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This chapter presents in a self-contained manner recent advances in the design

and analysis of gradient-based schemes for specially structured smooth and nons-

mooth minimization problems. We focus on the mathematical elements and ideas

for building fast gradient-based methods and derive their complexity bounds.

Throughout the chapter, the resulting schemes and results are illustrated and

applied on a variety of problems arising in several specific key applications such

as sparse approximation of signals, total variation-based image processing prob-

lems, and sensor location problems.

1.1 Introduction

The gradient method is probably one of the oldest optimization algorithms going

back as early as 1847 with the initial work of Cauchy. Nowadays, gradient-based

methods1 have attracted a revived and intensive interest among researches both

in theoretical optimization and in scientific applications. Indeed, the very large-

scale nature of problems arising in many scientific applications, combined with

an increase power of computer technology have motivated a “return” to the “old

and simple” methods that can overcome the curse of dimensionality, a task which

is usually out of reach for the current more sophisticated algorithms.

One of the main drawbacks of gradient-based methods is their speed of conver-

gence, which is known to be slow. However, with proper modeling of the problem

at hand, combined with some key ideas, it turns out that it is possible to build

fast gradient schemes for various classes of problems arising in applications and

in particular signal recovery problems.

The purpose of this chapter is to present in a self-contained manner such

recent advances. We focus on the essential tools needed to build and analyze

1 We also use the term “gradient” instead of “subgradient” in case of nonsmooth functions.
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fast gradient schemes, and present successful applications to some key scientific

problems. To achieve these goals our emphasis will focus on:

r Optimization models/formulations.
r Building approximation models for gradient schemes.
r Fundamental mathematical tools for convergence and complexity analysis.
r Fast gradient schemes with better complexity.

On the application front, we review some recent and challenging problems

that can benefit from the above theoretical and algorithmic framework and we

include gradient-based methods applied to:

r Sparse approximation of signals.
r Total variation-based image processing problems.
r Sensor location problems.

The contents and organization of the chapter is well summarized by the two

lists of items above. We will strive to provide a broad picture of the current

research in this area as well as to motivate further research within the gradient-

based framework.

To avoid cutting the flow of the chapter, we refrain from citing references

within the text. Rather, the last section of this chapter includes bibliographical

notes. While we did not attempt to give a complete bibliography on the covered

topics (which is very large), we did try to include earlier works and influential

papers, to cite all the sources for the results we used in this chapter, and to

indicate some pointers on very recent developments that hopefully will motivate

further research in the field. We apologize in advance for any possible omission.

1.2 The General Optimization Model

1.2.1 Generic Problem Formulation

Consider the following generic optimization model:

(M) min {F (x) = f(x) + g(x) : x ∈ E} ,

where

r
E is a finite dimensional Euclidean space with inner product 〈·, ·〉 and norm

‖ · ‖ = 〈·, ·〉1/2.
r g : E → (−∞,∞] is a proper closed and convex function which is assumed

subdifferentiable over dom g.2

r f : E → (−∞,∞) is a continuously differentiable function over E.

2 Throughout this paper all necessary notations/definitions/results from convex analysis not
explicitly given are standard and can be found in the classical monograph [51].
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The model (M) is rich enough to recover generic classes of smooth/nonsmooth

convex minimization problems as well as smooth nonconvex problems. This is

illustrated in the following examples.

Example 1.1: (a) Convex minimization problems.

Pick f ≡ 0 and g = h0 + δC where h0 : E → (−∞,∞) is a convex function (pos-

sibly nonsmooth) and δC is the indicator function defined by

δC(x) =

{

0 x ∈ C,

∞ x /∈ C,

where C ⊆ E is a closed and convex set. The model (M) reduces to the generic

convex optimization problem

min {h0(x) : x ∈ C} .

In particular, if C is described by convex inequality constraints, i.e., with

C = {x ∈ E : hi(x) ≤ 0, i = 1, . . . ,m} ,

where hi are some given proper closed convex functions on E, we recover the

functional form of the convex program:

min {h0(x) : hi(x) ≤ 0, i = 1, . . . ,m} .

(b) Smooth constrained minimization

Set g = δC with C ⊆ E being a closed convex set. Then (M) reduces to the

problem of minimizing a smooth (possibly nonconvex) function over C, i.e.,

min {f(x) : x ∈ C} .

A more specific example that can be modelled by (M) is from the field of signal

recovery and is now described.

1.2.2 Signal Recovery via Nonsmooth Regularization

A basic linear inverse problem is to estimate an unknown signal x satisfying the

relation

Ax = b + w,

where A ∈ R
m×n and b ∈ R

m are known, and w is an unknown noise vector.

The basic problem is then to recover the signal x from the noisy measurements

b. A common approach for this estimation problem is to solve the regularized

least squares (RLS) minimization problem

(RLS) min
x

{

‖Ax − b‖2 + λR(x)
}

, (1.1)
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where ‖Ax − b‖2 is a least squares term that measures the distance between b

and Ax in an l2 norm sense3, R(·) is a convex regularizer used to stabilize the

solution, and λ > 0 is a regularization parameter providing the trade off between

fidelity to measurements and noise sensitivity. Model (RLS) is of course a special

case of model (M) by setting f(x) ≡ ‖Ax − b‖2 and g(x) ≡ λR(x).

Popular choices for R(·) are dictated from the application in mind and include

for example the following model:

R(x) =
s

∑

i=1

‖Lix‖p
p, (1.2)

where s ≥ 1 is an integer number, p ≥ 1 and Li : R
n → R

di (d1, . . . , ds being

positive integers) are linear maps. Of particular interest for signal processing

applications are the following cases:

1. Tikhonov regularization. By setting s = 1,Li = L, p = 2, we obtain the

standard Tikhonov regularization problem:

min
x

‖Ax − b‖2 + λ‖Lx‖2.

2. l1 regularization. By setting s = 1,Li = I, p = 1 we obtain the l1 regular-

ization problem

min
x

‖Ax − b‖2 + λ‖x‖1.

Other closely related problems include for example,

min{‖x‖1 : ‖Ax − b‖2 ≤ ǫ} and min{‖Ax − b‖2 : ‖x‖1 ≤ ǫ}.

The above are typical formulations in statistic regression (LASSO, basis pur-

suit) as well as in the emerging technology of compressive sensing.

3. Wavelet-based regularization. By choosing p = 1, s = 1,Li = W where

W is a wavelet transform matrix, we recover the wavelet-based regularization

problem

min
x

‖Ax − b‖2 + λ‖Wx‖1.

4. TV-based regularization. When the set E is the set of m × n real-valued

matrices representing the set of all m × n images, it is often the case that one

chooses the regularizer to be a total variation function which has the form

R(x) ≡ TV(x) =

m
∑

i=1

n
∑

j=1

‖(∇x)i,j‖.

A more precise definition of R will be given in Section 1.7.

3 Throughout the chapter, unless otherwise stated, the norm ‖ · ‖ stands for the Euclidean
norm associated with E.
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Note that the last three examples deal with nonsmooth regularizers. The reason

for using such seemingly difficult regularization functions and not the more stan-

dard smooth quadratic Tikhonov regularization will be explained in Sections 1.6

and 1.7.

In the forthcoming sections, many of these problems will be described in more

detail and gradient-based methods will be the focus of relevant schemes for their

solution.

1.3 Building Gradient-Based Schemes

In this section we describe the elements needed to generate a gradient-based

method for solving problems of the form (M). These rely mainly on building

“good approximation models” and on applying fixed point methods on cor-

responding optimality conditions. In Sections 1.3.1 and 1.3.2 we will present

two different derivations—corresponding to the two building techniques—of a

method called the proximal gradient algorithm. We will then show in Sec-

tion 1.3.3 the connection to the so-called majorization-minimization approach.

Finally, in Section 1.3.4 we will explain the connection of the devised techniques

to Weiszfeld’s method for the Fermat-Weber location problem.

1.3.1 The Quadratic Approximation Model for (M)

Let us begin with the simplest unconstrained minimization problem of a contin-

uously differentiable function f on E (i.e., we set g ≡ 0 in (M)):

(U) min{f(x) : x ∈ E}.

The well known basic gradient method generates a sequence {xk} via

x0 ∈ E, xk = xk−1 − tk∇f(xk−1) (k ≥ 1), (1.3)

where tk > 0 is a suitable step-size. The gradient method thus takes at each

iteration a step along the negative gradient direction, which is the direction of

“steepest descent”. This interpretation of the method, although straightforward

and natural, cannot be extended to the more general model (M). Another simple

way to interpret the above scheme is via an approximation model that would

replace the original problem (U) with a “reasonable” approximation of the objec-

tive function. The simplest idea is to consider the quadratic model

qt(x,y) := f(y) + 〈x − y,∇f(y)〉 +
1

2t
‖x − y‖2, (1.4)

namely, the linearized part of f at some given point y, regularized by a quadratic

proximal term that would measure the “local error” in the approximation, and

also results in a well defined, i.e., a strongly convex approximate minimization
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problem for (U):

(Ût) min {qt(x,y) : x ∈ E} .

For a fixed given point y := xk−1 ∈ E, the unique minimizer xk solving (Ûtk
) is

xk = argmin {qtk
(x,xk−1) : x ∈ E} ,

which yields the same gradient scheme (1.3).

Simple algebra also shows that (1.4) can be written as,

qt(x,y) =
1

2t
‖x − (y − t∇f(y))‖2 − t

2
‖∇f(y)‖2 + f(y). (1.5)

Using the above identity also allows us to easily pass from the unconstrained

minimization problem (U) to an approximation model for the constrained model

(P ) min {f(x) : x ∈ C} ,

where C ⊆ E is a given closed convex set. Ignoring the constant terms in (1.5)

leads us to solve (P) via the scheme

xk = argmin
x∈C

1

2
‖x − (xk−1 − tk∇f(xk−1))‖2 , (1.6)

which is the so-called gradient projection method (GPM):

xk = ΠC(xk−1 − tk∇f(xk−1)).

Here ΠC denotes the orthogonal projection operator defined by

ΠC(x) = argmin
z∈C

‖z − x‖2.

Turning back to our general model (M), one could naturally suggest to consider

the following approximation in place of f(x) + g(x):

q(x,y) = f(y) + 〈x − y,∇f(y)〉 +
1

2t
‖x − y‖2 + g(x).

That is, we leave the nonsmooth part g(·) untouched.

Indeed, in accordance with the previous framework, the corresponding scheme

would then read:

xk = argmin
x∈E

{

g(x) +
1

2tk
‖x − (xk−1 − tk∇f(xk−1))‖2

}

. (1.7)

In fact, the latter leads to another interesting way to write the above scheme

via the fundamental proximal operator. For any scalar t > 0, the proximal map

associated with g is defined by

proxt(g)(z) = argmin
u∈E

{

g(u) +
1

2t
‖u − z‖2

}

. (1.8)

With this notation, the scheme (1.7), which consists of a proximal step at a

resulting gradient point will be called the proximal gradient method, and reads
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as:

xk = proxtk
(g)(xk−1 − tk∇f(xk−1)). (1.9)

An alternative and useful derivation of the proximal gradient method is via

the fixed point approach developed next.

1.3.2 The Fixed Point Approach

Consider the nonconvex and nonsmooth optimization model (M). If x∗ ∈ E is a

local minimum of (M), then it is a stationary point of (M), i.e., one has

0 ∈ ∇f(x∗) + ∂g(x∗), (1.10)

where ∂g(·) is the subdifferential of g. Note that whenever f is also convex, the

latter condition is necessary and sufficient for x∗ to be a global minimum of (M).

Now, fix any t > 0, then (1.10) holds if and only if the following equivalent

statements hold:

0 ∈ t∇f(x∗) + t∂g(x∗),

0 ∈ t∇f(x∗) − x∗ + x∗ + t∂g(x∗),

(I + t∂g)(x∗) ∈ (I − t∇f)(x∗),

x∗ = (I + t∂g)−1(I − t∇f)(x∗),

where the last relation is an equality (and not an inclusion) thanks to the prop-

erties of the proximal map (c.f. the first part of Lemma 1.2 below). The last

equation naturally calls for the fixed point scheme that generates a sequence

{xk} via:

x0 ∈ E, xk = (I + tk∂g)−1(I − tk∇f)(xk−1) (tk > 0). (1.11)

Using the identity (I + tk∂g)−1 = proxtk
(g) (c.f., first part of Lemma 1.2), it

follows that the scheme (1.11) is nothing else but the proximal gradient method

devised in Section 1.3.1. Note that the scheme (1.11) is in fact a special case

of the so-called proximal backward-forward scheme, which was originally devised

for finding a zero of the more general inclusion problem:

0 ∈ T1(x
∗) + T2(x

∗),

where T1, T2 are maximal monotone set valued maps (encompassing (1.10) with

f, g convex and T1 := ∇f, T2 := ∂g).

1.3.3 Majorization-Minimization Technique

The Idea
A popular technique to devise gradient-based methods in the statistical and engi-

neering literature is the MM approach where the first M stands for majorization
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and the second M for minimization4 (maximization problems are similarly han-

dled with minorization replacing majorization)

The MM technique follows in fact from the same idea of approximation models

described in Section 1.3.1, except that the approximation model in the MM

technique does not have to be quadratic.

The basic idea of MM relies on finding a “relevant” approximation to the

objective function F of model (M) that satisfies:

(i) M(x,x) = F (x) for every x ∈ E.

(ii) M(x,y) ≥ F (x) for every x,y ∈ E.

Geometrically, this means that x 7→ M(x,y) lies above F (x) and is tangent at

x = y. From the above definition of M(·, ·), a natural and simple minimization

scheme consists of solving

xk ∈ argmin
x∈E

M(x,xk−1).

This scheme immediately implies that

M(xk,xk−1) ≤ M(x,xk−1) for every x ∈ E, (1.12)

and hence from (i) and (ii) it follows that

F (xk)
(ii)

≤ M(xk,xk−1)
(1.12)

≤ M(xk−1,xk−1)
(i)
= F (xk−1) for every k ≥ 1,

thus naturally producing a descent scheme for minimizing problem (M).

Clearly, the key question is then how to generate a “good” upper bounding

function M(·, ·) satisfying (i) and (ii). There does not exist a universal rule to

determine the function M , and most often the structure of the problem at hand

provides helpful hints to achieve this task. This will be illustrated below.

The MM Method for the RLS problem
An interesting example of the usage of MM methods is in the class of RLS

problems described in Section 1.2.2. This example will also demonstrate the

intimate relations between the MM approach and the basic approximation model.

Consider the RLS problem from Section 1.2.2 (problem (1.1)), that is, the gen-

eral model (M) with f(x) = ‖Ax − b‖2 and g(x) = λR(x). Since f is a quadratic

function, easy algebra shows that for any x,y:

f(x) = f(y) + 2〈A(x − y),Ay − b〉 + 〈AT A(x − y),x − y〉.

Let D be any matrix satisfying D º AT A. Then

f(x) ≤ f(y) + 2〈A(x − y),Ay − b〉 + 〈D(x − y),x − y〉,

4 MM algorithms also appear under different terminology such as surrogate/transfer function

approach and bound optimization algorithms.
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and hence with

M(x,y) := g(x) + f(y) + 2〈A(x − y),Ay − b〉 + 〈D(x − y),x − y〉,

we have

M(x,x) = F (x) for every x ∈ E,

M(x,y) ≥ F (x) for every x,y ∈ E.

In particular, with D = I (I being the identity matrix), the stated assumption

on D reduces to λmax(A
T A) ≤ 1 and a little algebra shows that M reduces in

that case to

M(x,y) = g(x) + ‖Ax − b‖2 − ‖Ax − Ay‖2 + ‖x − y‖2.

The resulting iterative scheme is given by

xk = argmin
x

M(x,xk−1). (1.13)

This scheme has been used extensively in the signal processing literature (see

bibliographic notes) to devise convergent schemes for solving the RLS problem.

A close inspection of the explanation above indicates that the MM approach

for building iterative schemes to solve (RLS) is in fact equivalent to the basic

approximation model discussed in Section 1.3.1. Indeed, opening the squares in

M(·, ·) and collecting terms we obtain:

M(x,y) = g(x) + ‖x − {y − AT (Ay − b)}‖2 + C(b,y),

where C(b,y) is constant with respect to x. Since

∇f(y) = 2AT (Ay − b),

it follows that (1.13) is just the scheme devised in (1.7) with constant step-size

tk ≡ 1
2 . Further ways to derive MM-based schemes that do not involve quadratic

functions exploit tools and properties such as convexity of the objective; standard

inequalities, e.g., Cauchy-Schwartz; topological properties of f , e.g., Lipschitz

gradient; see the bibliographic notes.

1.3.4 Fermat-Weber Location Problem

In the early 17th century the French mathematician Pierre de Fermat challenged

the mathematicians at the time (relax, this is not the “big” one!) with the fol-

lowing problem:

Fermat’s problem: Given three points on the plane, find another point so that the sum
of the distances to the existing points is minimum.

In the beginning of the 20th century, the German economist Weber studied an

extension of this problem: Given n points on the plane, find another point such

that the weighted sum of the Euclidean distances to these n points is minimal.
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In mathematical terms, given m points a1, . . . ,am ∈ R
n, we wish to find the

location of x ∈ R
n solving

min
x∈Rn

{

f(x) ≡
m

∑

i=1

ωi‖x − ai‖
}

.

In 1937, Weiszfeld proposed an algorithm for solving the Fermat-Weber prob-

lem. This algorithm, although not identical to the proximal gradient method,

demonstrates well the two principles alluded in the previous sections for con-

structing gradient-based methods. On one hand, the algorithm can be viewed as

a fixed point method employed on the optimality condition of the problem and on

the other hand, each iteration can be equivalently constructed via minimization

of a quadratic approximation of the problem at the previous iteration.

Let us begin with the first derivation of Weiszfeld’s method. The optimality

condition of the problem is ∇f(x∗) = 0. Of course we may encounter problems if

x∗ happens to be one of the points ai, because f(x) is not differentiable at these

points, but for the moment, let us assume that this is not the case (see Section

1.8 for how to properly handle nonsmoothness). The gradient of the problem is

given by

∇f(x) =

m
∑

i=1

ωi
x − ai

‖x − ai‖
,

and thus after rearranging the terms, the optimality condition can be written as

x∗
m

∑

i=1

ωi
1

‖x∗ − ai‖
=

m
∑

i=1

ωi
ai

‖x∗ − ai‖
,

or equivalently as

x∗ =

∑m
i=1 ωi

ai

‖x∗−ai‖
∑m

i=1
ωi

‖x∗−ai‖
.

Weiszfeld’s method is nothing else but the fixed point iterations associated with

the latter equation:

xk =

∑m
i=1 ωi

ai

‖xk−1−ai‖
∑m

i=1
ωi

‖xk−1−ai‖
(1.14)

with x0 a given arbitrary point.

The second derivation of Weiszfeld’s method relies on the simple observation

that the general step (1.14) can be equivalently written as

xk = argmin
x

m
∑

i=1

ωi
‖x − ai‖2

‖xk−1 − ai‖
. (1.15)

Therefore, the scheme (1.14) has the representation

xk = argmin
x

h(x,xk−1), (1.16)
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where the auxiliary function h(·, ·) is defined by

h(x,y) :=

m
∑

i=1

ωi
‖x − ai‖2

‖y − ai‖
.

This approximation is completely different from the quadratic approximation

described in Section 1.3.1 and it also cannot be considered as an MM method

since the auxiliary function h(x,y) is not an upper bound of the objective func-

tion f(x).

Despite the above, Weiszfeld’s method, like MM schemes, is a descent method.

This is due to a nice property of the function h which is stated below.

Lemma 1.1. For every x,y ∈ R
n such that y /∈ {a1, . . . ,am}

h(x,x) = f(x), (1.17)

h(x,y) ≥ 2f(x) − f(y). (1.18)

Proof. The first property follows by substitution. To prove the second property

(1.18), note that that for every two real numbers a ∈ R, b > 0, the inequality

a2

b
≥ 2a − b,

holds true. Therefore, for every i = 1, . . . ,m

‖x − ai‖2

‖y − ai‖
≥ 2‖x − ai‖ − ‖y − ai‖.

Multiplying the latter inequality by ωi and summing over i = 1, . . . ,m, (1.18)

follows.

Recall that in order to prove the descent property of an MM method we used

the fact that the auxiliary function is an upper bound of the objective function.

For the Fermat-Weber problem this is not the case, however the new property

(1.18) is sufficient to prove the monotonicity. Indeed,

f(xk−1)
(1.17)
= h(xk−1,xk−1)

(1.16)

≥ h(xk,xk−1)
(1.18)

≥ 2f(xk) − f(xk−1).

Therefore, f(xk−1) ≥ 2f(xk) − f(xk−1), implying the descent property f(xk) ≤
f(xk−1).

As a final note, we mention the fact that Weiszfeld’s method is in fact a

gradient method

xk = xk−1 − tk∇f(xk−1)

with a special choice of the step size tk given by

tk =

(

m
∑

i=1

ωi

‖xk−1 − ai‖

)−1

.
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To conclude, Weiszfeld’s method for the Fermat-Weber problem is one example

of a gradient-based method that can be constructed by either fixed point ideas

or by approximation models. The derivation of the method is different from

what was described in previous sections, thus emphasizing the fact that the

specific structure of the problem can and should be exploited. Another interesting

example related to location and communication will be presented in Section 1.8.

In the forthcoming sections of this chapter we will focus on gradient-based

methods emerging from the fixed point approach, and relying on the quadratic

approximation. A special emphasis will be given to the proximal gradient method

and its accelerations.

1.4 Convergence Results for the Proximal Gradient Method

In this section we make the setting more precise and introduce the main computa-

tional objects, study their properties and establish some key generic inequalities

that serve as principal vehicle to establish convergence and rate of convergence

results of the proximal gradient method and its extensions. The rate of conver-

gence of the proximal gradient method will be established in this section while

the analysis of extensions and/or accelerations of the method will be studied

in the following sections. In the sequel, we make the standing assumption that

there exists an optimal solution x∗ to problem (M) and we set F∗ = F (x∗).

1.4.1 The Prox-Grad Map

Following Section 1.3.1, we adopt the following approximation model for F . For

any L > 0, and any x,y ∈ E, define

QL(x,y) := f(y) + 〈x − y,∇f(y)〉 +
L

2
‖x − y‖2 + g(x),

and

pf,g
L (y) := argmin {QL(x,y) : x ∈ E} .

Ignoring the constant terms in y, this reduces to (see also (1.7)):

pf,g
L (y) = argmin

x∈E

{

g(x) +
L

2
‖x − (y − 1

L
∇f(y))‖2

}

= prox 1
L
(g)

(

y − 1

L
∇f(y)

)

. (1.19)

We call this composition of the proximal map with a gradient step of f the prox-

grad map associated with f and g. The prox-grad map pf,g
L (·) is well defined by

the underlying assumptions on f and g. To simplify notation, we will omit the

superscripts f and g and simply write pL instead of pf,g
L whenever no confusion

arises. First, we recall basic properties of Moreau’s proximal map.
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Lemma 1.2. Let g : E → (−∞,∞] be a closed proper convex function and for

any t > 0, let

gt(z) = min
u

{

g(u) +
1

2t
‖u − z‖2

}

. (1.20)

Then,

1. The minimum in (1.20) is attained at the unique point proxt(g)(z). As a

consequence, the map (I + t∂g)−1 is single valued from E into itself and

proxt(g)(z) = (I + t∂g)−1(z) for every z ∈ E.

2. The function gt(·) is continuously differentiable on E with a 1
t -Lipschitz gra-

dient given by

∇gt(z) =
1

t
(I − proxt(g)(z)) for every z ∈ E.

In particular, if g ≡ δC , with C ⊆ E closed and convex, then proxt(g) = (I +

t∂g)−1 = ΠC , the orthogonal projection on C and we have

gt(z) =
1

2t
‖z − ΠC(z)‖2.

1.4.2 Fundamental Inequalities

We develop here some key inequalities that play a central role in the analysis

of the proximal gradient method and in fact for any gradient-based method.

Throughout the rest of this chapter we assume that ∇f is Lipschitz on E, namely,

there exists L(f) > 0 such that

‖∇f(x) −∇f(y)‖ ≤ L(f)‖x − y‖ for every x,y ∈ E.

For convenience we denote this class by C1,1
L(f). The first result is a well known

important property of smooth functions.

Lemma 1.3 (Descent Lemma). Let f : E → (−∞,∞) be C1,1
L(f). Then for any

L ≥ L(f),

f(x) ≤ f(y) + 〈x − y,∇f(y)〉 +
L

2
‖x − y‖2 for every x,y ∈ E.

The next result gives a useful inequality for the prox-grad map which in turn

can be used in the characterization of pL(·). For a function f we define

lf (x,y) := f(x) − f(y) − 〈x − y,∇f(y)〉.

Lemma 1.4. Let ξ = proxt(g)(z) for some z ∈ E and let t > 0. Then

2t(g(ξ) − g(u)) ≤ ‖u − z‖2 − ‖u − ξ‖2 − ‖ξ − z‖2 for every u ∈ dom g.
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Proof. By definition of ξ we have

ξ = argmin
u

{

g(u) +
1

2t
‖u − z‖2

}

.

Writing the optimality condition for the above minimization problem yields

〈u − ξ, ξ − z + tγ〉 ≥ 0 for every u ∈ dom g, (1.21)

where γ ∈ ∂g(ξ). Since g is convex with γ ∈ ∂g(ξ), we also have

g(ξ) − g(u) ≤ 〈ξ − u,γ〉,

which combined with (1.21) and the fact that t > 0 yields

2t(g(ξ) − g(u) ≤ 2〈u − ξ, ξ − z〉,

and the desired result follows from the identity

2〈u − ξ, ξ − z〉 = ‖u − z‖2 − ‖u − ξ‖2 − ‖ξ − z‖2. (1.22)

Since pL(y) = prox1/L(g)
(

y − 1
L∇f(y)

)

, invoking Lemma 1.4, we now obtain

a useful characterization of pL. For further reference we denote for any y ∈ E:

ξL(y) := y − 1

L
∇f(y). (1.23)

Lemma 1.5. For any x ∈ dom g,y ∈ E, the prox-grad map pL satisfies

2

L
[g(pL(y)) − g(x)] ≤ ‖x − ξL(y)‖2 − ‖x − pL(y)‖2 − ‖pL(y) − ξL(y)‖2,

(1.24)

where ξL(y) is given in (1.23).

Proof. Follows from Lemma 1.4 with t = 1
L , ξ = pL(y) and z = ξL(y) = y −

1
L∇f(y).

Our last result combines all the above to produce the main pillar of the anal-

ysis.

Lemma 1.6. Let x ∈ dom g,y ∈ E and let L > 0 be such that the inequality

F (pL(y)) ≤ Q(pL(y),y). (1.25)

is satisfied. Then

2

L
(F (x) − F (pL(y)) ≥ 2

L
lf (x,y) + ‖x − pL(y)‖2 − ‖x − y‖2.

Furthermore, if f is also convex then

2

L
(F (x) − F (pL(y)) ≥ ‖x − pL(y)‖2 − ‖x − y‖2.
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Proof. Recalling that

pL(y) = argmin
x

QL(x,y),

and using the definition of QL(·, ·) we have:

Q(pL(y),y) = f(y) + 〈pL(y) − y,∇f(y)〉 +
L

2
‖pL(y) − y‖2 + g(pL(y)).

Therefore, using (1.25) it follows that

F (x) − F (pL(y)) ≥ F (x) − QL(pL(y),y)

= f(x) − f(y) − 〈pL(y) − y,∇f(y)〉

−L

2
‖pL(y) − y‖2 + g(x) − g(pL(y))

= lf (x,y) + 〈x − pL(y),∇f(y)〉

−L

2
‖pL(y) − y‖2 + g(x) − g(pL(y)).

Now, invoking Lemma 1.5 and (1.22) we obtain,

2

L
(g(x) − g(pL(y)) ≥ 2〈x − pL(y), ξL(y) − pL(y)〉,

which substituted in the above inequality and recalling that ξL(y) = y −
1
L∇f(y) yields

2

L
(F (x) − F (pL(y)) ≥ 2

L
lf (x,y) + 2〈x − pL(y),y − pL(y)〉 − ‖pL(y) − y‖2

=
2

L
lf (x,y) + ‖pL(y) − y‖2 + 2〈y − x, pL(y) − y〉

=
2

L
lf (x,y) + ‖x − pL(y)‖2 − ‖x − y‖2,

proving the first inequality. When f is convex we have lf (x,y) ≥ 0 and hence

the second inequality follows.

Note that condition (1.25) of Lemma 1.6 is always satisfied for pL(y) with

L ≥ L(f), thanks to the descent lemma (Lemma 1.3).

1.4.3 Convergence of the Proximal Gradient Method: the Convex Case

We consider the proximal gradient method scheme for solving the model (M)

when f is assumed convex. Since g is also assumed convex, the general model

(M) is in this case convex. When L(f) > 0 is known, we can define the proximal

gradient method with a constant stepsize rule.
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Proximal Gradient Method with Constant Stepsize

Input: L = L(f) - A Lipschitz constant of ∇f .

Step 0. Take x0 ∈ E.

Step k. (k ≥ 1) Compute

xk = pL(xk−1)

An evident possible drawback of the above scheme is that the Lipschitz con-

stant L(f) is not always known or not easily computable (e.g., in the example of

Section 1.6 where one needs to know λmax(A
T A)). To overcome this potential

difficulty, we also suggest and analyze the proximal gradient method with an

easy backtracking stepsize rule. This is the next algorithm described below.

Proximal Gradient Method with Backtracking

Step 0. Take L0 > 0, some η > 1 and x0 ∈ E.

Step k. (k ≥ 1) Find the smallest nonnegative integer ik such

that with, L̄ = ηikLk−1:

F (pL̄(xk−1)) ≤ QL̄(pL̄(xk−1),xk−1)). (1.26)

Set Lk = ηikLk−1 and compute

xk = pLk
(xk−1). (1.27)

Remark 1.1. The sequence of function values {F (xk)} produced by the proximal

gradient method with either constant or backtracking stepsize rules is nonincreas-

ing. Indeed, for every k ≥ 1:

F (xk) ≤ QLk
(xk,xk−1) = QLk

(xk−1,xk−1) = F (xk−1),

where Lk is chosen by the backtracking rule or Lk ≡ L(f) whenever the Lipschitz

constant of ∇f is known.

Remark 1.2. Since (1.26) holds for L̄ ≥ L(f), then for the proximal gradient

method with backtracking it holds that Lk ≤ ηL(f) for every k ≥ 1 so that overall

βL(f) ≤ Lk ≤ αL(f), (1.28)

where α = β = 1 for the constant stepsize setting and α = η, β = L0

L(f) for the

backtracking case.

The next result shows that the proximal gradient method (with either of the

two constant stepsize rules) converge at a sublinear rate in function values. Recall

that since for g ≡ 0 and g = δC , our model (M) recovers the basic gradient and

gradient projection methods respectively, the result demonstrates that the pres-

ence of the nonsmooth term g in the model (M) does not deteriorate the same

rate of convergence which is known to be valid for smooth problems.



Gradient-Based Algorithms with Applications to Signal Recovery Problems 19

Theorem 1.1 (Sublinear Rate Of Convergence of the Proximal Gra-

dient Method). Let {xk} be the sequence generated by the proximal gradient

method with either a constant or a backtracking stepsize rule. Then for every

k ≥ 1:

F (xk) − F (x∗) ≤ αL(f)‖x0 − x∗‖2

2k

for every optimal solution x∗.

Proof. Invoking Lemma 1.6 with x = x∗,y = xn and L = Ln+1, we obtain

2

Ln+1
(F (x∗) − F (xn+1)) ≥ ‖x∗ − xn+1‖2 − ‖x∗ − xn‖2,

which combined with (1.28) and the fact that F (x∗) − F (xn+1) ≤ 0 yields

2

αL(f)
(F (x∗) − F (xn+1)) ≥ ‖x∗ − xn+1‖2 − ‖x∗ − xn‖2. (1.29)

Summing this inequality over n = 0, . . . , k − 1 gives

2

αL(f)

(

kF (x∗) −
k−1
∑

n=0

F (xn+1)

)

≥ ‖x∗ − xk‖2 − ‖x∗ − x0‖2. (1.30)

Invoking Lemma 1.6 one more time with x = y = xn, L = Ln+1, yields

2

Ln+1
(F (xn) − F (xn+1)) ≥ ‖xn − xn+1‖2.

Since we have Ln+1 ≥ βL(f) (see (1.28)) and F (xn) − F (xn+1) ≥ 0, it follows

that

2

βL(f)
(F (xn) − F (xn+1)) ≥ ‖xn − xn+1‖2.

Multiplying the last inequality by n and summing over n = 0, . . . k − 1, we obtain,

2

βL(f)

k−1
∑

n=0

(nF (xn) − (n + 1)F (xn+1) + F (xn+1)) ≥
k−1
∑

n=0

n‖xn − xn+1‖2,

which simplifies to:

2

βL(f)

(

−kF (xk) +

k−1
∑

n=0

F (xn+1)

)

≥
k−1
∑

n=0

n‖xn − xn+1‖2. (1.31)

Adding (1.30) and (1.31) times β/α, we get

2k

αL(f)
(F (x∗) − F (xk)) ≥ ‖x∗ − xk‖2 +

β

α

k−1
∑

n=0

n‖xn − xn+1‖2 − ‖x∗ − x0‖2,

and hence it follows that

F (xk) − F (x∗) ≤ αL(f)‖x − x0‖2

2k
.
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This result demonstrates that in order to obtain an ǫ-optimal solution of (M),

that is, a point x̂ such that F (x̂) − F (x∗) ≤ ǫ, one requires at most
⌈

C
ǫ

⌉

itera-

tions, where C = αL(f)‖x0−x
∗‖2

2 . Thus, even for low accuracy requirements, the

proximal gradient method can be very slow and inadequate for most applica-

tions. Later on, in Section 1.5 we will present an acceleration of the proximal

gradient method that is equally simple, but possesses a significantly improved

complexity rate.

It is also possible to prove the convergence of the sequence generated by the

proximal gradient method and not only convergence of function values. This

result relies on the Fejer monotonicity property of the generated sequence.

Theorem 1.2 (Convergence of the Sequence Generated by the Proxi-

mal Gradient Method). Let {xk} be the sequence generated by the proximal

gradient method with either a constant or a backtracking stepsize rule. Then

1. Fejer monotonicity. For every optimal solution x∗ of the model (M) and

any k ≥ 1:

‖xk − x∗‖ ≤ ‖xk−1 − x∗‖. (1.32)

2. The sequence {xk} converges to an optimal solution of problem (M).

Proof. 1. Invoking Lemma 1.6 with x = x∗,y = xk−1 and L = Lk (for the con-

stant stepsize rule), Lk ≡ L(f) we obtain

2

Lk
(F (x∗) − F (xk) ≥ ‖x∗ − xk‖2 − ‖x∗ − xk−1‖2.

Since F (x∗) − F (xk) ≤ 0, property (1.32) follows.

2. By Fejer monotonicity it follows that for a given optimal solution x∗

‖xk − x∗‖ ≤ ‖x0 − x∗‖.

Therefore, the sequence {xk} is bounded. To prove the convergence of {xk}, it

only remains to show that all converging subsequences have the same limit. Sup-

pose in contradiction that there exist two subsequences {xkj
}, {xnj

} converging

to different limits x∞,y∞ respectively (x∞ 6= y∞). Since F (xkj
), F (xnj

) → F∗
(recalling that F∗ is the optimal function value), it follows that x∞ and y∞ are

optimal solutions of (M). Now, by Fejer monotonicity of the sequence {xk}, it

follows that the sequence {‖xk − x∞‖} is bounded and nonincreasing and thus

has a limit limk→∞ ‖xk − x∞‖ = l1. However, we also have limk→∞ ‖xk − x∞‖ =

limj→∞ ‖xkj
− x∞‖ = 0, and limk→∞ ‖xk − x∞‖ = limj→∞ ‖xnj

− x∞‖ = ‖y∞ −
x∞‖, so that l1 = 0 = ‖x∞ − y∞‖, which is obviously a contradiction.
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1.4.4 The Nonconvex Case

When f is nonconvex, the convergence result is of course weaker. Convergence

to a global minimum is out of reach. Recall that for a fixed L > 0, the condition

x∗ = pL(x∗) is a necessary condition for x∗ to be an optimal solution of (M).

Therefore, the convergence of the sequence to a stationary point can be measured

by the quantity ‖x − pL(x)‖. This is done in the next result.

Theorem 1.3 (Convergence of the Proximal Gradient Method in the

Nonconvex Case). Let {xk} be the sequence generated by the proximal gradient

method with either a constant or a backtracking stepsize rule. Then for every

n ≥ 1 we have

γn ≤ 1√
n

(

2(F (x0) − F∗)

βL(f)

)1/2

,

where

γn := min
1≤k≤n

‖xk−1 − pLk
(xk−1)‖.

Moreover, ‖xk−1 − pLk
(xk−1)‖ → 0 as k → ∞.

Proof. Invoking Lemma 1.6 with x = y = xk−1, L = Lk and using the relation

xk = pLk
(xk−1), it follows that

2

Lk
(F (xk−1) − F (xk)) ≥ ‖xk−1 − xk‖2, (1.33)

where we also used the fact that lf (x,x) = 0. By (1.28), Lk ≥ βL(f), which

combined with (1.33) results with the inequality

βL(f)

2
‖xk−1 − xk‖2 ≤ F (xk−1) − F (xk).

Summing over k = 1, . . . , n we obtain

βL(f)

2

n
∑

k=1

‖xk−1 − xk‖2 ≤ F (x0) − F (xn),

which readily implies that ‖xk−1 − pLk
(xk−1)‖ → 0 and that

min
1≤k≤n

‖xk−1 − pLk
(xk−1)‖2 ≤ 2(F (x0) − F∗)

βL(f)n
.

Remark 1.3. If g ≡ 0, the proximal gradient method reduces to the gradient

method for the unconstrained nonconvex problem

min
x∈E

f(x).
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In this case

xk−1 − pLk
(xk−1) = xk−1 −

(

xk−1 −
1

Lk
∇f(xk−1)

)

=
1

Lk
∇f(xk−1),

and Theorem 1.3 reduces to

min
1≤k≤n

‖∇f(xk−1)‖ ≤ 1√
n

(

2α2L(f)(F (x0) − F∗)

β

)1/2

,

recovering the classical rate of convergence of the gradient method, i.e.,

∇f(xk) → 0 at a rate of O(1/
√

k).

1.5 A Fast Proximal Gradient Method

1.5.1 Idea of the method

In this section we return to the convex scenario, that is we assume that f is

convex. The basic gradient method relies on using information on the previous

iterate only. On the other hand, the so-called conjugate gradient method does

use “memory”, i.e., it generates steps which exploit the two previous iterates,

and has been known to often improve the performance of basic gradient methods.

Similar ideas have been followed to handle nonsmooth problems, in particular

the so-called R-algorithm of Shor (see bibliography notes).

However, such methods have not been proven to exhibit a better complexity

rate than O(1/k), furthermore, they also often involve some matrix operations

that can be problematic in large-scale applications.

Therefore, here the objective is double, namely to build a gradient-based

method that

i. keeps the simplicity of the proximal gradient method to solve model (M).

ii. is proven to be significantly faster, both theoretically and practically.

Both tasks will be achieved by considering again the basic model (M) of Section

1.2 in the convex case. Specifically, we will build a method that is very similar

to the proximal gradient method and is of the form

xk = pL(yk),

where the new point yk will be smartly chosen in terms of the two previous

iterates {xk−1,xk−2} and is very easy to compute. Thus, here also we follow the

idea of building a scheme with memory, but which is much simpler than the

methods alluded above, and as shown below will be proven to exhibit a faster

rate of convergence.

1.5.2 A Fast Proximal Gradient Method using Two Past Iterations

We begin by presenting the algorithm with a constant stepsize.
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Fast Proximal Gradient Method with Constant Stepsize

Input: L = L(f) - A Lipschitz constant of ∇f .

Step 0. Take y1 = x0 ∈ E, t1 = 1.

Step k. (k ≥ 1) Compute

xk = pL(yk), (1.34)

tk+1 =
1 +

√

1 + 4t2k
2

, (1.35)

yk+1 = xk +

(

tk − 1

tk+1

)

(xk − xk−1). (1.36)

The main difference between the above algorithm and the proximal gradient

method, is that that the prox-grad operation pL(·) is not employed on the pre-

vious point xk−1, but rather at the point yk which uses a very specific linear

combination of the previous two points {xk−1,xk−2}. Obviously the main com-

putational effort in both the basic and fast versions of the proximal gradient

method remains the same, namely in the operator pL. The requested additional

computation for the fast proximal gradient method in the steps (1.35) and (1.36)

is clearly marginal. The specific formula for (1.35) emerges from the recursive

relation that will be established below in Lemma 1.7.

For the same reasons already explained in Section 1.4.3, we will also analyze

the fast proximal gradient method with a backtracking stepsize rule, which we

now explicitly state.

Fast Proximal Gradient Method with Backtracking

Step 0. Take L0 > 0, some η > 1 and x0 ∈ E. Set y1 = x0, t1 = 1.

Step k. (k ≥ 1) Find the smallest nonnegative integer ik such that with

L̄ = ηikLk−1:

F (pL̄(yk)) ≤ QL̄(pL̄(yk),yk).

Set Lk = ηikLk−1 and compute

xk = pLk
(yk),

tk+1 =
1 +

√

1 + 4t2k
2

,

yk+1 = xk +

(

tk − 1

tk+1

)

(xk − xk−1).

Note that the upper and lower bounds on Lk given in Remark 1.2 still hold true

for the fast proximal gradient method, namely

βL(f) ≤ Lk ≤ αL(f).
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The next result provides the key recursive relation for the sequence {F (xk) −
F (x∗)} that will imply the better complexity rate O(1/k2). As we shall see,

Lemma 1.6 of Section 1.4.2 plays a central role in the proofs.

Lemma 1.7. The sequences {xk,yk} generated via the fast proximal gradient

method with either a constant or backtracking stepsize rule satisfy for every k ≥ 1

2

Lk
t2kvk − 2

Lk+1
t2k+1vk+1 ≥ ‖uk+1‖2 − ‖uk‖2,

where

vk := F (xk) − F (x∗), (1.37)

uk := tkxk − (tk − 1)xk−1 − x∗. (1.38)

Proof. Invoking Lemma 1.6 with x = t−1
k+1x

∗ + (1 − t−1
k+1)xk,y = yk+1 and L =

Lk+1 we have

2

Lk+1
(F (t−1

k+1x
∗ + (1 − t−1

k+1)xk) − F (xk+1)) (1.39)

≥ 1

t2k+1

{‖tk+1xk+1 − (x∗ + (tk+1 − 1)xk)‖2 − ‖tk+1yk+1 − (x∗ + (tk+1 − 1)xk)‖2}.

By the convexity of F we also have

F (t−1
k+1x

∗ + (1 − t−1
k+1)xk) ≤ t−1

k+1F (x∗) + (1 − t−1
k+1)F (xk),

which combined with (1.39) yields

2

Lk+1
((1 − t−1

k+1)vk − vk+1) ≥
1

t2k+1

{‖tk+1xk+1 − (x∗ + (tk+1 − 1)xk)‖2

−‖tk+1yk+1 − (x∗ + (tk+1 − 1)xk)‖2}.

Using the relation t2k = t2k+1 − tk+1, the latter is equivalent to

2

Lk+1
(t2k+1vk+1 − t2kvk) ≥ ‖uk+1‖2 − ‖uk‖2,

where we used the definition of uk (1.38) and the definition of yk+1 (1.36) to

simplify the righthand side. Since Lk+1 ≥ Lk, the desired result follows.

We also need the following trivial facts.

Lemma 1.8. Let {ak, bk} be positive sequences of reals satisfying

ak − ak+1 ≥ bk+1 − bk,∀k ≥ 1, with a1 + b1 ≤ c, c > 0.

Then, ak ≤ c for every k ≥ 1.

Lemma 1.9. The positive sequence {tk} generated by the fast proximal gradient

method via (1.35) with t1 = 1 satisfies tk ≥ (k + 1)/2 for all k ≥ 1.
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We are now ready to prove the promised improved complexity result for the

fast proximal gradient method.

Theorem 1.4. Let {xk}, {yk} be generated by the fast proximal gradient method

with either a constant or a backtracking stepsize rule. Then for any k ≥ 1

F (xk) − F (x∗) ≤ 2αL(f)‖x0 − x∗‖2

(k + 1)2
, ∀x∗ ∈ X∗, (1.40)

where α = 1 for the constant stepsize setting and α = η for the backtracking

stepsize setting.

Proof. Let us define the following quantities:

ak :=
2

Lk
t2kvk, bk := ‖uk‖2, c := ‖y1 − x∗‖2 = ‖x0 − x∗‖2,

and recall (c.f. Lemma 1.7) that vk := F (xk) − F (x∗). Then, by Lemma 1.7 we

have for every k ≥ 1

ak − ak+1 ≥ bk+1 − bk,

and hence assuming that a1 + b1 ≤ c holds true, invoking Lemma 1.8, we obtain

that

2

Lk
t2kvk ≤ ‖x0 − x∗‖2,

which combined with tk ≥ (k + 1)/2 (by Lemma 1.9) yields

vk ≤ 2Lk‖x0 − x∗‖2

(k + 1)2
.

Utilizing the upper bound on Lk given in (1.28), the desired result (1.40) follows.

Thus, all that remains is to prove the validity of the relation a1 + b1 ≤ c. Since

t1 = 1, and using the definition of uk (1.38), we have here:

a1 =
2

L1
t1v1 =

2

L1
v1, b1 = ‖u1‖2 = ‖x1 − x∗‖2.

Applying Lemma 1.6 to the points x := x∗,y := y1 with L = L1, we get

2

L1
(F (x∗) − F (x1)) ≥ ‖x1 − x∗‖2 − ‖y1 − x∗‖2, (1.41)

namely

2

L1
v1 ≤ ‖y1 − x∗‖2 − ‖x1 − x∗‖2,

that is, a1 + b1 ≤ c holds true.

The number of iterations of the proximal gradient method required to obtain an

ε-optimal solution, that is an x̃ such that F (x̃) − F∗ ≤ ε, is at most ⌈C/
√

ε − 1⌉
where C =

√

2αL(f)‖x0 − x∗‖2, and which clearly improves the convergence of
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the basic proximal gradient method. In Section 1.6 we illustrate the practical

value of this theoretical global convergence rate estimate on the l1-based reg-

ularization problem and demonstrate its applicability in wavelet-based image

deblurring.

1.5.3 Monotone versus Nonmonotone

The fast proximal gradient method, as opposed to the standard proximal gra-

dient one, is not a monotone algorithm, that is, the function values are not

guaranteed to be nonincreasing. Monotonicity seems to be a desirable property

of minimization algorithms, but it is not required in the proof of convergence of

the fast proximal gradient method. Moreover, numerical simulations show that

in fact the algorithm is “almost monotone”, that is, except for very few iterations

the algorithm exhibits a monotonicity property.

However, for some applications the prox operation cannot be computed

exactly, see for example the total-variation based deblurring example in Sec-

tion 1.7. In these situations, monotonicity becomes an important issue. It might

happen that due to the inexact computations of the prox map, the algorithm

might become extremely non-monotone and in fact can even diverge! This is

illustrated in the numerical examples of Section 1.7.3. This is one motivation

to introduce a monotone version of the fast proximal gradient method, which is

now explicitly stated in the constant stepsize rule setting.

Monotone Fast Proximal Gradient Method

Input: L ≥ L(f) - An upper bound on the Lipschitz constant of ∇f .

Step 0. Take y1 = x0 ∈ E, t1 = 1.

Step k. (k ≥ 1) Compute

zk = pL(yk),

tk+1 =
1 +

√

1 + 4t2k
2

, (1.42)

xk = argmin{F (x) : x = zk,xk−1} (1.43)

yk+1 = xk +

(

tk
tk+1

)

(zk − xk) +

(

tk − 1

tk+1

)

(xk − xk−1). (1.44)

Clearly, with this modification, we have now a monotone algorithm which

is easily seen to be as simple as the fast proximal gradient method regarding

its computational steps. Moreover, it turns out that this modification does not

affect the theoretical rate of convergence. Indeed, the convergence rate result for

the monotone version remains the same as the convergence rate result of the

non-monotone method:
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Theorem 1.5. Let {xk} be generated by the monotone proximal gradient

method. Then for any k ≥ 1 and any optimal solution x∗:

F (xk) − F (x∗) ≤ 2L(f)‖x0 − x∗‖2

(k + 1)2
.

1.6 Algorithms for l1-based Regularization Problems

1.6.1 Problem Formulation

In this section we return to the RLS problem discussed in Section 1.2.2. We

concentrate on the on the l1-based regularization problem in which one seeks to

find the solution of

min
x

{F (x) ≡ ‖Ax − b‖2 + λ‖x‖1}, (1.45)

which is the general model (M) with f(x) = ‖Ax − b‖2, g(x) = λ‖x‖1. In image

deblurring applications, and in particular in wavelet-based restoration methods,

A is often chosen as A = RW where R is the blurring matrix and W contains a

wavelet basis (i.e., multiplying by W corresponds to performing inverse wavelet

transform). The vector x contains the coefficients of the unknown image. The

underlying philosophy in dealing with the l1 norm regularization criterion is that

most images have a sparse representation in the wavelet domain. The presence

of the l1 term in (1.45) is used to induce sparsity of the solution. Another impor-

tant advantage of the l1-based regularization (1.45) over the l2-based Tikhonov

regularization is that as opposed to the latter, l1 regularization is less sensitive

to outliers, which in image processing applications correspond to sharp edges.

The convex optimization problem (1.45) can be cast as a second order cone pro-

gramming problem and thus could be solved via interior point methods. However,

in most applications, e.g., in image deblurring, the problem is not only large scale

(can reach millions of decision variables), but also involves dense matrix data,

which often precludes the use and potential advantage of sophisticated interior

point methods. This motivated the search for simpler gradient-based algorithms

for solving (1.45), where the dominant computational effort is relatively cheap

matrix-vector multiplications involving A and AT .

1.6.2 ISTA: Iterative Shrinkage/Thresholding Algorithm

One popular method to solve problem (1.45) is to employ the proximal gradient

method. The proximal map associated with g(x) = λ‖x‖1 can be analytically

computed:

proxt(g)(y) = argmin
u

{

1

2t
‖u − y‖2 + λ‖u‖1

}

= T λt(y),
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where T α : R
n → R

n is the shrinkage or soft threshold operator defined by

T α(x)i = (|xi| − α)+sgn (xi). (1.46)

The arising method is the so-called iterative shrinkage/thresholding algorithm

(ISTA)5, which we now explicitly write for the constant stepsize setting.

ISTA with Constant Stepsize

Input: L = L(f) - A Lipschitz constant of ∇f .

Step 0. Take x0 ∈ E.

Step k. (k ≥ 1) Compute

xk = T λ/L

(

xk−1 −
2

L
AT (Axk−1 − b)

)

We note that the Lipschitz constant of the gradient of f(x) = ‖Ax − b‖2

is given by L(f) = 2λmax(A
T A). It is of course also possible to incorporate a

backtracking stepsize rule in ISTA as defined in Section 1.4.3.

1.6.3 FISTA: Fast ISTA

The function values of the sequence generated by ISTA, which is just a special

case of the proximal gradient method, converge to the optimal function value at

a rate of O(1/k), k being the iteration index. An acceleration of ISTA can be

achieved by invoking the fast proximal gradient method for the l1-based regular-

ization problem (1.45) discussed in Section 1.5. The fast version ISTA algorithm

is called FISTA and is now explicitly stated.

FISTA with constant stepsize

Input: L = L(f) - A Lipschitz constant of ∇f .

Step 0. Take y1 = x0 ∈ E, t1 = 1.

Step k. (k ≥ 1) Compute

xk = T λ/L

(

yk − 2

L
AT (Ayk − b)

)

,

tk+1 =
1 +

√

1 + 4t2k
2

,

yk+1 = xk +

(

tk − 1

tk+1

)

(xk − xk−1).

Invoking Theorem 1.4, the rate of convergence of FISTA is O(1/k2) – a sub-

stantial improvement of the rate of convergence of ISTA. Next, we demonstrate

5 Other names in the signal processing literature include for example threshold Landweber

method, iterative denoising, deconvolution algorithms.
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original blurred and noisy

Figure 1.1 Blurring of the cameraman.

through representative examples the practical value of this theoretical global con-

vergence rate estimate derived for FISTA on the l1 wavelet-based regularization

problem (1.45).

1.6.4 Numerical Examples

Consider the 256 × 256 camerman test image whose pixels were scaled into the

range between 0 and 1. The image went through a Gaussian blur of size 9 × 9

and standard deviation 4 followed by a an additive zero-mean white Gaussian

noise with standard deviation 10−3. The original and observed images are given

in Figure 1.1.

For these experiments we assume reflexive (Neumann) boundary conditions.

We then tested ISTA and FISTA for solving problem (1.45) where b represents

the (vectorized) observed image and A = RW where R is the matrix repre-

senting the blur operator and W is the inverse of a three stage Haar wavelet

transform. The regularization parameter was chosen to be λ = 2e-5 and the ini-

tial image was the blurred image. The Lipschitz constant was computable in this

example (and those in the sequel) since the eigenvalues of the matrix AT A can

be easily calculated using the two dimensional cosine transform.

Iterations 100 and 200 are described in Figure 1.2. The function value at iter-

ation k is denoted by Fk. The images produced by FISTA are of a better quality

than those created by ISTA. The function value of FISTA was consistently lower

than the function value of ISTA. We also computed the function values produced

after 1000 iterations for ISTA and FISTA which were respectively 2.45e-1 and

2.23e-1. Note that the function value of ISTA after 1000 iterations is still worse

(that is, larger) than the function value of FISTA after 100 iterations.
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ISTA: F100 = 5.44e-1 ISTA: F200 = 3.60e-1

FISTA: F100 = 2.40e-1 FISTA: F200 = 2.28e-1

Figure 1.2 Iterations of ISTA and FISTA methods for deblurring of the cameraman.

From the previous example it seems that practically FISTA is able to reach

accuracies that are beyond the capabilities of ISTA. To test this hypothesis we

also considered an example in which the optimal solution is known. For that sake

we considered a 64 × 64 image which undergoes the same blur operator as in the

previous example. No noise was added and we solved the least squares problem,

that is λ = 0. The optimal solution of this problem is zero. The function values

of the two methods for 10000 iterations are described in Figure 1.3. The results

produced by FISTA are better than those produced by ISTA by several orders

of magnitude and clearly demonstrate the effective performance of FISTA. One

can see that after 10000 iterations FISTA reaches accuracy of approximately

10−7 while ISTA reach accuracy of only 10−3. Finally, we observe that the values

obtained by ISTA at iteration 10000 was already obtained by FISTA at iterations

275.
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Figure 1.3 Comparison of function values errors F (xk) − F (x∗) of ISTA and FISTA.

1.7 TV-based Restoration Problems

1.7.1 Problem Formulation

Consider images that are defined on rectangle domains. Let b ∈ R
m×n be an

observed noisy image, x ∈ R
m×n the true (original) image to be recovered, A

an affine map representing a blurring operator, and w ∈ R
m×n a corresponding

additive unknown noise satisfying the relation:

b = A(x) + w. (1.47)

The problem of finding an x from the above relation is a special case of the basic

discrete linear inverse problem discussed in Section 1.2.2. Here we are concerned

with total variation (TV)-based regularization, which, given A and b seeks to

recover x by solving the convex nonsmooth minimization problem

min
x

{‖A(x) − b‖2
F + 2λTV(x)}, (1.48)

where λ > 0 and TV(·) stands for the discrete total variation function. The

underlying Euclidean space E comprises all m × n matrices with the usual inner

product: 〈a,b〉 = Tr(bT a) and the induced Frobenius norm ‖ · ‖F . The identity

map will be denoted by I and with A ≡ I problem (1.48) reduces to the so-called

denoising problem.
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Two popular choices for the discrete TV are the isotropic TV defined by

x ∈ R
m×n, TVI(x) =

∑m−1
i=1

∑n−1
j=1

√

(xi,j − xi+1,j)2 + (xi,j − xi,j+1)2

+
∑m−1

i=1 |xi,n − xi+1,n| +
∑n−1

j=1 |xm,j − xm,j+1|

and the l1-based, anisotropic TV defined by

x ∈ R
m×n, TVl1(x) =

∑m−1
i=1

∑n−1
j=1 {|xi,j − xi+1,j | + |xi,j − xi,j+1|}

+
∑m−1

i=1 |xi,n − xi+1,n| +
∑n−1

j=1 |xm,j − xm,j+1|,

where in the above formulas we assumed the (standard) reflexive boundary con-

ditions:

xm+1,j − xm,j = 0, ∀ j and xi,n+1 − xi,n = 0, ∀i.

1.7.2 TV-based Denoising

As was already mentioned, when A = I, problem (1.48) reduces to the denoising

problem

min ‖x − b‖2
F + 2λTV(x), (1.49)

where the nonsmooth regularizer function TV is either the isotropic TVI or

anisotropic TVl1 function. Although this problem can be viewed as a special case

of the general model (M) by substituting f(x) = ‖x − b‖2 and g(x) = 2λTV(x),

it is not possible to solve it via the proximal gradient method (or its extensions).

This is due to the fact that computation of the prox map amounts to solving a

denoising problem of the exact same form.

A common approach for solving the denoising problem is to formulate its dual

problem and solve it via a gradient-based method. In order to define the dual

problem, some notation is in order

r P is the set of matrix-pairs (p,q) where p ∈ R
(m−1)×n and q ∈ R

m×(n−1) that

satisfy

p2
i,j + q2

i,j ≤ 1, i = 1, . . . ,m − 1, j = 1, . . . , n − 1,

|pi,n| ≤ 1, i = 1, . . . ,m − 1,

|qm,j | ≤ 1, j = 1, . . . , n − 1.

r The linear operation L : R
(m−1)×n × R

m×(n−1) → R
m×n is defined by the for-

mula

L(p,q)i,j = pi,j + qi,j − pi−1,j − qi,j−1, i = 1, . . . ,m, j = 1, . . . , n,

where we assume that p0,j = pm,j = qi,0 = qi,n ≡ 0 for every i = 1, . . . ,m and

j = 1, . . . , n.

The formulation of the dual problem is now recalled.
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Proposition 1.1. Let (p,q) ∈ P be the optimal solution of the problem

max
(p,q)∈P

−‖b − λL(p,q)‖2
F . (1.50)

Then the optimal solution of (1.49) with TV = TVI is given by

x = b − λL(p,q)). (1.51)

Proof. First note that the relations
√

x2 + y2 = max
p1,p2

{p1x + p2y : p2
1 + p2

2 ≤ 1},

|x| = max
p

{px : |p| ≤ 1}

hold true. Hence, we can write

TVI(x) = max
(p,q)∈P

T (x,p,q),

where

T (x,p,q) =
∑m−1

i=1

∑n−1
j=1 [pi,j(xi,j − xi+1,j) + qi,j(xi,j − xi,j+1)]

+
∑m−1

i=1 pi,n(xi,n − xi+1,n) +
∑n−1

j=1 qm,j(xm,j − xm,j+1).

With this notation we have

T (x,p,q) = Tr(L(p,q)T x).

The problem (1.49) therefore becomes

min
x

max
(p,q)∈P

{

‖x − b‖2
F + 2λTr(L(p,q)T x)

}

. (1.52)

Since the objective function is convex in x and concave in p,q, we can exchange

the order of the minimum and maximum and obtain the equivalent formulation

max
(p,q)∈P

min
x

{

‖x − b‖2
F + 2λTr(L(p,q)T x)

}

,

The optimal solution of the inner minimization problem is

x = b − λL(p,q).

Plugging the above expression for x back into (1.52), and omitting constant

terms, we obtain the dual problem (1.50).

Remark 1.4. The only difference in the dual problem corresponding to the case

TV = TVl1 (in comparison to the case TV = TVI), is that the minimization in

the dual problem is not done over the set P, but over the set P1 which consists

of all pairs of matrices (p,q) where p ∈ R
(m−1)×n and q ∈ R

m×(n−1) satisfying

|pi,j | ≤ 1, i = 1, . . . ,m − 1, j = 1, . . . , n,

|qi,j | ≤ 1, i = 1, . . . ,m, j = 1, . . . , n − 1.
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Figure 1.4 Accuracy of FGP compared with GP.

The dual problem (1.50), when formulated as a minimization problem:

min
(p,q)∈P

‖b − λL(p,q)‖2
F (1.53)

falls into the category of model (M) by taking f to be the objective function of

(1.53) and g ≡ δP – the indicator function of P. The objective function, being

quadratic, has a Lipschitz gradient and as a result we can invoke either the prox-

imal gradient method, which coincides with the gradient projection method in

this case, or the fast proximal gradient method. The exact details of compu-

tations of the Lipschitz constant and of the gradient are omitted. The slower

method will be called GP (for gradient projection) and the faster method will

be called FGP (for fast gradient projection).

To demonstrate the advantage of FGP over GP, we have taken a small 10 ×
10 image for which we added normally distributed white noise with standard

deviation 0.1. The parameter λ was chosen as 0.1. Since the problem is small, we

were able to find its exact solution. Figure 1.4 shows the the difference F (xk) − F∗
(in log scale) for k = 1, . . . , 100.

Clearly, FGP reaches greater accuracies than those obtain by GP. After 100

iterations FGP reached an accuracy of 10−5 while GP reached an accuracy of

only 10−2.5. Moreover, the function value reached by GP at iteration 100 was

already obtained by GP after 25 iterations. Another interesting phenomena can

be seen at iterations 81 and 82 and is marked on the figure. As opposed to the GP

method, FGP is not a monotone method. This does not have an influence on the

convergence of the sequence and we see that in most iterations there is a decrease

in the function value. In the next section, we will see that this non-monotonicity
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phenomena can have a severe impact on the convergence of a related two-steps

method for the image deblurring problem.

1.7.3 TV-based Deblurring

Consider now the TV-based deblurring optimization model

min ‖A(x) − b‖2
F + 2λTV(x), (1.54)

where x ∈ R
m×n is the original image to be restored, A : R

m×n → R
m×n is a

linear transformation representing some blurring operator, b is the noisy and

blurred image, and λ > 0 is a regularization parameter. Obviously problem (1.54)

is within the setting of the general model (M) with

f(x) = ‖A(x) − b‖2, g(x) = 2λTV(x), and E = R
m×n.

Deblurring is of course more challenging than denoising. Indeed, to construct

an equivalent smooth optimization problem for (1.54) via its dual along the

approach of Section 1.7.2, it is easy to realize that one would need to invert the

operator ATA, which is clearly an ill-posed problem, i.e., such an approach is not

viable. This is in sharp contrast to the denoising problem, where a smooth dual

problem was constructed, and was the basis of efficient solution methods. Instead,

we suggest to solve the deblurring problem by the fast proximal gradient method.

Each iteration of the method will require the computation of the prox map which

in this case amounts to solving a denoising problem. More precisely, if denote

the optimal solution of the constrained denoising problem (1.49) with observed

image b, regularization parameter λ by DC(b, λ), then with this notation, the

prox-grad map pL(·) can be simply written as:

pL(Y) = DC

(

Y − 2

L
AT (A(Y) − b),

2λ

L

)

.

Thus, each iteration involves the solution of a subproblem that should be solved

using an iterative method such as GP or FGP. Note also that this is in contrast

to the situation with the simpler l1-based regularization problem where ISTA

or FISTA requires only the computation of a gradient step and a shrinkage,

which in that case is an explicit operation, see Section 1.6. The fact that the

prox operation does not have an explicit expression but is rather computed via

an iterative algorithm can have a profound impact on the performance of the

method. This is illustrated in the following section.

1.7.4 Numerical Example

Consider a 64 × 64 image that was cut from the cameraman test image (whose

pixels are scaled to be between 0 and 1). The image goes through a Gaussian

blur of size 9 × 9 and standard deviation 4 followed by a an additive zero-mean

white Gaussian noise with standard deviation 10−2. The regularization parameter
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Figure 1.5 Function values of the first 100 iterations of FISTA. The denoising
subproblems are solved using FGP (left image) or GP (right image) with
N = 5, 10, 20.

λ is chosen to be 0.01. We adopt the same terminology used for the l1-based

regularization and use the name ISTA the proximal gradient method and the

name FISTA for the fast proximal gradient method.

Figure 1.5 presents three graphs showing the function values of the FISTA

method applied to (1.54) in which the denoising subproblems are solved using

FGP with number of FGP iterations, denoted by N , taking the values 5, 10, 20.

In the left image the denoising subproblems are solved using FGP and in the

right image the denoising subproblems are solved using GP. Clearly FISTA in

combination with either GP or FGP diverges when N = 5, although it seems that

the combination FISTA/GP is worse than FISTA/FGP. For N = 10 FISTA/FGP

seems to converge to a value which is a bit higher than the one obtained by the

same method with N = 20 and FISTA/GP with N = 10 is still very much erratic

and does not seem to converge.

From this example we can conclude that (1) FISTA can diverge when the

subproblems are not solved exactly and (2) the combination FISTA/FGP seems

to be better than FISTA/GP. The latter conclusion is another numerical evidence

(in addition to the results of Section 1.6) to the superiority of FGP over GP. The

first conclusion motivates us to use the monotone version of FISTA, which we

term MFISTA and which was introduced in Section 1.5.3 for the general model

(M). We ran MFISTA on the exact same problem and the results are shown

in Figure 1.6. Clearly the monotone version of FISTA seems much more robust

and stable. Therefore, it seems that there is a clear advantage in using MFISTA

instead of FISTA when the prox map cannot be computed exactly.
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Figure 1.6 Function values of the first 100 iterations of MFISTA. The denoising
subproblems are solved using either FGP (left image) or GP (right image) with
N = 5, 10, 20.

1.8 The Source Localization Problem

1.8.1 Problem Formulation

Consider the problem of locating a single radiating source from noisy range mea-

surements collected using a network of passive sensors. More precisely, consider

an array of m sensors, and let aj ∈ R
n denote the coordinates of the jth sensor6.

Let x ∈ R
n denote the unknown source’s coordinate vector, and let dj > 0 be a

noisy observation of the range between the source and the jth sensor:

dj = ‖x − aj‖ + εj , j = 1, . . . ,m, (1.55)

where ε = (ε1, . . . , εm)T denotes the unknown noise vector. Such observations

can be obtained for example from the time-of-arrival measurements in a constant-

velocity propagation medium. The source localization problem is the following:

The Source Localization Problem: Given the observed range mea-

surements dj > 0, find a “good” approximation of the source x.

The source localization problem has received significant attention in the signal

processing literature and specifically in the field of mobile phones localization.

There are many possible mathematical formulations for the source localization

problem. A natural and common approach is to consider a least squares criterion

6 in practical applications n = 2 or 3.
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in which the optimization problems seeks to minimize the squared sum of errors:

(SL): min
x∈Rn







f(x) ≡
m

∑

j=1

(‖x − aj‖ − dj)
2







. (1.56)

The above criterion also has a statistical interpretation. When ε follows a

Gaussian distribution with a covariance matrix proportional to the identity

matrix, the optimal solution of (SL) is in fact the maximum likelihood esti-

mate.

The SL problem is a nonsmooth nonconvex problem and as such is not an

easy problem to solve. In the following we will show how to construct two sim-

ple methods using the concepts explained in Section 1.3. The derivation of the

algorithms is inspired by Weiszfeld’s algorithm for the Fermat-Weber problem

which was described in Section 1.3.4. Throughout this section, we denote the set

of sensors by A := {a1, . . . ,am}.

1.8.2 The Simple Fixed Point Algorithm: Definition and Analysis

Similarly to Weiszfeld’s method, our starting point for constructing a fixed point

algorithm to solve the SL problem is to write the optimality condition and

“extract” x. Assuming that x /∈ A we have that x is a stationary point for

problem (SL) if and only if

∇f(x) = 2
m

∑

j=1

(‖x − aj‖ − dj)
x − aj

‖x − aj‖
= 0, (1.57)

which can be written as

x =
1

m







m
∑

j=1

aj +
m

∑

j=1

dj
x − aj

‖x − aj‖







.

The latter relation calls for the following fixed point algorithm which we term

the standard fixed point (SFP) scheme:

Algorithm SFP:

xk =
1

m







m
∑

j=1

aj +
m

∑

j=1

dj
xk−1 − aj

‖xk−1 − aj‖







, k ≥ 1. (1.58)

Like in Weiszfeld’s algorithm, the SFP scheme is not well defined if xk ∈ A for

some k. In the sequel we will state a result claiming that by carefully selecting

the initial vector x0 we can guarantee that the iterates are not in the sensors set

A, therefore establishing that the method is well defined.

Before proceeding with the analysis of the SFP method, we record the fact that

the SFP scheme is actually a gradient method with a fixed step size.
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Proposition 1.2. Let {xk} be the sequence generated by the SFP method (1.58)

and suppose that xk /∈ A for all k ≥ 0. Then for every k ≥ 1:

xk = xk−1 −
1

2m
∇f(xk−1). (1.59)

Proof. Follows by a straightforward calculation, using the gradient of f computed

in (1.57).

It is interesting to note that the SFP method belongs to the class of MM

methods (see Section 1.3.3). That is, there exists a function h(·, ·) such that

h(x,y) ≥ f(x) and h(x,x) = f(x) for which

xk = argmin
x

h(x,xk−1).

The only departure from the philosophy of MM methods is that special care

should be given to the sensors set A. We define the auxiliary function h as

h(x,y) ≡
m

∑

j=1

‖x − aj − djrj(y)‖2, for every x ∈ R
n,y ∈ R

n \ A, (1.60)

where

rj(y) ≡ y − aj

‖y − aj‖
, j = 1, . . . ,m.

Note that for every y /∈ A, the following relations hold for every j = 1, . . . ,m:

‖rj(y)‖ = 1, (1.61)

(y − aj)
T rj(y) = ‖y − aj‖. (1.62)

In Lemma 1.10 below, we prove the key properties of the auxiliary function h

defined in (1.60). These properties verify the fact that this is in fact an MM

method.

Lemma 1.10.(a) h(x,x) = f(x) for every x /∈ A.

(b) h(x,y) ≥ f(x) for every x ∈ R
n,y ∈ R

n \ A.

(c) If y /∈ A then

y − 1

2m
∇f(y) = argmin

x∈Rn

h(x,y). (1.63)
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Proof. (a) For every x /∈ A,

f(x) =

m
∑

j=1

(‖x − aj‖ − dj)
2

=

m
∑

j=1

(‖x − aj‖2 − 2dj‖x − aj‖ + d2
j )

(1.61),(1.62)
=

m
∑

j=1

(‖x − aj‖2 − 2dj(x − aj)
T rj(x) + d2

j‖rj(x)‖2) = h(x,x),

where the last equation follows from (1.60).

(b) Using the definition of f and h given respectively in (1.56),(1.60), and the

fact (1.61), a short computation shows that for every x ∈ R
n,y ∈ R

n \ A,

h(x,y) − f(x) = 2

m
∑

j=1

dj

(

‖x − aj‖ − (x − aj)
T rj(y)

)

≥ 0,

where the last inequality follows from Cauchy-Schwartz inequality and using

again (1.61).

(c) For any y ∈ R
n\A, the function x 7→ h(x,y) is strictly convex on R

n, and

consequently admits a unique minimizer x∗ satisfying

∇xh(x∗,y) = 0.

Using the definition of h given in (1.60), the latter identity can be explicitly

written as
m

∑

j=1

(x∗ − aj − djrj(y)) = 0,

which by simple algebraic manipulation can be shown to be equivalent to x∗ =

y − 1
2m∇f(y).

By the properties just established it follows that the SFP method is an MM

method and as such is a descent scheme. It is also possible to prove the conver-

gence result given in Theorem 1.6 below. Not surprisingly, since the problem is

nonconvex, only convergence to stationary points is established.

Theorem 1.6 (Convergence of the SFP Method). Let {xk} be generated

by (1.58) such that x0 satisfies

f(x0) < min
j=1,...,m

f(aj). (1.64)

Then,

(a) xk /∈ A for every k ≥ 0.

(b) For every k ≥ 1, f(xk) ≤ f(xk−1) and equality is satisfied if and only if xk =

xk−1.

(c) The sequence of function values {f(xk)} converges.
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(d) The sequence {xk} is bounded.

(e) Any limit point of {xk} is a stationary point of f .

The condition (1.64) is very mild in the sense that it is not difficult to find an

initial vector x0 satisfying it, see bibliographic notes for details.

Next we show how to construct a different method for solving the source local-

ization problem using a completely different approximating auxiliary function.

1.8.3 The SWLS Algorithm

To motivate the construction of the second method, let us first go back again

to Weiszfeld’s scheme, and recall that Weiszfeld’s method can also be written as

(see also (1.15)):

xk = argmin
x∈Rn

h(x,xk−1),

where

h(x,y) ≡
m

∑

j=1

ωj
‖x − aj‖2

‖y − aj‖
for every x ∈ R

n,y ∈ R
n \ A.

The auxiliary function h was essentially constructed from the objective func-

tion of the Fermat-Weber location problem, by replacing the norm terms

‖x − aj‖ with
‖x−aj‖2
‖y−aj‖ . Mimicking this observation for the SL problem under

study, we will use an auxiliary function in which each norm term ‖x − aj‖ in

the objective function (1.56) is replaced with
‖x−aj‖2
‖y−aj‖ , resulting in the following

auxiliary function:

g(x,y) ≡
m

∑

i=1

(‖x − ai‖2

‖y − ai‖
− di

)2

, x ∈ R
n,y ∈ R

n \ A. (1.65)

The general step of the algorithm for solving problem (SL), termed the sequen-

tial weighted least squares (SWLS) method, is now given by

xk ∈ argmin
x∈Rn

g(x,xk−1).

or more explicitly by

Algorithm SWLS:

xk ∈ argmin
x∈Rn

m
∑

j=1

( ‖x − aj‖2

‖xk−1 − aj‖
− dj

)2

. (1.66)
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The name SWLS stems from the fact that at each iteration k we are required

to solve the following weighted nonlinear least squares problem:

(NLS): min
x

m
∑

j=1

ωk
j (‖x − cj‖2 − βk

j )2, (1.67)

with

cj = aj , β
k
j = dj‖xk−1 − aj‖, ωk

j =
1

‖xk−1 − aj‖2
. (1.68)

Note that the SWLS algorithm as presented above is not defined for iterations

in which xk−1 ∈ A. However, like in the SFP method, it is possible to find an

initial point ensuring that the iterates are not in the sensor set A.

The NLS problem is a nonconvex problem, but it can still be solved glob-

ally and efficiently by transforming it into a problem of minimizing a quadratic

function subject to a single quadratic constraint. Indeed, for a given fixed k, we

can transform (1.67) into a constrained minimization problem (the index k is

omitted):

min
x∈Rn,α∈R







m
∑

j=1

ωj(α − 2cT
j x + ‖cj‖2 − βj)

2 : ‖x‖2 = α







, (1.69)

which can also be written as (using the substitution y = (xT , α)T )

min
y∈Rn+1

{

‖Ay − b‖2 : yT Dy + 2fT y = 0
}

, (1.70)

where

A =







−2
√

ω1c
T
1

√
ω1

...
...

−2
√

ωmcT
m

√
ωm






,b =







√
ω1(β1 − ‖c1‖2)

...√
ωm(βm − ‖cm‖2)







and

D =

(

In 0n×1

01×n 0

)

, f =

(

0

−0.5

)

.

Problem(1.70) belongs to the class of problems consisting of minimizing a

quadratic function subject to a single quadratic constraint (without any con-

vexity assumptions). Problems of this type are called generalized trust region

subproblems (GTRS). GTRS problems possess necessary and sufficient optimal-

ity conditions from which efficient solution methods can be derived.

The analysis of the SWLS method is more complicated than the analysis of the

SFP method and we only state the main results. For the theoretical convergence

analysis two rather mild assumptions are required:
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Assumption 1. The matrix

A =











1 aT
1

1 aT
2

...
...

1 aT
m











is of full column rank.

For example, when n = 2, the assumption states that a1, . . . ,am are not on

the same line. The second assumption states that the value of the initial vector

x0 is “small enough”.

Assumption 2. f(x0) <
minj{dj}2

4 .

A similar assumption was made for the SFP method (see condition (1.64)).

Note that for the true source location xtrue one has f(xtrue) =
∑m

j=1 ε2
j . There-

fore, xtrue satisfies Assumption 2 if the errors εj are smaller in some sense from

the range measurements dj . This is a very reasonable assumption since in real

applications the errors εi are often smaller in an order of magnitude than di.

Now, if the initial point x0 is “good enough” in the sense that it is close to the

true source location, then Assumption 2 will be satisfied.

Under the above assumption it is possible to prove the following key properties

of the auxiliary function g:

g(x,x) = f(x), for every x ∈ R
n,

g(x,xk−1) ≥ 2f(x) − f(xk−1), for every x ∈ R
n, k ≥ 1. (1.71)

Therefore, the SWLS method, as opposed to the SFP method, is not an MM

method since the auxiliary function g(·, ·) is not an upper bound on the objective

function. However, similarly to Weiszfeld’s method for the Fermat-Weber prob-

lem (see Section 1.15), the property (1.71) implies the descent property of the

SWLS method and it can also be used in order to prove the convergence result

of the method which is given below.

Theorem 1.7 (Convergence of the SWLS Method). Let {xk} be the

sequence generated by the SWLS method. Suppose that Assumptions 1 and 2

hold true. Then

(a) xk /∈ A for k ≥ 0.

(b) For every k ≥ 1, f(xk) ≤ f(xk−1) and equality holds if and only if xk = xk−1.

(c) The sequence of function values {f(xk)} converges.

(d) The sequence {xk} is bounded.

(e) Any limit point of {xk} is a stationary point of f .
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1.9 Bibliographic Notes

Section 1.2 The class of optimization problems (M) has been first studied in [2]

and provide a natural vehicle to study various generic optimization models under

a common framework. Linear inverse problems arise in a wide range of diverse

applications, and the literature is vast, see the monograph [26] and references

therein. A popular regularization technique is the Tikhonov smooth quadratic

regularization [56] which has been extensively studied and extended, see for

instance [35, 36, 33]. Early works promoting the use of the convex nonsmooth

l1 regularization appear for example in [20, 34, 18]. The l1 regularization has

now attracted an intensive revived interest in the signal processing literature,

in particular in compressed sensing, and which has led to a large amount of

literature see e.g., the recent works [11, 24, 30] and references therein.

Section 1.3 The gradient method is one of the very first method for uncon-

strained minimization going back to 1847 with the work of Cauchy [12]. Gradient

methods and their variants have been studied by many authors. We mention in

particular the classical works developed in the 60’s and 70’s by [32, 1, 41, 47, 22],

and for more modern presentations with many results, including the extension to

problems with constraints and the resulting gradient projection method given in

1.3.1, see the books of [49, 9, 44] and references therein. The quadratic approxi-

mation model in 1.3.1 is a very well known interpretation of the gradient method

as a proximal regularization of the linearized part of a differentiable function f

[49]. The proximal map was introduced by Moreau [42]. The extension to han-

dle the nonsmooth model (M), as given in Sections 1.3.1 and 1.3.2 is a special

case of the proximal-forward backward method for finding the zero of the sum

of two maximal monotone operators, originally proposed by [48]. The terminol-

ogy “proximal gradient” is used to emphasize the specific composite operation

when applied to a minimization problem of the form (M). The majorization-

minimization idea discussed in 1.3.3 has been developed by many authors, and

for a recent tutorial on MM algorithms, applications and many references see

[38], and for its use in signal processing see for instance, [23, 28]. The material

on the Fermat-Weber location problem presented in Section 1.3.4 is classical.

The original Weiszfeld algorithm can be found in [58] and further analyzed in

[40]. It has been intensively and further studied in the location theory literature,

see the monograph [50].

Section 1.4 For simplicity of exposition, we assumed the existence of an opti-

mal solution for the optimization model (M). For classical and more advanced

techniques to handle existence of minimizers, see [3]. The proximal map and

regularization of a closed proper convex function is due to Moreau, see [42] for

the proof of Lemma 1.2. The results of Section 1.4.2 are well known and can

be found in [49, 9]. Lemma 1.6 is a slight modification of a recent result proven

in [7]. The material of Section 1.4.3 follows [7], except for the pointwise conver-

gence Theorem 1.2. More general convergence results of the sequence xk can be
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found in [27], and in particular we refer to the comprehensive recent work [21].

The nonconvex case in Theorem 1.3 seems to be new and naturally extends the

known result [44] for the smooth unconstrained case, cf. Remark 1.3.

Section 1.5 A well known and popular gradient method based on two steps

memory is the conjugate gradient algorithm, see e.g. [49, 9]. In the nonsmooth

case, a similar idea was developed by Shor with the R-algorithm [54]. However,

such methods do not appear to improve the complexity rate of basic gradient-like

methods. This goal was achieved by Nesterov [45] who was the first to introduce

a new idea and algorithm for minimizing a smooth convex function proven to

be an optimal gradient method in the sense of complexity analysis [43]. This

algorithm was recently extended to the convex nonsmooth model (M) in [7] and

all the material in this section is from [7], except for the nonmomotone case

and Theorem 1.5 which was very recently developed in [6]. For recent alterna-

tive gradient-based methods, including methods based on two or more gradi-

ent steps, and that could speed-up the proximal gradient method for solving

the special case of model (M) with f being the least squares objective, see for

instance [10, 25, 30]. The speedup gained by these methods has been shown

through numerical experiments, but global nonasymptotic rate of convergence

results have not been established. In the recent work of [46], a multistep fast

gradient method that solves model (M) has been developed and proven to share

the same complexity rate O(1/k2) as derived here. The new method of [46] is

remarkably different conceptually and computationally from the fast proximal

gradient method; it uses accumulated history of past iterates, and requires two

projection-like operations per iteration, see [46, 7] for more details. For a recent

study on a gradient scheme based on non Euclidean distances for solving smooth

conic convex problems and which shares the same fast complexity rate, see the

recent work [4].

Section 1.6 The quadratic l1-based regularization model has attracted a con-

siderable amount of attention in the signal processing literature, see for example

[15, 29, 23] for the iterative shrinkage/thresholding algorithm (ISTA) and for

more recent works, including new algorithms, applications and many pointers to

relevant literature, [21, 25, 30, 39]. The results and examples presented in Section

1.6.3 are from the recent work [7] where more details, references and examples

are given.

Section 1.7 The total variation (TV) based model has been introduced by [52].

The literature on numerical methods for solving model (1.48) abounds. To men-

tion just few, see for instance [57, 16, 17, 31, 37]. This list is just given as an

indicator of the intense research in the field and far from being comprehensive.

The work of Chambolle [13, 14] is of particular interest. There, he introduced and

developed a globally convergent gradient dual based algorithm for the denoising

problem, which was shown faster than primal-based schemes. His works moti-

vated our recent analysis and algorithmic developments given in [6] for the more

involved constrained TV-based deblurring problem, which when combined with
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FISTA produces fast gradient methods. This section have presented some results

and numerical examples from [6] to which we refer the reader for further reading.

Section 1.8 The single source localization problem has received significant

attention in the field of signal processing, see e.g. [5, 19, 55, 53] and references

therein. The algorithms and results given in this section are taken from the recent

work [8], where more details, results and proofs of the theorems can be found.
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