Sparse Poisson Linear Inverse Problem
Sparse regularization. Let f (x) := ‖x‖1, which is known to promote sparsity.
Define,

cj(x) :=
m∑
i=1

bi
aij
〈ai , x〉

, rj :=
∑
i

aij > 0.

Then, NoLips yields the following explicit iteration to solve (E) with λ = ‖b‖−11 :

x+j =
xj

1 + λ (µxj + xj(rj − cj(x)))
, j = 1, . . . n

Special Case: A New Scheme for the Poisson MLE problem

For µ = 0 problem (E) is the Poisson Maximum Likelihood Estimation Problem.
In that particular case the iterates of NoLips simply become

x+j =
xj

1 + λxj(rj − cj(x))
, j = 1, . . . n.

In contrast to the standard EM algorithm given by the iteration:

x+j =
xj
rj
cj(x), j = 1, . . . , n.
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Example 2 - Thikhonov - Poisson Linear Inverse Problems
Tikhonov regularization. Let f (x) := 1

2‖x‖
2. We recall that this term is used as

a penalty in order to promote solutions of Ax = b with small Euclidean norms.

Using previous notation, NoLips yields a

“ A log-Thikonov method” : Set λ = ‖b‖−11 and start with x ∈ IRn
++

x+j =

√
ρ2j (x) + 4µλx2j − ρj(x)

2µλxj
, j = 1, . . . , n.

where
ρj(x) := 1 + λxj (rj − cj(x)) , j = 1, . . . , n.

As just mentioned, many other interesting methods can be considered

I By choosing different kernels for φ, or

I By reversing the order of the arguments in the proximity measure (which is
not symmetric!..hence defining different problems.)
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Lecture 8 - FOM Beyond Convexity

Goal: Derive a simple self-contained convergence analysis framework for a
broad class of nonconvex and nonsmooth minimization problems.

I A “Recipe” for proving global convergence to a critical point.

I A prototype of a simple/useful Algorithm: PALM.

I Many Applications: phase retrieval for diffractive imaging, dictionary
learning,... .... Sparse nonnegative matrix factorization ... Regularized
Structured Total Least Squares....
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The Problem : An Abstract Formulation
Let F : Rd → (−∞,+∞] be a proper, lsc and bounded from below function.

(P) inf
{
F (z) : z ∈ Rd

}
.

Suppose A is a generic algorithm which generates a sequence
{
zk
}
k∈N via:

z0 ∈ Rd , zk+1 ∈ A(zk), k = 0, 1, . . . .

Goal: Prove that the whole sequence
{
zk
}
k∈N converges to a critical point

of F .

Quick Recall
I (Limiting) Subdifferential ∂Ψ (x):

x∗ ∈ ∂F (x) iff (xk , x
∗)→ (x , x∗) s.t. F (xk)→ F (x) and

F (u) ≥ F (xk) + 〈x∗k , u − xk〉+ o(‖u − xk‖)

I x ∈ Rd is a critical point of F if ∂F (x) 3 0.
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A General Recipe in 3 Main Steps for Descent Methods

A sequence zk is called a descent sequence for F : Rn → (−∞,+∞] if

C1. Sufficient decrease property

∃ρ1 > 0 with ρ1‖zk+1 − zk‖2 ≤ F (zk)− F (zk+1), ∀k ≥ 0

C2. Iterates gap For each k there exists wk ∈ ∂F (zk) such that:

∃ρ2 > 0 with
∥∥wk+1

∥∥ ≤ ρ2‖zk+1 − zk‖,∀k ≥ 0.

I These two steps are typical for any descent type algorithms but lead
only to subsequential convergence.

I To get global convergence to a critical point, we need a deep mathematical
tool.[  Lojasiewicz (68), Kurdyka (98)]
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The Third Main Step of our Recipe

C3. The Kurdyka- Lojasiewicz property: Assume that F is a KL function.
Use this property to prove that the generated sequence

{
zk
}
k∈N is a Cauchy

sequence, and thus converges!

This general recipe

I Singles out the 3 main ingredients at play to derive global convergence in the
nonconvex and nonsmooth setting.

I Applicable to any descent algorithm.
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Main Convergence Result

Theorem - Abstract Global Convergence

I Let F be a KL function – namely condition C3 holds.

I zk is a descent sequence for F – namely conditions C1 and C2 hold.

If zk is bounded, it converges to a critical point of F .

What is a KL function?
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The KL Property – Informal
Let z̄ be critical, with F (z̄) = 0 (true up to translation); L := {z ∈ Rd : 0 < F (z) < η}

Definition [Sharpness] A function F : Rd → (−∞,+∞] is called sharp on L if
there exists c > 0 such that

dist (0, ∂F (z)) := min {‖ξ‖ : ξ ∈ ∂F (z)} ≥ c > 0 ∀ z ∈ L.

KL expresses the fact that a function can be made “sharp” by re-parametrization
of its values.
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KL warrants F amenable to sharpness
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20

Sharp reparameterization ϕ ◦ F
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The KL Property: ( Lojasiewicz (68), Kurdyka (98))
Desingularizing functions on (0, η). Let η > 0.

Φη := {ϕ ∈ C [0, η) ∩ C 1(0, η) : , concave with ϕ′ > 0, ϕ(0) = 0.}

For x̄ ∈ dom ∂F , L := {x ∈ Rd : F (x̄) < F (x) < F (x̄) + η}

The KL Property F has the KL property on L if there exists a desingularizing
function ϕ such that

ϕ′ (F (x)− F (x̄))dist (0, ∂F (x)) ≥ 1, ∀x ∈ L

Local version: KL at x̄ ∈ domF , replace L with: its intersection with a closed ball B(x̄ , ε) for

some ε > 0.

Meaning: Subgradients of x → ϕ ◦ (F (x)− F (x̄)) have a norm greater than 1,
no matter how close is x to the critical point x̄ (provided F (x) > F (x̄)) – This is
sharpness.

Are there many functions satisfying KL? How we verify KL?
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Are there Many Functions Satisfying KL?

YES! Semi Algebraic Functions

Theorem
Let σ : Rd → (−∞,+∞] be a proper and lsc function. If σ is semi-algebraic then
it satisfies the KL property at any point of domσ.

Recall: Semi-algebraic sets and functions

(i) A semialgebraic subset of Rd is a finite union of sets

{x ∈ Rd : pi (x) = 0, qj(x) < 0, i ∈ I , j ∈ J}

where pi , qj : Rd → R are real polynomial (analytic) functions and I , J are
finite.

(ii) A function σ is semi-algebraic if its graph{
(u, t) ∈ Rn+1 : σ (u) = t

}
is a semi-algebraic subset of Rn+1.
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Operations on Semi-Algebraic Objects

Semi-Algebraic Property is Preserved under Many Operations

I If S is semi-algebraic, so is the closure S .

I Unions/intersections of semi-algebraic sets are semi-algebraic.

I Indicator of a semi-algebraic set is semi-algebraic.

I Finite sums and product of semi-algebraic functions

I Composition of semi-algebraic functions;

I Sup/Inf type function, e.g., sup {g (u, v) : v ∈ C} is semi-algebraic when g
is a semi-algebraic function and C a semi-algebraic set.
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There is a Wealth of Semi-Algebraic Functions!

Semi-Algebraic Sets/Functions ”Starring” in Optimization/Applications

I Real polynomial functions: ‖Ax − b‖2, (A,B)→ ‖AB −M‖2
F

I Any Polyhedral set is semi-algebraic

I In matrix theory: cone of PSD matrices, constant rank matrices, Stiefel
manifolds...

I The function x → dist (x ,S)2 is semi-algebraic whenever S is a nonempty
semi-algebraic subset of Rn.

I The l1-norm ‖x‖1 is semi-algebraic, as sum of absolute values function. For
example, to show that σ(u) := |u| is semi-algebraic note that Graph(σ) = S,
where

S = {(u, s) : u + s = 0,−u > 0} ∪ {(u, s) : u − s = 0, u > 0}.

I ‖·‖0 is semi-algebraic. Its graph can be shown to be a finite union of product
sets.
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A Broad Class of Nonsmooth Nonconvex Problems
A Useful Block Optimization Model

(B) minimizex,yΨ (x , y) := f (x) + g (y) + H (x , y)

I f : Rn → (−∞,+∞] and g : Rm → (−∞,+∞] proper and lsc.

I H : Rn ×Rm → R is a C 1 function with gradient Lipschitz continuous
on bounded subsets of Rn × Rm (e.g., true when H ∈ C 2).

I Partial gradients of H are C 1,1: H (·, y) ∈ C 1,1
L(y) and H (x , ·) ∈ C 1,1

L(x).

♠ NO convexity assumed in the objective and the constraints
(built-in through f and g extended valued).

Two blocks is only for the sake of simplicity. Same for the p-blocks case:

minimizex1,...,xpH (x1, x2, . . . , xp) +

p∑
i=1

fi (xi ) , xi ∈ Rni , n =

p∑
i=1

ni

This optimization model covers many applications: signal/image processing, blind

deconvolution, dictionary learning, matrix factorization, etc....Vast Literature...
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PALM: Proximal Alternating Linearized Minimization
Cocktail Time! PALM ”blends” old spices:
⊕ Space decomposition [á la Gauss-Seidel]
⊕ Composite decomposition [ á la Prox-Gradient].

PALM Algorithm

1. Take γ1 > 1, set ck = γ1L1

(
yk
)

and compute

xk+1 ∈ prox f
ck

(
xk − 1

ck
∇xH

(
xk , yk

))
.

2. Take γ2 > 1, set dk = γ2L2

(
xk+1

)
and compute

yk+1 ∈ prox g
dk

(
yk − 1

dk
∇yH

(
xk+1, yk

))
.

Stepsizes c−1
k , d−1

k are in
]
0, 1/L2(yk)

[
&

]
0, 1/L1(xk+1)

[
.

Main computational step: Computing the prox of a nonconvex function.
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Convergence of PALM

Theorem [Global convergence to critical point]. Assume f , g ,H
semi-algebraic. Any bounded PALM sequence

{
zk
}
k∈N converges to a crit-

ical point z∗ = (x∗, y∗) of Ψ.

Note: The boundedness assumption on the generated sequence
{
zk
}
k∈N holds in

several scenarios, e.g., when f , g have bounded level sets, or follows from the
structure of the problem at hand.

I I will outline the 3 key building blocks for the analysis and proof of
Theorem.

I But, first it is instructive to see how KL works for simple smooth
descent methods.
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Smooth case f ∈ C 1,1
L - KL and Descent Methods.

Illustrating the Recipe for Sequences with Smooth Gradient.

I C1. Sufficient desc.: ∃a > 0, f (xk+1) ≤ f (xk)− a‖xk+1 − xk‖2 (proved)

I Assume Iterates: ∃b > 0 : b‖∇f (xk)‖ ≤ ‖xk+1 − xk‖.
(f L-smooth, ⇒ C2 holds: ∃ρ > 0 : ‖∇f (xk+1)‖ ≤ ρ‖xk+1 − xk‖, (ρ = b−1 + L).)

I C3. Assume KL: ϕ′(f (x)− f∗)‖∇f (x)‖ ≥ 1, ϕ concave, ϕ′ > 0

For convenience let vk := f (xk)− f∗. Using the above we then get:

ϕ(vk+1)− ϕ(vk) ≤ ϕ′(vk)(vk+1 − vk), (ϕ concave)

vk+1 − vk ≤ −a‖xk+1 − xk‖2 ≤ −ab‖xk+1 − xk‖ · ‖∇f (xk)‖
ϕ′(vk)(vk+1 − vk) ≤ −ab‖xk+1 − xk‖ϕ′(vk)‖∇f (xk)‖ (ϕ′ > 0)

≤ −ab‖xk+1 − xk‖, (by KL), and hence

ϕ(vk+1)− ϕ(vk) ≤ −ab‖xk+1 − xk‖.

I Therefore, ‖xk+1 − xk‖ ≤ (ab)−1
(
ϕ(vk)− ϕ(vk+1)

)
, and by telescoping

I we get finite length
∑

k ‖xk+1 − xk‖, and xk Cauchy and converges.
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Proximal Map for Nonconvex Functions

Let σ : Rn → (−∞,+∞] be a proper and lsc function. Given x ∈ Rn and t > 0,
the proximal map defined by:

proxσt (x) := argmin
{
σ (u) +

t

2
‖u − x‖2 : u ∈ Rn

}
.

Proposition [Well-definedness of proximal maps]If infRn σ > −∞, then, for
every t ∈ (0,∞), the set proxσ1/t (x) is nonempty and compact.

Here proxσt is a set-valued map. When σ := δX , for a nonempty and closed set X ,
the proximal map reduces to the set-valued projection operator onto X .

Thanks to the prox properties, since PALM is defined by two proximal
computations, all we need to assume is:

inf
Rn×Rm

Ψ > −∞, inf
Rn

f > −∞ and inf
Rm

g > −∞.

Thus, Problem (M) is inf-bounded and PALM is well defined.
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1. A Key Nonconvex Proximal-Gradient Inequality

It extends to the nonconvex case the convex prox-gradient inequality.

Lemma [Sufficient decrease property]

(i) h : Rn → R is C 1,1 with Lh-Lipschitz gradient.

(ii) σ : Rn → R is a proper and lsc function with infRd σ > −∞.

Then, for any u ∈ domσ and any u+ ∈ Rd defined by

u+ ∈ proxσt

(
u − 1

t
∇h (u)

)
, t > Lh,

we have

h
(
u+
)

+ σ
(
u+
)
≤ h (u) + σ (u)− 1

2
(t − Lh)

∥∥u+ − u
∥∥2
.

Proof. Follows along the same line of analysis as in the convex case.
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2. PALM Properties: Standard Subsequences Convergence

From now on we assume that the sequence
{
zk
}
k∈N := {(xk , yk)} generated by

PALM is bounded.

ω
(
z0
)

denotes the set of all limit points.

Lemma. [Properties of the limit point set ω
(
z0
)
] Let

{
zk
}
k∈N be a se-

quence generated by PALM. Then

(i) ∅ 6= ω
(
z0
)
⊂ critΨ.

(ii) limk→∞ dist
(
zk , ω

(
z0
))

= 0.

(iii) ω
(
z0
)

is a nonempty, compact and connected set.

(iv) The objective function Ψ is finite and constant on ω
(
z0
)
.

Proof. Deduced by showing that C1, C2 hold for the sequence
{
zk
}
k∈N +

standard analysis arguments, see paper [4].
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3. A Uniformization of KL
Lemma [Uniformized KL property]

I Let σ : Rd → (−∞,∞] be a proper and lower semicontinuous function.

I Let Ω be a compact set.

I Assume σ is constant on Ω and satisfies the KL property at each point of
Ω.

Then, there exist ε > 0, η > 0 and ϕ ∈ Φη such that for all u in Ω and all u
in the following intersection

W :=
{
u ∈ Rd : dist (u,Ω) < ε

}
∩ [σ (u) < σ (u) < σ (u) + η] (1)

one has,
ϕ′ (σ (u)− σ (u))dist (0, ∂σ (u)) ≥ 1. (2)

Proof. See reference [4].

Recall: Let η ∈ (0,+∞]. Φη is the class of all concave C1 functions s.t.: ϕ (0) = 0 and

ϕ′ (s) > 0 for all s ∈ (0, η).
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Sketch of Proof for Global Convergence of PALM

Using the three described results, on can proceed as follows.

I Use sufficient decrease property and limk→∞ dist
(
zk , ω

(
z0
))

= 0 to verify
that there exists l such that zk ∈W for all k > l .

I Use the established facts: ∅ 6= ω
(
z0
)

and compact + Ψ finite and constant

on ω
(
z0
)
, so that UKL Lemma can be applied with Ω ≡ ω

(
z0
)
.

I Use property of ϕ (concave inequality) and KL inequality 2 of the Lemma to
show that

{
zk
}
k∈N has finite length, that is

∞∑
k=1

∥∥zk+1 − zk
∥∥ <∞.

I Then, it follows that
{
zk
}
k∈N is a Cauchy sequence and hence is a

convergent sequence.

I The result follows immediately from the previous fact
∅ 6= ω

(
z0
)
⊂ critΨ.
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Rate of Convergence Results

Theorem - Rate of Convergence for the sequence {zk} - Generic
Let F be a function which satisfies the KL property with

ϕ(s) = cs1−θ, , c > 0, θ ∈ [0, 1),

and zk a descent sequence for F . Then,

(i) If θ = 0 then the sequence zk converges in a finite number of steps.

(ii) If θ ∈ (0, 1/2] ∃b > 0 and τ ∈ [0, 1) such that
∥∥zk − z

∥∥ ≤ b τ k .

(iii) If θ ∈ (1/2, 1)∃b > 0 such that∥∥zk − z
∥∥ ≤ b k−

1−θ
2θ−1 .

Finding θ can be difficult....
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Applications: Nonnegative Matrix Factorization Problems

The NMF Problem: Given A ∈ Rm×n and r � min {m, n}.
Find X ∈ Rm×r and Y ∈ Rr×n such that

A ≈ XY , X ∈ Km,r ∩ F , Y ∈ Kr ,n ∩ G,

Kp,q =
{
M ∈ Rp×q : M ≥ 0

}
F =

{
X ∈ Rm×r : R1 (X ) ≤ α

}
G =

{
Y ∈ Rr×n : R2 (Y ) ≤ β

}
.

R1(·) and R2(·) are functions used to describe some additional/required features
of X ,Y .

(NMF) covers a very large number of problems in applications: Text Mining
(data clusters in documents); Audio-Denoising (speech dictionnary);
Bio-informatics (clustering gene expression); Medical Imaging,...Vast Literature.
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The Optimization Approach

We adopt the Constrained Nonconvex Nonsmooth Formulation

(MF ) min

{
1

2
‖A− XY ‖2

F : X ∈ Km,r ∩ F ,Y ∈ Kr ,n ∩ G
}
,

This formulation fits our general nonsmooth nonconvex model (M) with obvious
identifications for H, f , g .

We now illustrate with semi-algebraic data on two important cases.
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Example: Applying PALM on NMF Problems

I. Nonnegative Matrix Factorization (NMF): F ≡ Rm×r ; G ≡ Rr×n.

min

{
1

2
‖A− XY ‖2

F : X ≥ 0,Y ≥ 0

}
.

II. Sparsity Constrained (SNMF): Useful in many applications

min

{
1

2
‖A− XY ‖2

F : ‖X‖0 ≤ α, ‖Y ‖0 ≤ β, X ≥ 0,Y ≥ 0

}
.

Sparsity measure of matrix: ‖X‖0 :=
∑

i ‖xi‖0 , (xi column vector of X ).

For Both models the data is semi-algebraic, and fit our block model (M):

I For NMF f , g are indicator of the form δU≥0. Trivial projection on
nonnegative cone.

I For SNMF: f and g ≡ δU≥0 + δ‖U‖0≤s . Also admit explict prox formula.

I PALM produces very simple practical schemes, proven to globally converge.
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