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Abstract

The main focus of this work is the introduction of a novel approach for the worst-case analysis of
first-order methods. The approach is based on the observation that the worst-case performance
of a given algorithm can be expressed as an optimization problem (which attempts to find the
“worst-case input” to the algorithm), and that problem can be tackled using tools from the field
of optimization. In Chapter 2, we focus on smooth and convex optimization problems, and
show how to apply this approach on the gradient method, thereby achieving a new and tight
complexity result for this algorithm. In addition, we show how to apply the approach on a wide
family of algorithms, which includes the fast gradient method and the heavy ball method, and
show that when an analytical solution to the resulting optimization problem is not available, it
is possible to efficiently approximate its solution using numerical tools. Furthermore, we show
how to numerically find the best algorithm in this class, and that it has an efficiency estimate
that it two times better than the known bounds on fast gradient method.

In Chapter 3, we further extend the aforementioned approach, and show how it can be used
to find a new optimization method in the non-smooth case. We detail the construction of the
algorithm and prove that it attains the optimal efficiency estimate on the class of Lipschitz-
continuous functions. Surprisingly, the resulting algorithm turns out to be very similar to Kel-
ley’s cutting-plane method.

In Chapter 4, we suggest a new method for solving structured saddle-point problems. The
method is simple and possesses some technical advantages over existing methods, such as
Nesterov’s smoothing technique. We present the method, establish its efficiency estimate and
demonstrate its effectiveness on some practical problems. In addition, we demonstrate how to
apply the technique introduced in the previous chapters in order to derive a numerical bound on
the efficiency of this method.

Finally, in Chapter 5, we consider a class non-convex quadratically constrained quadratic
problems. By a refined examination on the problem structure, we derive an improved charac-
terization on the situation where the convex semidefinite relaxation provides an exact solution.
We demonstrate the usefulness of the results both in practice and in theory by several examples.



Chapter 1

Introduction

Consider the following (unconstrained) minimization problem

(P) f ∗ = inf
x∈Rd

f (x).

A first-order method is an iterative algorithm that approximates the solution of (P) by generat-
ing a sequence of points {xi ∈Rd : i = 0, . . . ,N}, where the algorithm can only gain information
on the objective f by evaluating it and its gradient at the selected points. The performance or
efficiency estimate of a first-order method on a given family of functions is often measured as
the worst-case absolute inaccuracy, i.e., f (xN)− f ∗, over all possible functions f in the given
family, where the distance from the starting point of the algorithm to an optimal solution is
assumed to be bounded. For the formal definitions we refer the reader to [23, Chapter 5].

The earliest and arguably the most fundamental first-order method is the gradient method,
defined by the rule xi+1 = xi− hi∇ f (xi) for adequately chosen step-sizes hi. This scheme is
applicable for many classes of problems, for example, when f is known to have a Lipschitz-
continuous gradient with constant L, then by taking hi ≡ 1

L the efficiency estimate of the method
can be shown to be in the order of O(1/N).

There have been several attempts to find a first-order method with an improved efficiency
estimate, most notably with the introduction of the heavy ball method [83], the conjugate gra-
dient methods [79], and quasi-Newton methods [39]. Although these methods perform well
in practice, it was only in 1983, with the introduction of the fast gradient method by Nes-
terov [73], were a method with worst-case efficiency estimate if O(1/N2) was introduced. The
efficiency estimate of Nesterov’s algorithm is also optimal, as it is possible to show that a first-
order method acting on convex functions with Lipschitz-continuous gradient cannot have an
efficiency estimate with a better rate of convergence [72, 74].

As a result of these and other advances in the field, first-order methods methods have gained
popularity both in theoretical optimization and in many scientific applications, such as signal
and image processing, communications, machine learning, and many more. These problems
are very large scale, and first-order methods, which in general involve very cheap and simple
computational iterations, are often the best option to tackle such problems in a reasonable time
when moderate accuracy solutions are sufficient.

As the number of applications rise and their scope widens, the importance of an accurate
analysis of the optimization methods increases. On the theoretical front, an accurate analysis
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CHAPTER 1. INTRODUCTION

might provide a deeper understanding of the operation of the optimization method and as a
result can help us devise more efficient methods. On the practical front, an accurate analysis can
help improve the performance of existing methods, in particular for non-convex optimization
problems, where many problems are solved indirectly through approximations and therefore
rely on the quality of these approximations.

In this dissertation, we address the increasing need for an accurate analysis of optimization
algorithms by suggesting a new approach for performing this analysis. The approach is based
on the observation that the worst-case performance of a given first-order method (and in fact, the
worst-case performance of any type of method) can be posed as an optimization problem and,
as a result, this problem can be solved using tools from the field of optimization. In addition,
we discuss two classes of problems where the structure of the optimization problem can be used
to obtain an efficient solution method.

Following is a brief overview of the main results presented in this dissertation.

1.1 Analysis of Smooth First-Order Methods

We start, in Chapter 2, by focusing on problems where the objective is convex and has a
Lipschitz-continuous gradient. We discuss in detail a new approach for analyzing optimiza-
tion methods and show how this approach can be used to convert the problem of finding the
efficiency estimate for a first-order method into a optimization problem, which we call a Per-
formance Estimation Problem (PEP).

We demonstrate this approach on the gradient method and find an analytical solution for the
resulting PEP, thereby obtaining a new and tight efficiency estimate on the method, which is
two times better than the previously known efficiency estimate.

We then broaden our attention to a wide family of first-order methods, which includes the
fast gradient method and the heavy ball method, and show that when an analytical solution to
the corresponding PEP is not known, it is possible to efficiently approximate its value using
numerical tools.

Finally, since we have formulated the efficiency estimate of a method as an optimization
problem, we can naturally express the problem of finding steps sizes which results with the
best possible efficiency estimate as a minimax problem. We analyze this minimax problem
and show that, after some transformations, it can be efficiently solved using standard numerical
tools for any fixed N (the total number of steps the method makes). We demonstrate this result
for various values of N and show that the computed method has an efficiency estimate which is
approximately two times better than the efficiency estimate for Nesterov’s fast gradient method.

1.2 An Optimal Method for of Non-Smooth Optimization

We turn our attention to the class of non-smooth minimization problems, where the objective
is convex and Lipschitz-continuous. This class is inherently difficult, as problems in this class
require, in general, at least O(1/ε2) steps in order to reach a given accuracy ε [72, 74]. As a
result of this difficulty, it is important to exploit the properties of the specific function given to
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1.3. SADDLE-POINT PROBLEMS

the optimization procedure to achieve the fastest possible converge, especially when an accurate
solution is required.

A natural approach for exploiting the structure of the objective is adopted by Kelley’s
cutting-plane method [53], which maintains a lower-bound model for the objective by con-
sidering the supporting hyperplanes to the objective at the past iterates and chooses the next
iterate in way that minimizes the value predicted by the model. Despite its intuitive nature, this
method was proved to be inefficient both in practice and in theory [72], where the source of
the poor performance seems to be the instability of the solution. This observation inspired the
introduction of several methods, including the successful bundle method [61], which introduces
a form of regularization in order to “motivate” the next iterate to remain close to a previous
iterates, where the model is more accurate.

In Chapter 3, we develop a new method that exploits the structure of the objective by choos-
ing the next iterate according to a model that, in addition to the supporting hyperplanes to the
objective, includes a novel type of regularization. In order to derive the method, we further
extend the approach proposed in the previous chapter and show how it can be used to construct
an efficient and practical method. The resulting method turns out to be surprisingly similar to
Kelley’s cutting-plane method, yet it attains the best possible efficiency estimate on this class
of problems.

1.3 Saddle-Point Problems
Another important class of problems of the form (P) is the class of convex-concave saddle-point
problems

(M) min
u∈U

max
v∈V
{K (u,v) := f (u)+ 〈Au,v〉−g(v)},

where f and g are convex functions, A is a linear operator, and U , V are convex sets. Historically,
the first approaches for solving saddle-point problems considered the problem via the the more
general framework of variational inequalities, and the problem was then solved using methods
designed for solving such problems, such as the extragradient method [59], which was shown
in [71] to require O(1/ε) iterations to achieve a given accuracy ε > 0. The main difficulty with
this approach is that when the objective K is not differentiable, known methods either require
O(1/ε2) iterations to achieve a given accuracy ε or must make some additional assumptions on
the problem structure (see, for example, [70, 77] and references therein).

A novel approach in solving non-differentiable saddle-point problems was suggested by
Nesterov in [76], where he developed a smoothing technique that specifically exploits the struc-
ture of problem (M) thereby achieving a method with an O(1/ε) efficiency estimate. The
smoothing approach assumes that the function f is differentiable and that g is possibly non-
differentiable, but is relatively “simple”. The disadvantage in Nesterov’s smoothing approach
is that it requires the user to choose the desired target accuracy before starting the optimization
process thereby not allowing the method to take advantage of favourable problem instances. As
an attempt to rectify this problem, Nesterov proposed an excessive gap technique, described in
[75]. This approach requires both function f and g to have a “simple” structure; however, in
practice it is hard to implement and was fully described only for the case where the functions f
and g are the indicators functions of some convex sets.
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CHAPTER 1. INTRODUCTION

More recently, Chambolle and Pock presented in [33] a method that successfully overcomes
the latter issue with Nesterov’s excessive gap technique. The method is highly successful in
solving a wide variety of problems, and is easy to implement, however, it still requires both
functions f and g to have a “simple” structure.

In Chapter 4, we revisit the model assumed by Nesterov’s smoothing approach and propose
a method that generates an approximation sequence for the problem that converges to the solu-
tion at the rate of O(1/ε) without the need to choose the desired accuracy of the result before
beginning the computation and without any significant impact on the computational effort. Nu-
merical experiments on the image deblurring and fused lasso problems confirm the theory and
demonstrate that our algorithm is competitive when compared to related state of art schemes.

1.4 Nonconvex Quadratic Optimization
The class of nonconvex quadratically constrained quadratic programming (QCQP) problems
plays a key role in both subproblems arising in optimization algorithms such as trust region
methods (see for example [31, 45]) and is also a bridge to the analysis of many combinatorial
optimization problems that can be formulated as such. In principal, nonconvex QCQP problems
are hard to solve, and as result many approximation techniques were devised in order to tackle
it. Many of these techniques rely on the so-called semidefinite relaxation (SDR), which is a
related convex problem over the matrix space that can be solved efficiently, see e.g., [51, 99].

A key issue in the analysis of QCQPs is to determine under which conditions the semidefi-
nite relaxation is tight, meaning that it has the same optimal value as the original QCQP prob-
lem. In these cases, one can construct the global optimal solution of the QCQP problem from
the optimal solution of the SDR via a rank reduction procedure. There are several classes of
QCQP problems which posses this ”tight semidefinite relaxation” result; among them are the
class of generalized trust region subproblems [45, 67] which are QCQPs with a single quadratic
constraint, problems with two constraints over the complex number field [17] as well as prob-
lems arising in the context of quadratic assignment problem [1, 2].

Another class of QCQP problems is the class of Quadratic Matrix Programming (QMP)
problems whose general form is given by

(QMP) min
X∈Rn×r

tr(XT A0X)+2tr(B̃T
0 X)+ c0

s.t. tr(XT AiX)+2tr(B̃T
i X)+ ci ≤ αi, i ∈I ,

tr(XT A jX)+2tr(B̃T
j X)+ c j = α j, j ∈ E ,

where n,r are positive integers, I and E are sets of indices such that I ∩ E = /0, Ai ∈ Sn,
B̃i ∈ Rn×r and ci,αi ∈ R. This class of problems was introduced and studied in [15] where it
was also shown that it encompasses a broad class of important problems both in theory and in
applications. The main result in [15] is that problem (QMP) with at most r constraints has a tight
SDR property. In the homogenous case (i.e., when B̃i = 0 for all i) this question was already
studied by Barvinok [13, 14] for the problem of determining the feasibility of this problem;
Barvinok’s results were then extended by Pataki [82] to include any homogeneous quadratic
objective function. In both cases it was shown that it is possible to use the SDP relaxation to
solve the original nonconvex problem when the number of constraints is at most

(r+2
2

)
−1.

5



1.4. NONCONVEX QUADRATIC OPTIMIZATION

In Chapter 5, we concentrate on a special type of QMP problems defined by

(sQMP)
minX∈Rn×r tr(XT A0X)+2tr(V T BT

0 X)+ c0
s.t. tr(XT AiX)+2tr(V T BT

i X)+ ci ≤ αi, i ∈I ,
tr(XT A jX)+2tr(V T BT

j X)+ c j = α j, j ∈ E ,
(1.4.1)

with Ai ∈ Sn, Bi ∈ Rn×s (i ∈ {0} ∪I ∪ E ) and 0 6= V ∈ Rs×r, s ≤ r. Essentially, this
type of QMP problems is characterized by the property that the matrices B̃i are of the special
form B̃i = BiV ; for the case n > r > s, this means that the range spaces of the n× r matrices
B̃i, (i ∈ {0}∪I ∪E ) are all contained in the same s-dimensional subspace, which is the range
space of V . Note that when s = r and V = Ir we are back to the original QMP setting. At a
first glance it seems that this property of the matrices B̃i is quite restrictive, however, it naturally
appears in applications, as described in §5.4.

6



Chapter 2

A new approach for analyzing
optimization algorithms

We introduce a novel approach for analyzing the worst-case performance of first-order black-
box optimization methods. We focus on smooth unconstrained convex minimization over the
Euclidean space. Our approach relies on the observation that by definition, the worst-case
behavior of a black-box optimization method is by itself an optimization problem, which we
call the Performance Estimation Problem (PEP). We formulate and analyze the PEP for two
classes of first-order algorithms. We first apply this approach on the classical gradient method
and derive a new and tight analytical bound on its performance. We then consider a broader class
of first-order black-box methods, which among others, include the so-called heavy-ball method
and the fast gradient schemes. We show that for this broader class, it is possible to derive
new bounds on the performance of these methods by solving an adequately relaxed convex
semidefinite PEP. Finally, we show an efficient procedure for finding optimal step sizes which
results in a first-order black-box method that achieves best worst-case performance.

This chapter is based on the published paper [40].

2.1 Introduction
First-order convex optimization methods have recently gained in popularity both in theoretical
optimization and in many scientific applications, such as signal and image processing, com-
munications, machine learning, and many more. These problems are very large scale, and
first-order methods, which in general involve very cheap and simple computational iterations,
are often the best option to tackle such problems in a reasonable time, when moderate accuracy
solutions are sufficient. For convex optimization problems, there exists an extensive literature
on the development and analysis of first-order methods, and in recent years, this has been re-
vitalized at a quick pace due to the emergence of many fundamental new applications alluded
above. On the theoretical front see e.g., the recent works [47, 60, 85] and for applications see
the collections [80, 92] and references therein.

This work is not on the development of new algorithms, rather it focuses on the theoretical
performance analysis of first-order methods for unconstrained minimization with an objective
function which is known to belong to a given family F of smooth convex functions over the

7



2.1. INTRODUCTION

Euclidean space Rd .
Following the seminal work of Nemirovsky and Yudin [72] in the complexity analysis of

convex optimization methods, we measure the computational cost based on the oracle model
of optimization. According to this model, a first-order black-box optimization method is an
algorithm A which has knowledge of the underlying space Rd and the family F , where the
function itself is not known. To gain information on the objective function f to be minimized,
the algorithm queries a first-order oracle, that is, a subroutine which given as input a point in
Rd , returns the value of the objective function and its gradient at that point. The algorithm starts
with a given point x0 ∈ Rd and generates a finite sequence of points {xi ∈ Rd : i = 1, . . . ,N},
where at each step the algorithm can depend only on the previous steps, their function values
and gradients via some rule

xi+1 = A (x0, . . . ,xi; f (x0), . . . , f (xi); f ′(x0), . . . , f ′(xi)), i = 0, . . . ,N−1,

where f ′(·) stands for the gradient of f (·). Note that the algorithm has another implicit knowl-
edge, i.e., that the distance from its initial point x0 to a minimizer x∗ ∈ X∗( f ) of f is bounded
by some constant R > 0, see more precise definitions in the next section.

Given a desired accuracy ε > 0, applying the given algorithm on the function f in the class
F , the algorithm stops when it produces an approximate solution xε which is ε-optimal, that is
such that

f (xε)− f (x∗)≤ ε.

The worst-case performance (or complexity) of a first-order black-box optimization algorithm
is then measured by the number of oracle calls the algorithm needs to find such an approximate
solution. Equivalently, we can measure the worst-case performance of an algorithm by looking
at the absolute inaccuracy

δ ( f ,xN) = f (xN)− f (x∗),

where xN is the result of the algorithm after making N calls to the oracle. Throughout this
chapter we will use the latter form to measure the performance of a given algorithm.

Building on this model, in this work we introduce a novel approach for analyzing the perfor-
mance of a given first-order scheme. Our approach relies on the observation that by definition,
the worst-case behavior of a first-order black-box optimization algorithm is by itself an opti-
mization problem which consists of finding the maximal absolute inaccuracy over all possible
inputs to the algorithm. Thus, with xN being the output of the algorithm after making N calls to
the oracle, we look at the solution of the following Performance Estimation Problem (PEP):

max f (xN)− f (x∗)
s.t. f ∈F ,

xi+1 = A (x0, . . . ,xi; f (x0), . . . , f (xi); f ′(x0), . . . , f ′(xi)), i = 0, . . . ,N−1,
x∗ ∈ X∗( f ), ‖x∗− x0‖ ≤ R,

x0, . . . ,xN ,x∗ ∈ Rd.

(P)

At first glance this problem seems very hard or impossible to solve. We overcome this
difficulty through an analysis that relies on various types of relaxations, including duality and
semi-definite relaxation techniques. The problem setting and an outline of the underlying idea

8



CHAPTER 2. A NEW APPROACH FOR ANALYZING OPTIMIZATION ALGORITHMS

of the proposed approach for analyzing (P) are described in Section 2.2. In order to develop
the basic idea and tools underlying our proposed approach, we first focus on the fundamental
gradient method (GM) for smooth convex minimization, and then extend it to a broader class
of first-order black-box minimization methods. Obviously, the gradient method is a particular
case of this broader class that will be analyzed below. However, it is quite important to start
with the gradient method for two reasons. First, it allows to acquaint the reader in a more
transparent way with the techniques and methodology we need to develop in order to analyze
(P), thus paving the way to tackle more general schemes. Secondly, for the gradient method,
we are able to prove a new and tight bound on its performance which is given analytically,
see Section 2.3. Capitalizing on the methodology and tools developed in the past section, in
Section 2.4, we consider a broader class of first-order black-box methods, which among others,
is shown to include the so-called heavy-ball [83] and fast gradient schemes [74]. Although an
analytical solution is not available for this general case, we show that for this broader class
of methods, it is possible to compute numerical estimates for an adequate relaxation of the
corresponding PEP, allowing to derive new bounds on the performance of these methods. We
then derive in Section 2.5 an efficient procedure for finding optimal step sizes which results in
a first-order method that achieves best worst-case performance. Our approach and analysis give
rise to some interesting problems leading us to suggest some conjectures. We conclude with
three appendices: the first includes the proof of a technical result, the second demonstrates our
approach on the projected gradient method, and the third appendix presents some preliminary
results on strongly convex functions.

Notation. For a differentiable function f , its gradient at x is denoted by f ′(x). The Euclidean
norm of a vector x ∈ Rd is denoted as ‖x‖. The set of symmetric matrices in Rn×n is denoted
by Sn. For two symmetric matrices A and B, A � B,(A � B) means A−B � 0(A−B � 0) is
positive semidefinite (positive definite). We use ei for the i-th canonical basis vector in RN ,
which consists of all zero components, except for its i-th entry which is equal to one, and use
ν to denote a unit vector in Rd . For an optimization problem (P), val(P) stands for its optimal
value.

2.2 The Problem and the Main Approach

2.2.1 The Problem and Basic Assumptions
Let A be a first-order algorithm for solving the optimization problem

(M) min{ f (x) : x ∈ Rd}.

Throughout the chapter we make the following assumptions:

• f : Rd → R is a convex function of the type C1,1
L (Rd), i.e., continuously differentiable

with Lipschitz continuous gradient:

‖ f ′(x)− f ′(y)‖ ≤ L‖x− y‖, ∀x,y ∈ Rd,

where L > 0 is the Lipschitz constant.

9
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• We assume that (M) is solvable, i.e., the optimal set X∗( f ) := argmin f is nonempty.

• There exists R > 0, such that the distance from the given starting point of the algorithm
x0 to an optimal solution x∗ ∈ X∗( f ) is bounded by R.1

Given a convex function f in the class C1,1
L (Rd) and any starting point x0 ∈Rd , the algorithm

A is a first-order black-box scheme, i.e., it is allowed to access f only through the sequential
calls to the first-order oracle that returns the value and the gradient of f at any input point x.
The algorithm A then generates a sequence of points xi ∈ Rd, i = 0, . . . ,N.

2.2.2 Basic Idea and Main Approach
We are interested in measuring the worst-case behavior of a given algorithm A in terms of the
absolute inaccuracy f (xN)− f (x∗), by solving problem (P) defined in the introduction, namely

max f (xN)− f (x∗)

s.t. f ∈C1,1
L (Rd), f is convex,

xi+1 = A (x0, . . . ,xi; f (x0), . . . , f (xi); f ′(x0), . . . , f ′(xi)), i = 0, . . . ,N−1,
x∗ ∈ X∗( f ),‖x∗− x0‖ ≤ R,

x0, . . . ,xN ,x∗ ∈ Rd.

(P)

To tackle this problem, we suggest to perform a series of relaxations thereby reaching a
tractable optimization problem.

A main difficulty in problem (P) lies in the functional constraint (the variable f is a con-
vex function in C1,1

L (Rd)), i.e., we are facing an abstract hard optimization problem in infinite
dimensions. To overcome this difficulty, the approach taken in this chapter is to relax this
constraint so that the problem can be reduced and formulated as an explicit finite dimensional
problem that can eventually be adequately analyzed.

An informal description of the underlying idea consists of two main steps as follows:

• Given an algorithm A that generates a finite sequence of points, to build a problem in
finite dimensions we replace the functional constraint f ∈C1,1

L in (P) by new variables in
Rd . These variables are the points {x0,x1, . . .xN ,x∗} themselves, the function values and
their gradients at these points. Roughly speaking, this can be seen as a sort of discretiza-
tion of f at a selected set of points.

• To define constraints that relate the new variables, we use relevant/useful properties char-
acterizing the family of convex functions in C1,1

L , as well as the rule(s) describing the
given algorithm A .

This approach can, in principle, be applied to any optimization algorithm. Note that any
relaxation performed on the maximization problem (P) may increase its optimal value, however,

1In general, the terms L and R are unknown or difficult to compute, in which case some upper bound estimates
can be used in place. Note that all currently known complexity results for first-order methods depend on L and R.
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the optimal value of the relaxed problem still remains a valid upper bound on f (xN)− f (x∗).
Also note that once a bound on the absolute inaccuracy has been established, it is possible to find
a bound that does not depend on the unknown term f (x∗), e.g., from the well-known property
‖ f ′(xN)‖2 ≤ f (xN)− f (x∗).

A formal description on how this approach can be applied to the gradient method is de-
scribed in the next section, which as we shall see, allows us to derive a new tight bound on the
performance of the gradient method.

2.3 An Analytical Bound for the Gradient Method
To develop the basic idea and tools underlying the proposed approach for analyzing the perfor-
mance of iterative optimization algorithms, in this section we focus on the simplest fundamental
method for smooth convex minimization, the Gradient Method (GM). It will also pave the way
to tackle more general first-order schemes as developed in the forthcoming sections.

2.3.1 A Performance Estimation Problem for the Gradient Method
Consider the gradient algorithm with constant step size, as applied to problem (M), which
generates a sequence of points as follows:

Algorithm GM

0. Input: f ∈C1,1
L (Rd) convex, x0 ∈ Rd.

1. For i = 0, . . . ,N−1, compute xi+1 = xi− h
L f ′(xi).

Here h > 0 is fixed. Note that while simple, this algorithm is restricted to problems where
the Lipschitz constant L is known or can be efficiently estimated.

At this point, recall that for h = 1, the convergence rate of the Algorithm GM can be shown
to be (see for example [19, 74]):

f (xN)− f (x∗)≤
L‖x0− x∗‖2

2N
, ∀x∗ ∈ X∗( f ). (2.3.1)

We begin our analysis with a well-known fundamental property for the class of convex C1,1
L

functions, see e.g., [74, Theorem 2.1.5].

Proposition 2.3.1. Let f : Rd → R be convex and C1,1
L . Then,

1
2L
‖ f ′(x)− f ′(y)‖2 ≤ f (x)− f (y)−〈 f ′(y),x− y〉, for all x,y ∈ Rd. (2.3.2)
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Let x0 ∈Rd be any starting point, let {x1, . . . ,xN} be the points generated by Algorithm GM
and let x∗ be a minimizer of f . Applying (2.3.2) on the points {x0, . . . ,xN ,x∗}, we get:

1
2L
‖ f ′(xi)− f ′(x j)‖2 ≤ f (xi)− f (x j)−〈 f ′(x j),xi− x j〉, i, j = 0, . . . ,N,∗. (2.3.3)

Now define

δi :=
1

L‖x∗− x0‖2 ( f (xi)− f (x∗)), i = 0, . . . ,N,∗

gi :=
1

L‖x∗− x0‖
f ′(xi), i = 0, . . . ,N,∗

and note that we always have δ∗ = 0 and g∗ = 0.
In terms of δi, gi, condition (2.3.3) becomes

1
2
‖gi−g j‖2 ≤ δi−δ j−

〈g j,xi− x j〉
‖x∗− x0‖

, i, j = 0, . . . ,N,∗, (2.3.4)

and the recurrence defining Algorithm GM reads:

xi+1 = xi−h‖x∗− x0‖gi, i = 0, . . . ,N−1.

Problem (P) can now be relaxed by discarding the underlying function f ∈ C1,1
L in (P).

That is, the constraint in the function space f ∈ C1,1
L with f convex, is replaced by the in-

equalities (2.3.4) characterizing this family of functions and expressed in terms of the variables
x0, . . . ,xN ,x∗ ∈ Rd , g0, . . . ,gN ∈ Rd and δ0, . . . ,δN ∈ R generated by Algorithm GM. Thus, an
upper bound on the worst-case behavior of f (xN)− f (x∗) = L‖x∗− x0‖2δN can be obtained by
solving the following relaxed PEP:

max
x0,...,xN ,x∗∈Rd ,

g0,...,gN∈Rd ,
δ0,...,δN∈R

L‖x∗− x0‖2
δN

s.t. xi+1 = xi−h‖x∗− x0‖gi, i = 0, . . . ,N−1,
1
2
‖gi−g j‖2 ≤ δi−δ j−

〈g j,xi− x j〉
‖x∗− x0‖

, i, j = 0, . . . ,N,∗,

‖x∗− x0‖ ≤ R.

Simplifying the PEP The obtained problem remains nontrivial to tackle. We will now per-
form some simplifications on this problem that will be useful for the forthcoming analysis.

First, we observe that the problem is invariant under the transformation g′i← Qgi, x′i← Qxi
for any orthogonal transformation Q. We can therefore assume without loss of generality that
x∗−x0 = ‖x∗−x0‖ν , where ν is any given unit vector in Rd . Therefore, for i = ∗ the inequality
constraints reads

1
2
‖g∗−g j‖2 ≤ δ∗−δ j−

〈g j,‖x∗− x0‖ν + x0− x j〉
‖x∗− x0‖

, j = 0, . . . ,N.
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Secondly, we consider (2.3.4) for the four cases i= ∗, j = ∗, i< j and j < i, and use the equality
constraints

xi+1 = xi−h‖x∗− x0‖gi, i = 0, . . . ,N−1

to eliminate the variables x1, . . . ,xN . After some algebra, we reach the following form for the
PEP:

max
x0,x∗,gi∈Rd ,δi∈R

L‖x∗− x0‖2
δN

s.t.
1
2
‖gi−g j‖2 ≤ δi−δ j−〈g j,

j

∑
t=i+1

hgt−1〉, i < j = 0, . . . ,N,

1
2
‖gi−g j‖2 ≤ δi−δ j + 〈g j,

i

∑
t= j+1

hgt−1〉, j < i = 0, . . . ,N,

1
2
‖gi‖2 ≤ δi, i = 0, . . . ,N,

1
2
‖gi‖2 ≤−δi−〈gi,ν +

i

∑
t=1

hgt−1〉, i = 0, . . . ,N,

‖x∗− x0‖ ≤ R,

where i < j = 0, . . . ,N is a shorthand notation for i = 0, . . . ,N−1, j = i+1, . . . ,N.
Finally, we note that the optimal solution for this problem is attained when ‖x∗− x0‖ = R,

and hence we can also eliminate the variables x0 and x∗. This produces the following PEP for
the gradient method, a nonconvex quadratic minimization problem:

max
gi∈Rd ,δi∈R

LR2
δN

s.t.
1
2
‖gi−g j‖2 ≤ δi−δ j−〈g j,

j

∑
t=i+1

hgt−1〉, i < j = 0, . . . ,N,

1
2
‖gi−g j‖2 ≤ δi−δ j + 〈g j,

i

∑
t= j+1

hgt−1〉, j < i = 0, . . . ,N,

1
2
‖gi‖2 ≤ δi, i = 0, . . . ,N,

1
2
‖gi‖2 ≤−δi−〈gi,ν +

i

∑
t=1

hgt−1〉, i = 0, . . . ,N.

This problem can be written in a more compact and useful form. Let G denote the (N +
1)× d matrix whose rows are gT

0 , . . .g
T
N , and for notational convenience let ui ∈ RN+1 denote

the canonical unit vector
ui = ei+1, i = 0, . . . ,N.

Then for any i, j, we have

gi = GT ui, tr(GT uiuT
j G) = 〈gi,g j〉, and 〈GT ui,ν〉= 〈gi,ν〉.
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Therefore, by defining the following (N +1)× (N +1) symmetric matrices

Ai, j =
1
2
(ui−u j)(ui−u j)

T +
1
2

j

∑
t=i+1

h(u juT
t−1 +ut−1uT

j ),

Bi, j =
1
2
(ui−u j)(ui−u j)

T − 1
2

i

∑
t= j+1

h(u juT
t−1 +ut−1uT

j ),

Ci =
1
2

uiuT
i ,

Di =
1
2

uiuT
i +

1
2

i

∑
t=1

h(uiuT
t−1 +ut−1uT

i ),

(2.3.5)

we can express our nonconvex quadratic minimization problem in terms of δ := (δ0, . . . ,δN) ∈
RN+1 and the new matrix variable G ∈ R(N+1)×d as follows

max
G∈R(N+1)×d ,δ∈RN+1

LR2
δN

s.t. tr(GT Ai, jG)≤ δi−δ j, i < j = 0, . . . ,N,

tr(GT Bi, jG)≤ δi−δ j, j < i = 0, . . . ,N,

tr(GTCiG)≤ δi, i = 0, . . . ,N,

tr(GT DiG+νuT
i G)≤−δi, i = 0, . . . ,N.

(G)

Problem (G) is a nonhomogeneous Quadratic Matrix Program, a class of problems intro-
duced and studied by Beck [15] and will be further studied in Chapter 5.

2.3.2 A Tight Performance Estimate for the Gradient Method
We now proceed to establish the two main results of this section. First, we derive an upper bound
on the performance of the gradient method; this is accomplished using duality arguments. Then,
we show that this bound can actually be attained by applying the gradient method to a specific
convex function in the class C1,1

L .
In order to simplify the following analysis, we will remove some constraints from (G) and

consider the bound produced by the following relaxed problem:

max
G∈R(N+1)×d ,δ∈RN+1

LR2
δN

s.t. tr(GT Ai−1,iG)≤ δi−1−δi, i = 1, . . . ,N,

tr(GT DiG+νuT
i G)≤−δi, i = 0, . . . ,N.

(G′)

As we shall show below, it turns out that this additional relaxation has no damaging effects
and produces the desired performance bound when 0 < h≤ 1.

We are interested in deriving a dual problem for (G′) which is as simple as possible, es-
pecially with respect to its dimension. As noted earlier, problem (G′) is a nonhomogeneous
quadratic matrix program, and a dual problem for (G′) could be directly obtained by applying
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the results developed by Beck [15]. However, the resulting obtained dual will involve an ad-
ditional matrix variable Φ ∈ Sd , where d can be very large. Instead, by exploiting the special
structure of the second set of nonhomogeneous inequalities given in (G′), we derive here an
alternative dual problem, but with only one additional variable t ∈ R.

To establish our dual result, the next lemma shows that a dimension reduction is possible
when minimizing a quadratic matrix function sharing the special form as the one that appears
in problem (G′).

Lemma 2.1. Let f (X) = tr(XT QX +2baT X) be a quadratic function, where X ∈Rn×m, Q∈ Sn,
a ∈ Rn and 0 6= b ∈ Rm. Then

inf
X∈Rn×m

f (X) = inf
ξ∈Rn

f (ξ bT ).

Proof. First, we recall (this can be easily verified) that inf{ f (X) : X ∈Rn×m}>−∞ if and only
if Q� 0, and there exists at least one solution X̄ such that

QX̄ +abT = 0 ⇔ X̄T Q+baT = 0, (2.3.6)

i.e., the above is just ∇ f (X) = 0 and characterizes the minimizers of the convex function f (X).
Using (2.3.6) it follows that infX f (X) = f (X̄) = tr(baT X̄). Now, for any ξ ∈ Rn, we have
f (ξ bT ) = ‖b‖2(ξ T Qξ + 2aT ξ ). Thus, likewise, inf{ f (ξ bT ) : ξ ∈ Rn} > −∞ if and only if
Q� 0 and there exists ξ̄ ∈ Rn such that

Qξ̄ +a = 0, (2.3.7)

and using (2.3.7) it follows infξ f (ξ bT ) = f (ξ̄ bT ) = ‖b‖2aT ξ̄ = tr(baT ξ̄ bT ). Now, using
(2.3.6)-(2.3.7), one obtains X̄T Q =−baT and Q(X̄− ξ̄ bT ) = 0, and hence it follows that

f (X̄)− f (ξ̄ bT ) = tr(baT (X̄− ξ̄ bT ))

= tr(−X̄T Q(X̄− ξ̄ bT )) = 0.

Equipped with Lemma 2.1, we now derive a Lagrangian dual for problem (G′).

Lemma 2.2. Consider problem (G′) for any fixed h ∈ R and L,R > 0. A Lagrangian dual of
(G′) is given by the following convex program:

min
λ∈RN ,t∈R

{1
2

LR2t : λ ∈ Λ, S(λ , t)� 0}, (DG′)

where Λ := {λ ∈ RN : λi+1−λi ≥ 0, i = 1, . . . ,N− 1, 1−λN ≥ 0, λi ≥ 0, i = 1, . . . ,N},
the matrix S(·, ·) ∈ SN+2 is given by

S(λ , t) =
(
(1−h)S0 +hS1 q

qT t

)
,
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with q= (λ1,λ2−λ1, . . . ,λN−λN−1,1−λN)
T and where the matrices S0,S1 ∈ SN+1 are defined

by:

S0 =



2λ1 −λ1
−λ1 2λ2 −λ2

−λ2 2λ3 −λ3
. . . . . . . . .

−λN−1 2λN −λN

−λN 1


(2.3.8)

and

S1 =


2λ1 λ2−λ1 . . . λN−λN−1 1−λN

λ2−λ1 2λ2 λN−λN−1 1−λN
...

. . .
...

λN−λN−1 λN−λN−1 2λN 1−λN

1−λN 1−λN . . . 1−λN 1

 . (2.3.9)

Proof. For convenience, we recast (G′) as a minimization problem, and we also omit the fixed
term LR2 from the objective. That is, we consider the equivalent problem (G′′) defined by

min
G∈R(N+1)×d ,δ∈RN+1

−δN

s.t. tr(GT Ai−1,iG)≤ δi−1−δi, i = 1, . . . ,N,

tr(GT DiG+νuT
i G)≤−δi, i = 0, . . . ,N.

(G′′)

Attaching the dual multipliers λ = (λ1, . . . ,λN) ∈ RN
+ and τ := (τ0, . . . ,τN)

T ∈ RN+1
+ to the

first and second set of inequalities respectively, and using the notation δ = (δ0, . . . ,δN), we get
that the Lagrangian of this problem is given as a sum of two separable functions in the variables
(δ ,G):

L(G,δ ,λ ,τ) = −δN +
N

∑
i=1

λi(δi−δi−1)+
N

∑
i=0

τiδi

+
N

∑
i=1

λi tr(GT Ai−1,iG)+
N

∑
i=0

τi tr(GT DiG+νuT
i G)

≡ L1(δ ,λ ,τ)+L2(G,λ ,τ).

The dual objective function is then defined by

H(λ ,τ) = min
G,δ

L(G,δ ,λ τ) = min
δ

L1(δ ,λ ,τ)+min
G

L2(G,λ ,τ),

and the dual problem of (G′′) is then given by

max{H(λ ,τ) : λ ∈ RN
+,τ ∈ RN+1

+ }. (DG′′)

Since L1(·,λ ,τ) is linear in δ , we have minδ L1(δ ,λ ,τ) = 0 whenever

−λ1 + τ0 = 0,
λi−λi+1 + τi = 0 (i = 1, . . . ,N−1), (2.3.10)
−1+λN + τN = 0,
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and −∞ otherwise. Invoking Lemma 2.1, we get

min
G∈R(N+1)×d

L2(G,λ ,τ) = min
w∈RN+1

L2(wν
T ,λ ,τ).

Therefore for any (λ ,τ) satisfying (2.3.10), we have obtained that the dual objective reduces to

H(λ ,τ) = min
w∈RN+1

{wT

(
N

∑
i=1

λiAi−1,i +
N

∑
i=0

τiDi

)
w+ τ

T w}

= max
t∈R
{−1

2
t : wT

(
N

∑
i=1

λiAi−1,i +
N

∑
i=0

τiDi

)
w+ τ

T w≤−1
2

t, ∀w ∈ RN+1}

= max
t∈R

{
−1

2
t :
(

∑
N
i=1 λiAi−1,i +∑

N
i=0 τiDi

1
2τ

1
2τT 1

2t

)
� 0
}
.

where the last equality follows from the well known lemma [23, Page 163]2.
Now, recalling the definition of the matrices Ai−1,i,Di (see (2.3.5)), we obtain

N

∑
i=1

λiAi−1,i =
1
2



λ1 (h−1)λ1
(h−1)λ1 λ1 +λ2 (h−1)λ2

(h−1)λ2 λ2 +λ3 (h−1)λ3
. . . . . . . . .

(h−1)λN−1 λN−1 +λN (h−1)λN

(h−1)λN λN


and

N

∑
i=0

τiDi =
1
2


τ0 hτ1 . . . hτN−1 hτN

hτ1 τ1 hτN−1 hτN
...

. . .
...

hτN−1 hτN−1 τN−1 hτN

hτN hτN . . . hτN τN

 .

Finally, using the relations (2.3.10) to eliminate τi, and recalling that val(G′′) was defined as
−LR2 val(G′), the desired form of the stated dual problem follows.

The next lemma will be crucial in invoking duality in the forthcoming theorem. The proof
for this lemma is quite technical and appears in the appendix.

Lemma 2.3. Let

λi =
i

2N +1− i
, i = 1, . . . ,N,

then the matrices S0,S1 ∈ SN+1 defined in (2.3.8)–(2.3.9) are positive definite for every N ∈ N.

2Let M be a symmetric matrix. Then, xT Mx+ 2bT x+ c ≥ 0,∀x ∈ Rd if and only if the matrix
(

M b
bT c

)
is

positive semidefinite.
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We are now ready to establish a new upper bound on the complexity of the gradient method
for values of h between 0 and 1. To the best of our knowledge, the tightest bound thus far is
given by (2.3.1).

Theorem 2.4. Let f ∈ C1,1
L (Rd) and let x0, . . . ,xN ∈ Rd be generated by Algorithm GM with

0 < h≤ 1. Then

f (xN)− f (x∗)≤
LR2

4Nh+2
. (2.3.11)

Proof. First note that both (G) and (G′) are clearly feasible and val(G) ≤ val (G′). Invoking
Lemma 2.2, by weak duality for the pair of primal-dual problems (G′) and (DG′), we thus
obtain that val (G′)≤ val (DG′) and hence:

f (xN)− f (x∗)≤ val(G)≤ val (G′)≤ val (DG′). (2.3.12)

Now consider the following point (λ , t) for the dual problem (DG′):

λi =
i

2N +1− i
, i = 1, . . . ,N,

t =
1

2Nh+1
.

Assuming that this point is (DG′)-feasible, it follows from (2.3.12) that

f (xN)− f (x∗)≤ val (DG′)≤ LR2

4Nh+2
,

which proves the desired result. Thus, it remains to show that the above given choice (λ , t)
is feasible for (DG′). First, it is easy to see that all the linear constraints of (DG′) on the
variables λi, i = 1, . . . ,N described through the set Λ hold true. Now we prove that the matrix
S≡ S(λ , t) is positive semidefinite. From Lemma 2.3, with h∈ [0,1], we get that (1−h)S0+hS1
is positive definite, as a convex combination of positive definite matrices. Next, we argue that
the determinant of S is zero. Indeed, take u := (1, . . . ,1,−(2Nh+1))T , then from the definition
of S and the choice of λi and t it follows by elementary algebra that Su = 0. To complete the
argument, we note that the determinant of S can also be found via the identity (see, e.g., [29,
Section A.5.5]):

det(S) = (t−qT ((1−h)S0 +hS1)
−1q)det((1−h)S0 +hS1).

Since we have just shown that (1− h)S0 + hS1 � 0, then det((1− h)S0 + hS1) > 0 and we
get from the above identity that the value of t − qT ((1− h)S0 + hS1)

−1q, which is the Schur
complement of the matrix S, is equal to 0. By a well known lemma on the Schur complement
[23, Lemma 4.2.1], we conclude that S is positive semidefinite.

The next theorem gives a lower bound on the worst-case complexity of Algorithm GM. In
particular, it shows that the bound (2.3.11) is tight and that it is attained by a specific convex
function in C1,1

L .
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Theorem 2.5. Let L > 0, N ∈ N and d ∈ N. Then for every h > 0 there exists a convex func-
tion ϕ ∈C1,1

L (Rd) and a point x0 ∈ Rd such that after N iterations, Algorithm GM reaches an
approximate solution xN with the following absolute inaccuracy

ϕ(xN)−ϕ
∗ =

LR2

4Nh+2
.

Proof. For the sake of simplicity we will assume that L= 1 and R= ‖x∗−x0‖= 1. Generalizing
this proof to general values of L and R can be done by an appropriate scaling.

Consider the function

ϕ(x) =

{
1

2Nh+1‖x‖−
1

2(2Nh+1)2 , if ‖x‖ ≥ 1
2Nh+1 ,

1
2‖x‖

2, if ‖x‖< 1
2Nh+1 .

Note that this function is nothing else but the Moreau proximal envelope [68] of the function
x 7→ ‖x‖/(2Nh+ 1). It is well known that this function is convex, continuously differentiable
with Lipschitz constant L = 1, and that its minimal value ϕ(x∗) = 0, see e.g., [68, 88]. Applying
the gradient method on ϕ(x) with x0 = ν where, as before, ν is a unit vector in Rd (note that
only the first part the ϕ is relevant), we obtain that for i = 0, . . . ,N:

xi =

(
1− ih

2Nh+1

)
ν ,

ϕ
′(xi) =

1
2Nh+1

ν ,

and ϕ(xi) =
1

2Nh+1

(
1− ih

2Nh+1

)
− 1

2(2Nh+1)2

=
1

4Nh+2

(
4Nh+1−2ih

2Nh+1

)
.

Therefore,

ϕ(xN)−ϕ(x∗) = ϕ(xN) =
1

4Nh+2

and the desired claim is proven.

We conclude this section by raising a conjecture on the worst-case performance of the gra-
dient method with a constant step size 0 < h < 2. Note that when 0 < h ≤ 1 the bound below
coincides with (2.3.11).

Conjecture 2.3.1. Suppose the sequence x0, . . . ,xN is generated by Algorithm GM with 0 <
h < 2, then

f (xN)− f (x∗)≤
LR2

2
max

(
1

2Nh+1
,(1−h)2N

)
.
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2.4 New Bounds on a Class of First-Order Methods
The framework developed in the previous sections will now serve as a basis to extend the worst-
case performance analysis for a broader class of first-order methods for minimizing a smooth
convex function over Rd . First, we define a general class of first-order algorithms and we show
that it encompasses some interesting first-order methods. Then, following our approach, we
define the corresponding PEP associated with this class. Although for this more general case,
an analytical solution is not available for determining the bound, we establish that given a fixed
number of steps N, a bound on the performance of algorithms in this class can be estimated
numerically. We then illustrate how this result can be applied for deriving new complexity
bounds on two first-order methods.

2.4.1 A General First-Order Algorithm: Definition and Examples

As before, our family F is the class of convex functions in C1,1
L (Rd), and {d,N,L,R} are fixed.

Consider the following class of first-order methods:

Algorithm FO

0. Input: f ∈C1,1
L (Rd), x0 ∈ Rd.

1. For i = 0, . . . ,N−1, compute xi+1 = xi− 1
L ∑

i
k=0 h(i+1)

k f ′(xk).

Here, h(i)k ∈R play the role of step-sizes, which we assume to be determined by each specific
algorithm in this class in a way that is independent of the problem data (i.e., f and x0).

The interest in the analysis of first-order algorithms of this type is motivated by the fact that
it covers some fundamental first-order schemes beyond the gradient method. In particular, to
motivate Algorithm FO, let us consider the following two algorithms which are of particular
interest, and as we shall see below can be seen as special cases of Algorithm FO.

We start with the so-called Heavy Ball Method (HBM). For earlier work on this method
see Polyak [83], and for some interesting modern developments and applications, we refer the
reader to Attouch et al. [4, 5] and references therein.

Example 2.4.1. The Heavy Ball Method (HBM)

Algorithm HBM

0. Input: f ∈C1,1
L (Rd), x0 ∈ Rd ,

1. x1 = x0− α

L f ′(x0)

2. For i = 1, . . . ,N−1 compute: xi+1 = xi− α

L f ′(xi)+β (xi− xi−1)
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Here the step sizes α and β are chosen such that 0≤ β < 1 and 0 < α < 2(1+β ), see [83].
By recursively eliminating the term xi− xi−1 in step 2 of Algorithm HBM, we can rewrite

this step as

xi+1 = xi−
1
L

i

∑
k=0

αβ
i−k f ′(xk), i = 1, . . . ,N−1.

Therefore, the heavy ball method is a special case of Algorithm FO with the choice

h(i+1)
k = αβ

i−k, k = 0, . . . , i, i = 0, . . .N−1.

The next algorithm is Nesterov’s celebrated Fast Gradient Method [73].

Example 2.4.2. The fast gradient method (FGM)

Algorithm FGM

0. Input: f ∈C1,1
L (Rd), x0 ∈ Rd ,

1. y1 = x0, t1 = 1,

2. For i = 1, . . . ,N compute:

(a) xi = yi− 1
L f ′(yi),

(b) ti+1 =
1+
√

1+4t2
i

2 ,

(c) yi+1 = xi +
ti−1
ti+1

(xi− xi−1).

A major breakthrough was achieved by Nesterov in [73], where he proved that the FGM,
which requires almost no increase in computational effort when compared to the basic gradi-
ent scheme, achieves the improved rate of convergence O(1/N2) for function values. More
precisely, one has3

f (xN)− f (x∗)≤
2L‖x0− x∗‖2

(N +1)2 , ∀x∗ ∈ X∗( f ). (2.4.1)

The order of complexity of Nesterov’s algorithm is also optimal, as it is possible to show that
there exists a convex function f ∈C1,1

L (Rd) such that when d ≥ 2N +1, and under some other
mild assumptions, any first-order algorithm that generates a point xN by performing N calls to
a first-order oracle of f satisfies [74, Theorem 2.1.7]

f (xN)− f (x∗)≥
3L‖x0− x∗‖2

32(N +1)2 , ∀x∗ ∈ X∗( f ).

This fundamental algorithm discovered about 30 years ago by Nesterov [73] has been recently
revived and is currently subject of intensive research activities. For some of its extensions and

3See remark following the proof of Theorem 1 in [73].
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many applications, see e.g., the recent survey paper Beck-Teboulle [20] and references therein.

At first glance, Algorithm FGM does not seem to fit the class of algorithms defined above
(Algorithm FO). Here two sequences are defined: the main sequence x0, . . . ,xN and an auxiliary
sequence y1, . . . ,yN . Observing that the gradient of the function is only evaluated on the auxil-
iary sequence of points {yi}, we show in the next proposition that Algorithm FGM fits in this
class through the following algorithm:

Algorithm FGM′

0. Input: f ∈C1,1
L (Rd), x0 ∈ Rd ,

1. y1 = x0, t1 = 1,

2. For i = 1, . . . ,N−1 compute:

(a) ti+1 =
1+
√

1+4t2
i

2 ,

(b) yi+1 = yi− 1
L ∑

i
k=1 h(i+1)

k f ′(yk),

3. xN = yN− 1
L f ′(yN),

with

h(i+1)
k =


ti−1
ti+1

h(i)k , if k+2≤ i,
ti−1
ti+1

(h(i)i−1−1), if k = i−1,

1+ ti−1
ti+1

, if k = i.

(i = 1, . . . ,N−1, k = 1, . . . , i) (2.4.2)

Proposition 2.4.1. The points y1, . . . ,yN ,xN generated by Algorithm FGM′ are identical to the
respective points generated by Algorithm FGM.

Proof. We will show by induction that the sequence yi generated by Algorithm FGM′ is iden-
tical to the sequence yi generated by Algorithm FGM, and that the value of xN generated by
Algorithm FGM′ is equal to the value of xN generated by Algorithm FGM.

First note that the sequence ti is defined by the two algorithms in the same way. Now let
{xi, yi} be the sequences generated by Algorithm FGM and denote by {y′i}, x′N the sequence
generated by Algorithm FGM′. Obviously, y′1 = y1 and since t1 = 1 we get using the relations
2.4.2:

y′2 = y′1−
1
L

h(2)1 f ′(y′1) = y1−
1
L

(
1+

t1−1
t2

)
f ′(y1) = y1−

1
L

f ′(y1) = x1 = y2.
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Assuming y′i = yi for i = 1, . . . ,n, we then have

y′n+1 = y′n−
1
L

h(n+1)
n f ′(y′n)−

1
L

h(n+1)
n−1 f ′(y′n−1)−

1
L

n−2

∑
k=1

h(n+1)
k f ′(y′k)

= yn−
1
L

(
1+

tn−1
tn+1

)
f ′(yn)−

1
L

tn−1
tn+1

(
h(n)n−1−1

)
f ′(yn−1)−

1
L

n−2

∑
k=1

tn−1
tn+1

h(n)k f ′(y′k)

= yn−
1
L

f ′(yn)+
tn−1
tn+1

(
−1

L
f ′(yn)+

1
L

f ′(yn−1)−
1
L

n−1

∑
k=1

h(n)k f ′(y′k)

)

= xn +
tn−1
tn+1

(
−1

L
f ′(yn)+

1
L

f ′(yn−1)+ y′n− y′n−1

)
= xn +

tn−1
tn+1

(xn− xn−1)

= yn+1.

Finally,

x′N = y′N−
1
L

f ′(y′N) = yN−
1
L

f ′(yN) = xN .

2.4.2 Numerical Estimation of a Bound on Algorithm FO
To build the performance estimation problem for Algorithm FO, from which a complexity
bound can be derived, we follow the approach used to derive problem (G) for the gradient
method. The only difference being that here, of course, the relation between the variables xi is
derived from the main iteration of Algorithm FO. After some algebra, the resulting PEP reads

max
G∈R(N+1)×d ,δi∈R

LR2
δN

s.t. tr(GT Ãi, jG)≤ δi−δ j, i < j = 0, . . . ,N,

tr(GT B̃i, jG)≤ δi−δ j, j < i = 0, . . . ,N,

tr(GTC̃iG)≤ δi, i = 0, . . . ,N,

tr(GT D̃iG+νuT
i G)≤−δi, i = 0, . . . ,N,

(Q)

where Ãi, j, B̃i, j, C̃i and D̃i are defined, similarly to (2.3.5), by

Ãi, j =
1
2
(ui−u j)(ui−u j)

T +
1
2

j

∑
t=i+1

t−1

∑
k=0

h(t)k (u juT
k +ukuT

j ),

B̃i, j =
1
2
(ui−u j)(ui−u j)

T − 1
2

i

∑
t= j+1

t−1

∑
k=0

h(t)k (u juT
k +ukuT

j ),

C̃i =
1
2

uiuT
i ,

D̃i =
1
2

uiuT
i +

1
2

i

∑
t=1

t−1

∑
k=0

h(t)k (uiuT
k +ukuT

i )

(2.4.3)
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and we recall that ν ∈ Rd is a given unit vector, ui = ei+1 ∈ RN+1 and the notation i < j =
0, . . . ,N is a shorthand notation for i = 0, . . . ,N−1, j = i+1, . . . ,N.

In view of the difficulties in the analysis required to find the solution of (G), an analytical
solution to this more general case seems unlikely. However, as we now proceed to show, we can
find an upper bound on the optimal solution of this problem by solving a semidefinite program
that can be computed numerically using state of the art SDP software.

Following the analysis of the gradient method, (cf. (G′) in §2.3.2) we consider the following
simpler relaxed problem:

max
G∈R(N+1)×d ,δi∈R

LR2
δN

s.t. tr(GT Ãi−1,iG)≤ δi−1−δi, i = 1, . . . ,N,

tr(GT D̃iG+νuT
i G)≤−δi, i = 0, . . . ,N.

(Q′)

With the same proof as given in Lemma 2.2 for problem (Q′), we obtain that a dual problem
for (Q′) is given by the following convex semidefinite optimization problem (as before, we omit
the term LR2):

min
λ ,τ,t

1
2

t

s.t.
(

∑
N
i=1 λiÃi−1,i +∑

N
i=0 τiD̃i

1
2τ

1
2τT 1

2t

)
� 0,

(λ ,τ) ∈ Λ̃,

(DQ′)

where

Λ̃= {(λ ,τ)∈RN
+×RN+1

+ : τ0 = λ1, λi−λi+1+τi = 0, i= 1, . . . ,N−1, λN +τN = 1}. (2.4.4)

The structure of problem (DQ′) will be very helpful in the analysis of the next section which
further addresses the role of the step-sizes. Note that the data matrices of both primal-dual
problems (Q′) and (DQ′) depend on the step-sizes h(i)k .

To avoid a trivial bound on problem (Q′), here we need the following assumption on the
dual problem (DQ′):

Assumption 1 Problem (DQ′) is solvable, i.e., the minimum is finite and attained for the
given step-sizes h(i)k .

Actually, the attainment requirement can be avoided if we can exhibit a feasible point
(λ ,τ, t) for the problem (DQ′). As noted earlier, given the difficulties already encountered
for the simpler gradient method, finding explicitly such a point for the general Algorithm FO is
unlikely.

The promised complexity bound on Algorithm FO now easily follows and is determined
by the optimal value of the dual problem (DQ’), which can be efficiently computed by any
numerical solvers for SDP [23, 51, 99] for small to medium scale problems.

Proposition 2.4.2. Fix any N,d ∈N. Let f ∈C1,1
L (Rd) be convex and suppose that x0, . . . ,xN ∈

Rd are generated by Algorithm FO, and that Assumption 1 holds. Then,

f (xN)− f (x∗)≤ LR2 val (DQ′).

Proof. Follows from weak duality for the pair of primal-dual problems (Q′)-(DQ′)
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FGM − analytical bound

Figure 2.1: The computed worst-case bounds on the HBM and FGM versus the classical ana-
lytical bound on the FGM (2.4.1).

2.4.3 Numerical Illustrations

We apply Proposition 2.4.2 to find bounds on the complexity of the heavy ball method (HBM)
with4 α = 1 and β = 1

2 and on the fast gradient method (FGM) with h(i)k as given in (2.4.2),
which as shown earlier, can both be viewed as particular realizations of Algorithm FO.

The resulting SDP programs were solved for different values of N using CVX [48, 49]. These
results, together with the classical bound on the convergence rate of the main sequence of the
fast gradient method (2.4.1), are summarized in Figure 2.1 and Table 2.1.

Note that as far as the authors are aware, there is no known convergence rate result for the
HBM on the class of convex functions in C1,1

L . As can be seen from the above results, the
numerically estimated bound for the HBM behaves slightly better than the gradient method
(compare with the explicit bound given in Theorem 2.4), but remains much slower than the fast
gradient scheme (FGM).

Considering the results on the FGM, note that the numerically estimated bounds for the
main sequence of point xi and the corresponding values at the auxiliary sequence yi of the fast
gradient method are very similar and perform slightly better than predicted by the classical
bound (2.4.1). To the best of our knowledge, the complexity of the auxiliary sequence is yet
unknown, thus these results encourage us to raise the following conjecture.

Conjecture 2.4.1. Let x0,x1, . . . and y1,y2, . . . be the main and auxiliary sequences defined by
FGM (respectively), then { f (xi)} and { f (yi)} converge to the optimal value of the problem
with the same rate of convergence.

4According to our simulations, this choice for the values of α,β produces results that are typical of the behavior
of the algorithm.
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N Heavy Ball FGM, main FGM, auxiliary FGM, analytical bound
1 LR2/6.00 LR2/6.00 LR2/2.00 LR2/2.0=2LR2/(1+1)2

2 LR2/7.99 LR2/10.00 LR2/6.00 LR2/4.5=2LR2/(2+1)2

3 LR2/9.00 LR2/15.13 LR2/11.13 LR2/8.0=2LR2/(3+1)2

4 LR2/12.35 LR2/21.35 LR2/17.35 LR2/12.5=2LR2/(4+1)2

5 LR2/16.41 LR2/28.66 LR2/24.66 LR2/18.0=2LR2/(5+1)2

10 LR2/39.63 LR2/81.07 LR2/77.07 LR2/60.5=2LR2/(10+1)2

20 LR2/89.45 LR2/263.65 LR2/259.65 LR2/220.5=2LR2/(20+1)2

40 LR2/188.99 LR2/934.89 LR2/930.89 LR2/840.5=2LR2/(40+1)2

80 LR2/387.91 LR2/3490.22 LR2/3486.22 LR2/3280.5=2LR2/(80+1)2

160 LR2/785.68 LR2/13427.43 LR2/13423.43 LR2/12960.5=2LR2/(160+1)2

500 LR2/2476.11 LR2/127224.44 LR2/127220.32 LR2/125500.5=2LR2/(500+1)2

1000 LR2/4962.01 LR2/504796.99 LR2/504798.28 LR2/501000.5=2LR2/(1000+1)2

Table 2.1: The computed worst-case bounds on the HBM and FGM versus the classical analyt-
ical bound on the FGM (2.4.1).

2.5 A Best Performing Algorithm: Optimal Step Sizes for Al-
gorithm FO

We now consider the problem of finding the “best” performing algorithm of the form FO with
respect to the new bounds. Namely, we consider the problem of minimizing val (Q′), the optimal
value of (Q′), with respect to the step sizes h := (h(i)k )0≤k<i≤N defining the Algorithm FO, and
which are now considered as unknown variables in FO.

We denote by Ãi, j(h) and D̃i(h), the matrices given in (2.4.3), which are functions of the
algorithm step sizes h. The resulting bound derived in Proposition 2.4.2 is thus a function of h,
and the problem of minimizing val (DQ′) with respect to the step sizes h thus consists of solving
the following bilinear problem:

min
h,λ ,τ,t

{
1
2

t :
(

∑
N
i=1 λiÃi−1,i(h)+∑

N
i=0 τiD̃i(h) 1

2 τ
1
2 τT 1

2 t

)
� 0,(λ ,τ) ∈ Λ̃

}
, (BIL)

with Λ̃ defined as in (2.4.4).
Note that the feasibility of (BIL) follows from the proof of Theorem 2.5, where an explicit

feasible point is given to (DG′), which is a special instance of (BIL) when the steps (h(i)k ) are
chosen as in the gradient method.

From the definition of the matrices Ãi, j(h) and D̃i(h), we get

N

∑
i=1

λiÃi−1,i(h)+
N

∑
i=0

τiD̃i(h) =
1
2

N

∑
i=1

λi(ui−1−ui)(ui−1−ui)
T +

1
2

N

∑
i=0

τiuiuT
i

+
1
2

N

∑
i=1

i−1

∑
k=0

(
λih

(i)
k + τi

i

∑
t=k+1

h(t)k

)
(uiuT

k +ukuT
i ).
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Introducing the new variables:

ri,k = λih
(i)
k + τi

i

∑
t=k+1

h(t)k , i = 1, . . . ,N, k = 0, . . . , i−1 (2.5.1)

and denoting r = (ri,k)0≤k<i≤N , we obtain the following linear SDP relaxation of (BIL):

min
r,λ ,τ,t

{
1
2

t :
(

S(r,λ ,τ) 1
2τ

1
2τT 1

2t

)
� 0, (λ ,τ) ∈ Λ̃

}
, (LIN)

where

S(r,λ ,τ) =
1
2

N

∑
i=1

λi(ui−1−ui)(ui−1−ui)
T +

1
2

N

∑
i=0

τiuiuT
i +

1
2

N

∑
i=1

i−1

∑
k=0

ri,k(uiuT
k +ukuT

i ).

This convex SDP can now be efficiently solved by numerical methods. As the following
theorem shows, the optimal solution of (LIN) can then be used to construct an optimal solution
for (BIL) and hence recover optimal values for the step sizes h.

Theorem 2.6. Suppose (r∗,λ ∗,τ∗, t∗) is an optimal solution for (LIN), then (h,λ ∗,τ∗, t∗) is an
optimal solution for (BIL), where h = (h(i)k )0≤k<i≤N is defined by the following recursive rule5

h(i)k =

 r∗i,k−τ∗i ∑
i−1
t=k+1 h(t)k

λ ∗i +τ∗i
if λ ∗i + τ∗i 6= 0,

0 otherwise,
i = 1, . . . ,N, k = 0, . . . , i−1. (2.5.2)

Proof. As (LIN) is a relaxation of (BIL), it is enough to show that (BIL) can achieve the same
objective value. Let (r∗,λ ∗,τ∗, t∗) be an optimal solution for (LIN). If λ ∗i 6= 0 for all 1≤ i≤ N,
then (2.5.2) satisfies all the equations in (2.5.1) and therefore (h,λ ∗,τ∗, t∗) is feasible for (BIL).

Suppose λ ∗m = 0 for some 1 ≤ m ≤ N and that m is the maximal index with this property.
Then by the equality and non-negativity constraints in (LIN), we get that λ ∗1 = λ ∗2 = · · ·= λ ∗m = 0
and τ∗0 = τ∗1 = · · ·= τ∗m−1 = 0. Let S := S(r,λ ∗,τ∗), then by the positive semidefinite constraint
in (LIN), we have S� 0. From the linear equalities connecting λ and τ it follows that

Si,i =

{
1
2(λ

∗
1 + τ∗0 ) = λ ∗1 , if i = 1,

1
2(λ

∗
i +λ ∗i−1 + τ∗i−1) = λ ∗i , if i = 2, . . . ,N,

and we get that S1,1 = · · · = Sm,m = 0. By the properties of positive semidefinite matrices we
now get that r∗i,k = 0 for i = 1, . . . ,m and k = 0, . . . , i−1, hence the set of equations (2.5.1) with

the chosen values of h(i)k is consistent.

The optimal value of LR2 val(LIN) for various values of N is summarized in Table 2.2. As
can be seen from these results (compare with Table 2.1), the worst-case performance of the
new algorithm is almost exactly two times better than the worst-case performance of the fast

5We thank Donghwan Kim and Jeffrey A. Fessler for spotting a typo in the journal version of this work [40].
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N LR2val(LIN) N LR2val(LIN)
1 LR2/8.00 20 LR2/525.09
2 LR2/16.16 40 LR2/1869.22
3 LR2/26.53 80 LR2/6983.13
4 LR2/39.09 160 LR2/26864.04
5 LR2/53.80 500 LR2/254482.61
10 LR2/159.07 1000 LR2/1009628.17

Table 2.2: An approximate solution of LR2 val(LIN) for various values of N.

gradient method. Note that the bounds given here are worst-case bounds: the performance of
the considered methods on a specific application can be very different.

The resulting first-order algorithm with the computed optimal step sizes h(i)k for N = 5 is
illustrated in the example below.

Example 2.5.1. Consider the following first-order method, which was constructed by solving
(LIN) for N = 5.

0. Input: f ∈C1,1
L (Rd), x0 ∈ Rd ,

1. x1 = x0− 1.6180
L f ′(x0),

2. x2 = x1− 0.1741
L f ′(x0)− 2.0194

L f ′(x1),

3. x3 = x2− 0.0756
L f ′(x0)− 0.4425

L f ′(x1)− 2.2317
L f ′(x2),

4. x4 = x3− 0.0401
L f ′(x0)− 0.2350

L f ′(x1)− 0.6541
L f ′(x2)− 2.3656

L f ′(x3),

5. x5 = x4− 0.0178
L f ′(x0)− 0.1040

L f ′(x1)− 0.2894
L f ′(x2)− 0.6043

L f ′(x3)− 2.0778
L f ′(x4).

A bound on the worst-case performance the algorithm in this example is given by the fol-
lowing inequality (see N = 5 in Table 2.2):

f (x5)− f (x∗)≤
L‖x0− x∗‖2

53.80
, ∀x∗ ∈ X∗( f ).

2.6 Conclusions
We introduced a novel approach for estimating the worst-case complexity of first-order methods
for convex optimization via the PEP problem, its relaxations, and exact or approximate solution
using duality. Using this approach we derived a tight bound on the worst-case performance of
the fixed-size gradient method and established new bounds that can be numerically estimated for
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a general class of first-order algorithms, which includes the Heavy Ball method and Nesterov’s
fast gradient method. We then showed how to construct optimal stepsizes for this first-order
class.

While the proposed approach and the PEP problem offer a novel way to measure the com-
plexity of any algorithm, it should be stressed that this approach is of course not without limi-
tations. Indeed, as shown in the chapter, finding a bound on the PEP problem is challenging. In
the case of the gradient method with a fixed step size, the derivation of simple closed form ex-
pression for the bound required a dedicated analysis. Furthermore, for more general first-order
algorithms, we are left with the problem of approximating the solution of the problem using
SDP solvers which are often efficient only for small to medium scale problems. Nevertheless,
the novelty of the proposed approach offers possible directions for extensions that could be
considered in future research by formulating and analyzing the corresponding PEP problem for
other first-order algorithms. This includes, for example, the analysis of gradient methods with
different variable step-size strategies, which is briefly discussed in Appendix II, and the analysis
of algorithms for different classes F of input functions, such as the class of strongly convex
functions, which is briefly discussed in Appendix III.

Finally, we would like to mention the very recent work [54] by Donghwan Kim and Jeffrey
A. Fessler who further analyzed the results presented in this chapter. Among other results, they
confirmed Conjecture 2.4.1 and derived two efficient implementations to the method presented
in Section 2.5.

2.7 Appendix I: Proof of Lemma 2.3

We now establish the positive definiteness of the matrices S0 and S1 given in (2.3.8) and (2.3.9),
respectively.

Part I: S0 � 0

We begin by showing that S0 is positive definite. Recall that

S0 =



2λ1 −λ1
−λ1 2λ2 −λ2

−λ2 2λ3 −λ3
. . . . . . . . .

−λN−1 2λN −λN
−λN 1


for

λi =
i

2N +1− i
, i = 1, . . . ,N.
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Let us look at ξ T S0ξ for any ξ = (ξ0, . . . ,ξN)
T :

ξ
T S0ξ =

N−1

∑
i=0

2λi+1ξ
2
i −2

N−1

∑
i=0

λi+1ξiξi+1 +ξ
2
N

=
N−1

∑
i=0

λi+1(ξi+1−ξi)
2 +λ1ξ

2
0 +

N−1

∑
i=1

(λi+1−λi)ξ
2
i +(1−λN)ξ

2
N

which is always positive for ξ 6= 0. We conclude that S0 is positive definite.

Part II: S1 � 0

We will show that S1 is positive definite using Sylvester’s criterion6.
Recall that

S1 =


2λ1 λ2−λ1 . . . λN−λN−1 1−λN

λ2−λ1 2λ2 λN−λN−1 1−λN
... . . . ...

λN−λN−1 λN−λN−1 2λN 1−λN
1−λN 1−λN . . . 1−λN 1


for

λi =
i

2N +1− i
, i = 1, . . . ,N.

A recursive expression for the determinants We begin by deriving a recursion rule for the
determinant of matrices of the following form:

Mk =



d0 a1 a2 . . . ak−1 ak
a1 d1 a2 ak−1 ak
a2 a2 d2 ak−1 ak
... . . . ...

ak−1 ak−1 ak−1 dk−1 ak
ak ak ak . . . ak dk


.

To find the determinant of Mk, subtract the one before last row multiplied by ak
ak−1

from the
last row: the last row becomes

(0, . . . ,0,ak−
ak

ak−1
dk−1,dk−

ak

ak−1
ak).

Expanding the determinant along the last row we get

detMk = (dk−
ak

ak−1
ak)detMk−1− (ak−

ak

ak−1
dk−1)det(Mk)k,k−1

6Despite the interesting structure of the matrix S1, this proof is quite involved. A simpler proof would be most
welcome!
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where (Mk)k,k−1 denotes the k,k−1 minor:

(Mk)k,k−1 =



d0 a1 a2 . . . ak−2 ak
a1 d1 a2 ak−2 ak
a2 a2 d2 ak−2 ak
... . . .

ak−2 ak−2 ak−2 dk−2 ak
ak−1 ak−1 ak−1 ak−1 ak


.

If we multiply the last column of (Mk)k,k−1 by ak−1
ak

we get a matrix that is different from Mk−1
by only the corner element. Thus by basic determinant properties we get that

ak−1

ak
det(Mk)k,k−1 = detMk−1 +(ak−1−dk−1)detMk−2.

Combining these two results, we have found the following recursion rule for detMk, k ≥ 2:

detMk = (dk−
ak

ak−1
ak)detMk−1

− (ak−
ak

ak−1
dk−1)

(
ak

ak−1
detMk−1 +(ak−

ak

ak−1
dk−1)detMk−2

)
=

(
(dk−

ak

ak−1
ak)− (ak−

ak

ak−1
dk−1)

ak

ak−1

)
detMk−1−

(
ak−

ak

ak−1
dk−1

)2

detMk−2

or

detMk =

(
dk−

2a2
k

ak−1
+

a2
kdk−1

a2
k−1

)
detMk−1−a2

k

(
1− dk−1

ak−1

)2

detMk−2. (2.7.1)

Obviously, the recursion base cases are given by

detM0 = d0,

detM1 = d0d1−a2
1.

Closed form expressions for the determinants Going back to our matrix, S1, by choosing

di = 2
i+1

2N− i
, i = 0, . . . ,N−1

dN = 1

ai =
i+1

2N− i
− i

2N +1− i
, i = 1, . . . ,N−1

aN = 1− N
N +1

=
1

N +1
,

we get that Mk is the k+1’th leading principal minor of the matrix S1. The recursion rule (2.7.1)
can now be solved for this choice of ai and di. The solution is given by:

detMk =
(2N +1)2

(2N− k)2

(
1+

k

∑
i=0

2N−2k−1
2N +4Ni−2i2 +1

)
k

∏
i=0

2N +4Ni−2i2 +1
(2N +1− i)2 , (2.7.2)
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for k = 0, . . . ,N−1, and

detMN = detL1 =
(2N +1)2

(N +1)2

N−1

∏
i=0

2N +4Ni−2i2 +1
(2N +1− i)2 . (2.7.3)

Verification We now proceed to verify the expressions (2.7.2) and (2.7.3) given above. We
will show that these expressions satisfy the recursion rule (2.7.1) and the base cases of the
problem. We begin by verifying the base cases:

detM0 =
(2N +1)2

(2N)2

(
1+

2N−1
2N +1

)
1

2N +1
=

1
N

= d0,

detM1 =
(2N +1)2

(2N−1)2

(
1+

2N−3
2N +1

+
2N−3
6N−1

)
1

2N +1
6N−1
(2N)2

=
28N2−20N−1
4N2(2N−1)2 =

4
N(2N−1)

−
(

2
2N−1

− 1
2N

)2

= d0d1−a2
1.

Now suppose 2≤ k ≤ N. Denote

αk = dk−
2a2

k
ak−1

+
a2

kdk−1

a2
k−1

=

4 (2N+1)k−k2−1
(2N−k)2 , if k < N,

32N2+2N−1
(2N+1)2 , if k = N,

βk = a2
k

(
1− dk−1

ak−1

)2

=


(4kN−2N−2k2+4k−1)2

(2N−k)2(2N−k+1)2 , if k < N,

(2N2+2N−1)2

(N+1)2(2N+1)2 , if k = N,

then the recursion rule (2.7.1) can be written as

detMk = αk detMk−1−βk detMk−2.

Further denote

ri =
1

2N +4Ni−2i2 +1
, i = 0, . . . ,N−1,

si =
(2N +1)2

(2N− i)2 , i = 0, . . . ,N−1,

pi = 2N−2i−1, i = 0, . . . ,N−1,

qi =
2N +4Ni−2i2 +1

(2N +1− i)2 , i = 0, . . . ,N−1,

then the solution (2.7.2) becomes

detMk =sk

(
1+ pk

k

∑
i=0

ri

)
k

∏
i=0

qi,
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and (2.7.3) becomes

detMN =
(2N +1)2

(N +1)2

N−1

∏
i=0

qi.

Substituting (2.7.2) in the RHS of (2.7.1) we get that for k = 2, . . . ,N

αk detMk−1−βk detMk−2

= αksk−1

(
1+ pk−1

k−1

∑
i=0

ri

)
k−1

∏
i=0

qi−βksk−2

(
1+ pk−2

k−2

∑
i=0

ri

)
k−2

∏
i=0

qi

=

(
αksk−1

(
1+ pk−1rk−1 + pk−1

k−2

∑
i=0

ri

)
− βk

qk−1
sk−2−

βk

qk−1
sk−2 pk−2

k−2

∑
i=0

ri

)
k−1

∏
i=0

qi

=

(
αksk−1(1+ pk−1rk−1)−

βk

qk−1
sk−2 +

(
αksk−1 pk−1−

βk

qk−1
sk−2 pk−2

) k−2

∑
i=0

ri

)
k−1

∏
i=0

qi.

It is straightforward (although somewhat involved) to verify that for k < N

αksk−1(1+ pk−1rk−1)−
βk

qk−1
sk−2 = skqk(1+ pkrk−1 + pkrk),

and

αksk−1 pk−1−
βk

qk−1
sk−2 pk−2 = sk pkqk.

We therefore get

αk detMk−1−βk detMk−2

=

(
skqk(1+ pkrk−1 + pkrk)+ sk pkqk

k−2

∑
i=0

ri

)
k−1

∏
i=0

qi

= sk

(
1+ pk

k

∑
i=0

ri

)
k

∏
i=0

qi

= detMk,

and thus (2.7.2) satisfies (2.7.1). It is also possible to show that

αNsN−1(1+ pN−1rN−1)−
βN

qN−1
sN−2 =

(2N +1)2

(N +1)2 ,

αNsN−1 pN−1−
βN

qN−1
sN−2 pN−2 = 0,

thus, for k = N

αN detMN−1−βN detMN−2

=
(2N +1)2

(N +1)2

N−1

∏
i=0

qi

= detMN ,
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and the expression (2.7.3) is also verified.
To complete the proof, note that the closed form expressions for detMk consist of sums

and products of positive values, hence detMk is positive, and thus by Sylvester’s criterion S1 is
positive definite.

2.8 Appendix II: An Analytical Bound for the Projected Gra-
dient Method

Let C ⊆ Rd be a convex set and suppose f is a convex differentiable function with Lipschitz
continuous gradient with the constant L. In this section, we consider the projected gradient
method:

Algorithm PG

1. Choose x0 ∈C

2. For i = 1, . . . ,N

(a) Set yi← xi−1− hi−1
L f ′(xi−1)

(b) Set xi← PC(yi).

We show that under some conditions on the step sizes, hi, the efficiency estimate of the
method is given by

f (xN)− f (x∗)≤
L‖x0− x∗‖2

4∑
N−1
k=0 hk

.

We start the derivation of the bound by writing the corresponding PEP:

max
ϕ∈C1,1

L convex,
x0∈C

ϕ(xN)−ϕ
∗

s.t. yi = xi−1−
hi−1

L
ϕ
′(xi−1), i = 1, . . . ,N,

xi = PC(yi), i = 1, . . . ,N,

‖x0− x∗‖ ≤ R.

By the properties of convex sets and convex functions in C1,1
L , the following inequalities

hold:

〈x−PC(x),y−PC(x)〉 ≤ 0, ∀x ∈ Rd, ∀y ∈C, (2.8.1)
1

2L
‖ϕ ′(x)−ϕ

′(y)‖2 ≤ ϕ(x)−ϕ(y)−〈ϕ ′(y),x− y〉, ∀ϕ ∈ FL, ∀x,y. (2.8.2)
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Let

x∗ ∈ argmin
x∈C

ϕ(x),

g∗ =
1
L

ϕ
′(x∗),

δi =
1
L
(ϕ(xi)−ϕ(x∗)), (i = 0, . . . ,N,∗),

gi =
1
L

ϕ
′(xi), (i = 0, . . . ,N,∗),

then by applying (2.8.1) and (2.8.2) on x0, . . . ,xN ,x∗, y0, . . . ,yN and treating these variables as
the new optimization variables instead of ϕ , we arrive to the following relaxation:

max
xi,yi,gi∈Rd ,δi∈R

LδN

s.t. yi = xi−1−hi−1gi−1, i = 1, . . . ,N,

〈yi− xi,x j− xi〉 ≤ 0, j = 0, . . . ,N,∗, i = 1, . . . ,N,

1
2
‖gi−g j‖2 ≤ δ j−δi−〈gi,x j− xi〉, i, j = 0, . . . ,N,∗,

‖x0− x∗‖ ≤ R.

Eliminating yi and removing some constraints (which were numerically found to be inactive),
we reach the following relaxed problem:

max
xi,gi∈Rd ,δi∈R

LδN

s.t. ‖xi− xi+1‖2−hi〈gi,xi− xi+1〉 ≤ 0, i = 1, . . . ,N−1,
〈xi− xi+1,x∗− xi+1〉−hi〈gi,x∗− xi+1〉 ≤ 0, i = 0, . . . ,N−1,
1
2
‖gi+1−gi‖2 + 〈gi+1,xi− xi+1〉 ≤ δi−δi+1, i = 0, . . . ,N−1,

1
2
‖gi−g∗‖2 + 〈gi,x∗− xi〉 ≤ −δi, i = 0, . . . ,N,

‖x0− x∗‖ ≤ R.

The SDP relaxation is performed by defining the variable:

Z =



〈x0,x0〉 . . . 〈x0,xN〉 〈x0,g0〉 . . . 〈x0,gN〉 〈x0,x∗〉 〈x0,g∗〉
... . . . ...

... . . . ...
...

...
〈xN ,x0〉 . . . 〈xN ,xN〉 〈xN ,g0〉 . . . 〈xN ,gN〉 〈xN ,x∗〉 〈xN ,g∗〉
〈g0,x0〉 . . . 〈g0,xN〉 〈g0,g0〉 . . . 〈g0,gN〉 〈g0,x∗〉 〈g0,g∗〉

... . . . ...
... . . . ...

...
...

〈gN ,x0〉 . . . 〈gN ,xN〉 〈gN ,g0〉 . . . 〈gN ,gN〉 〈gN ,x∗〉 〈gN ,g∗〉
〈x∗,x0〉 . . . 〈x∗,xN〉 〈x∗,g0〉 . . . 〈x∗,gN〉 〈x∗,x∗〉 〈x∗,g∗〉
〈g∗,x0〉 . . . 〈g∗,xN〉 〈g∗,g0〉 . . . 〈g∗,gN〉 〈g∗,x∗〉 〈g∗,g∗〉
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thereby reaching the problem

(PG-R) max
Z∈S2N+2,δi∈R

LδN

s.t. tr(AiZ)≤ 0, i = 1, . . . ,N−1,
tr(BiZ)≤ 0, i = 0, . . . ,N−1,
tr(CiZ)≤ δi−δi+1, i = 0, . . . ,N−1,
tr(DiZ)≤−δi, i = 0, . . . ,N,

tr(EZ)≤ R2,

Z � 0,

where Ai, Bi, Ci, Di and E are (2N +2)× (2N +2) symmetrical matrices appropriately defined
according to the optimization problem above. I.e., if we denote

ui = ei+1 (i = 0, . . . ,N)

vi = ei+N+2 (i = 0, . . . ,N)

u∗ = e2N+1

v∗ = e2N+2

(ei ∈ R2N+2 is the i’th canonical unit vector) and define

A′i = (ui−ui+1)(ui−ui+1)
T −hivi(ui−ui+1)

T , i = 1, . . . ,N−1

B′i = (ui−ui+1)(u∗−ui+1)
T −hivi(u∗−ui+1)

T , i = 0, . . . ,N−1

C′i =
1
2
(vi+1− vi)(vi+1− vi)

T + vi+1(ui−ui+1)
T , i = 0, . . . ,N−1

D′i =
1
2
(vi− v∗)(vi− v∗)T + vi(u∗−ui)

T , i = 0, . . . ,N

E ′ = (u0−u∗)(u0−u∗)T

we get

Ai =
1
2
(A′i +A′i

T
), i = 1, . . . ,N−1,

Bi =
1
2
(B′i +B′i

T
), i = 0, . . . ,N−1,

Ci =
1
2
(C′i +C′i

T
), i = 0, . . . ,N−1,

Di =
1
2
(D′i +D′i

T
), i = 0, . . . ,N,

E = E ′.
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The dual of (PG-R) is then given by

min
ai,bi,ci,dt ,e

LR2e

s.t.
N−1

∑
i=1

aiAi +
N−1

∑
i=0

biBi +
N−1

∑
i=0

ciCi +
N

∑
i=0

diDi + eE � 0,

c0−d0 = 0,
ci− ci−1−di = 0, i = 1, . . . ,N−1,
cN−1 +dN = 1,
ai,bi,ci,di,e≥ 0.

To show an upper bound on the primal problem (and hence an upper bound on the efficiency
estimate of the method), it is enough to find a dual feasible point. Let

âi =
∑

i−1
k=0 hk

hi
(
2∑

N−1
k=0 hk−∑

i−1
k=0 hk

) , i = 1, . . . ,N−1,

b̂0 =
h1

h0
â1,

b̂i =
hi+1

hi
âi+1− âi,

b̂N−1 =
1

hN−1
− âN−1,

ĉi =
∑

i
k=0 hk

2∑
N−1
k=0 hk−∑

i−1
k=0 hk

, i = 0, . . . ,N−1,

d̂0 = ĉ0,

d̂i = ĉi− ĉi−1,

d̂N = 1− ĉN−1,

ê =
1

4∑
N−1
k=0 hk

,

then to complete the derivation of the bound, we need to verify that the constraints in the dual
problem are satisfied. Since the linear constraints are trivially satisfied, we are left with verify-
ing the matrix inequality:

Ŝ =
N−1

∑
i=0

âiAi +
N−1

∑
i=0

b̂iBi +
N−1

∑
i=0

ĉiCi +
N

∑
i=0

d̂iDi + êE � 0.

Let

ξ = (ξ0, . . . ,ξN ,ψ0, . . . ,ψN ,ξ∗,ψ∗)
T ∈ R2N+2
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then since

ξ
T

N−1

∑
i=1

aiAiξ =
N−1

∑
i=1

ai
(
(ξi−ξi+1)

2−hiψi(ξi−ξi+1)
)
,

ξ
T

N−1

∑
i=0

biBiξ =
N−1

∑
i=0

bi ((ξi−ξi+1)(ξ∗−ξi+1)−hiψi(ξ∗−ξi+1)) ,

ξ
T

N−1

∑
i=0

ciCiξ =
N−1

∑
i=0

ci

(
1
2
(ψi+1−ψi)

2 +ψi+1(ξi−ξi+1)

)
,

ξ
T

N

∑
i=0

diDiξ =
N

∑
i=0

di

(
1
2
(ψi−ψ∗)

2 +ψi(ξ∗−ξi)

)
,

ξ
T eEξ = e(ξ0−ξ∗)

2,

we have

ξ
T Ŝξ =

N−1

∑
i=1

âi
(
(ξi−ξi+1)

2−hiψi(ξi−ξi+1)
)
+

N−1

∑
i=0

b̂i ((ξi−ξi+1)(ξ∗−ξi+1)−hiψi(ξ∗−ξi+1))

+
N−1

∑
i=0

ĉi

(
1
2
(ψi+1−ψi)

2 +ψi+1(ξi−ξi+1)

)
+

N

∑
i=0

d̂i

(
1
2
(ψi−ψ∗)

2 +ψi(ξ∗−ξi)

)
+ ê(ξ0−ξ∗)

2.

Setting â0 = 0 and extending the definition of âi to include i = N (hN can be set to any arbi-
trary value since it is not actually used), we have the following identity, which was derived by
inspecting the Cholesky decomposition of Ŝ:

ξ
T Ŝξ =

N−1

∑
i=0

ĉi(2âi + b̂i)

2âi+1hi+1

(
ξi−

âi+1hi+1

ĉi
ξi+1−

âi+1hi+1

2âi + b̂i
ψi +

âi+1hi+1

2âi + b̂i
ψi+1 +

âi+1hi+1(ĉi− âihi)

ĉi
ξ∗

)2

+
N−1

∑
i=0

ĉi

2

(
1− âi+1hi+1

2âi + b̂i

)
(ψi−ψi+1)

2 +
N

∑
i=0

1
2

d̂i(ψi−ψ∗)
2.

The verification of this identity is very involved, so we leave it to our dedicated readers (who
should use the help of their favourite CAS, for the sake of their sanity).

Conclusion Assuming hi > 0, the only possibly negative term in the expansion above is 1−
ai+1hi+1
2ai+bi

, hence as long as it is nonnegative for every i, the point is feasible and the following
theorem holds.

Theorem 2.7. Suppose hi > 0 and ai+1hi+1
2ai+bi

≤ 1 for every i, then

f (xN)− f (x∗)≤
L‖x0− x∗‖2

4∑
N−1
k=0 hk

.

It can be easily shown that when hi ≡ h for some h > 0, the condition above is reduced to
0 < h≤ 1, hence we get the following bound on the projected gradient method:
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Corollary 2.8. Suppose hi ≡ h, 0 < h≤ 1 then

f (xN)− f (x∗)≤
L‖x0− x∗‖2

4Nh
.

Note that the bound above is the best possible bound, as shown by the following result.

Theorem 2.9. There exists a function f0 ∈C1,1
L (R) and a set C ⊂ R such that if x0, . . . ,xN are

generated by applying the projected gradient method on f0, then

f0(xN)− f ∗0 =
L‖x0− x∗‖2

4∑
N−1
k=0 hk

.

Proof. We assume WLOG that L = 1, R = 1, and x0 = 1. Take C = {x ∈ R | x ≥ 0} and
f0(x) = cx, for some c > 0. Then as long as 1− c∑

N−1
k=0 hk ≥ 0, we have

xN = 1− c
N−1

∑
k=0

hk

and

f0(xN)− f ∗0 = c

(
1− c

N−1

∑
k=0

hk

)
.

Hence, by taking c = (2∑
N−1
k=0 hk)

−1, we reach the desired result.

2.9 Appendix III: A PEP for the Class of Strongly Convex
Functions

In this appendix, we use the PEP approach to demonstrate a gap in the theoretical analysis of
the FGM: we show that the worst-case behavior of the (classical) FGM, when provided with
strongly convex functions with an unknown strong convexity parameter, is considerably better
than predicted by the classical efficiency estimate (2.4.1).

Suppose f is a strongly convex function with constant µ and has Lipschitz-continuous gra-
dient with constant L. Applying (2.3.2) on f (x)− 1

2 µ‖x‖2, which has a Lipschitz-continuous
gradient with constant L−µ , we get the following property for any x,y ∈ Rd

1
2(L−µ)

‖ f ′(x)−µx− f ′(y)+µy‖2 ≤ f (x)− 1
2

µ‖x‖2− f (y)+
1
2

µ‖y‖2−〈 f ′(y)−µy,x− y〉,

or, after some manipulations, we reach

1
2(L−µ)

‖ f ′(x)− f ′(y)‖2 +
µL

2(L−µ)
‖x− y‖2

≤ f (x)− f (y)− 1
L−µ

〈L f ′(y)−µ f ′(x),x− y〉.
(2.9.1)
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Figure 2.2: The computed worst-case bounds for the classical FGM, when applied on strongly
convex functions with L = 1, R = 1, and various values of µ .

A PEP can now be formed in the usual way using (2.9.1) instead of (2.3.2) and bounds on
the worst-case performance of the FGM (and Algorithm FO, in general) can then be found
numerically as detailed in the chapter above. A MATLAB code for calculating these bound is
available at Listing 2.1.

Figure 2.2 summarizes the obtained numerical bounds on the FGM method, as described
in Example 2.4.2, for various values of µ with L = 1 and R = 1. Note that this version of the
FGM does not assume any prior knowledge on the strong convexity parameter, µ , and is not
an optimal method for the class of strongly convex functions. However, as can be seen from
the figure, the method preforms significantly better than the known analytical bound, and even
when the condition number of the problem, L/µ , is as large as 1000, the computed worst-case
performance of the method after 200 iterations is more than two times better than predicted by
the analytical bound. When the condition number of the problem is 100, the computed perfor-
mance of the method after 200 iterations becomes more than 100 times better than predicted by
the analytical bound.

To the best of our knowledge, these results provide the first complexity-based evidence for
the well-known superior practical performance of the FGM.

We leave the question of finding a more accurate analytical bound for this problem for future
research.

Listing 2.1: A PEP for the FGM
1 function bound = Nesterov83PEP2_sc(N, iL, mu, R)

2 %A PEP for Nesterov ’s ’83 FGM

3 %Returns an efficiency estimate for the N’th iteration of the FGM method

assuming it is given a function in the class of strongly convex
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functions with Lipschitz -continuous gradient

4 %N: The number of iterations

5 %iL: The Lipschitz constant of the gradient

6 %mu: The strong convexity parameter

7 %R: An upper bound on the distance from the initial iterate to an

optimal solution

8
9 if (nargin <=1)

10 iL=1;

11 mu =1/16;

12 R=1;

13 end

14 if (nargin ==0)

15 N=9;

16 end

17 global mem; mem =[]; %for caching the x seq.

18 global mem2; mem2 =[]; %for caching the a coeff.

19 global n;

20 global L;

21 n=N;

22 L=iL;

23
24 problemdim=totalvars ();

25 cvx_precision best;

26 cvx_solver sedumi;

27 cvx_begin quiet

28 variable Z(problemdim ,problemdim);

29 variable delta_vary(N+1);

30
31 global gZ;gZ=Z;

32 global dvy;dvy=delta_vary;

33
34 maximize (deltay(N));

35 subject to

36 Z== semidefinite(problemdim);

37 %The strong convexity property (2.9.1) , applied on the pair of

points y(i), y(i+1)

38 for i=0:N-1

39 1/(L-mu)*(0.5* mu*L*Znorm2(y(i)-y(i+1))+0.5* Znorm2(g(i)-g(i

+1))-Zdot(y(i)-y(i+1),mu*g(i)-L*g(i+1)))<=deltay(i)-

deltay(i+1);

40 end

41 %The strong convexity property (2.9.1) , applied on the pair of

points y(i), x*

42 for j=0:N

43 1/(L-mu)*(0.5* mu*L*Znorm2(xopt()-y(j))+0.5* Znorm2(gopt()-g(j

))-Zdot(xopt()-y(j),mu*gopt()-L*g(j))) <=-deltay(j);

44 end

45 %Bounded start

46 Znorm2(y(0)-xopt())<=R*R;

47 cvx_end

48 bound=cvx_optval;

49 end
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50
51 %*******************************************

52 %Helper functions:

53 %*******************************************

54 function n=Znorm2(v)

55 global gZ;

56 n=v’*gZ*v;

57 end

58 function d=Zdot(u,v)

59 global gZ;

60 d=u’*gZ*v;

61 end

62 function a=lowa(i)

63 global mem2;

64 if isempty(mem2)

65 mem2 ={};

66 end

67 if i==0

68 a=1;

69 else

70 if (length(mem2)<i) || isempty(mem2{i})

71 mem2{i}=0.5*(1+ sqrt (1+4* lowa(i-1) ^2));

72 end

73 a=mem2{i};

74 end

75 end

76 function nv=gvars

77 global n;

78 nv=n+1;

79 end

80 function nv=xoptvars

81 nv=1;

82 end

83 function nv=goptvars

84 nv=1;

85 end

86 function t=totalvars

87 t=gvars()+xoptvars ()+goptvars ();

88 end

89 function v=g(i)

90 global n;

91 if (i<0 || i>n)

92 error(’argument error in g(i)’);

93 end

94 v=sparse(totalvars () ,1);

95 v(i+1)=1;

96 end

97
98 function v=xopt

99 v=sparse(totalvars () ,1);

100 v(gvars()+1)=1;

101 end

102 function v=gopt
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103 v=sparse(totalvars () ,1);

104 v(gvars ()+xoptvars ()+1)=1;

105 end

106 function v=x(i)

107 global n;

108 global L;

109 global mem;

110 if (i<-1 || i>n)

111 error(’argument error in x(i)’);

112 end

113 if isempty(mem)

114 mem ={};

115 end

116
117 if i==-1

118 v=sparse(totalvars () ,1);

119 else

120 if (size(mem ,2)<i+2) || isempty(mem{i+2})

121 v=y(i)-g(i)/L; %The definition of the x sequence

122 mem{i+2}=v;

123 else

124 v=mem{i+2};

125 end

126
127 end

128 end

129 function v=y(i)

130 global n;

131 if (i<0 || i>n)

132 error(’argument error in y(i)’);

133 end

134
135 if i==0

136 v=sparse(totalvars () ,1);

137 else

138 v=(1+( lowa(i-1) -1)/lowa(i))*x(i-1) -(lowa(i-1) -1)/lowa(i)*x(i-2);

%The definition of the y sequence

139 end

140 end

141 function d=deltay(i)

142 global dvy;

143 global n;

144 if (i<0 || i>n)

145 error(’argument error in deltay(i)’);

146 end

147 if (i~=n+1)

148 d=dvy(i+1);

149 else

150 d=0;

151 end

152 end
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Chapter 3

An optimal variant of Kelley’s
cutting-plane method

We propose a new variant of Kelley’s cutting-plane method for minimizing a nonsmooth con-
vex Lipschitz-continuous function over the Euclidean space. We derive the method through a
constructive approach and prove that it attains the optimal rate of convergence for this class
of problems. In addition, we present an aggregation strategy for obtaining a memory-limited
version of the method and discuss some other situations where the approach presented here is
applicable.

3.1 Introduction
In this chapter, we focus on unconstrained nonsmooth convex minimization problems, where
information on the objective can only be gained through a first-order oracle, which returns the
value of the objective and an element in its subgradient at any point in the problem’s domain.
Problems of this type often arise in real-life applications either as the result of a transformation
that was applied on a problem (such as Benders’ decomposition [25]) or by some inherent
property of the problem (e.g., in an eigenvalue optimization problem).

One of the earliest and most fundamental methods for solving nonsmooth convex problems
is Kelley’s cutting plane method (or, the Kelley method, for short), which was introduced by
Kelley in [53] and also independently by Cheney and Goldstein [37]. The method maintains
a polyhedral model of the objective, and at each iteration updates this model according to the
first-order information at a point where the model predicts that the objective is minimal. De-
spite the elegant and intuitive nature of this method, the Kelley method suffers from very poor
performance, both in practice and in theory [72]. The source of the poor performance seems
to be the instability of the solution, where the iterates of the method tend to be far apart and at
locations where the accuracy of the model is poor.

The main objective of this work is to present a new method for minimizing a nonsmooth
convex Lipschitz-continuous function over the Euclidean space, which is surprisingly similar
to the Kelley method, yet attains the optimal rate of convergence for this class of problems. We
derive this method and its rate of convergence through a constructive approach which further
develops and extends the framework introduced in Chapter 2. In particular, here the derivation
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of a tractable complexity bound leads itself to the construction of the proposed algorithm.
Although the main contribution of this work is entirely theoretical, it should be noted that

the resulting method also offers some practical advantages over existing bundle methods. One
of the main advantages is that the method allows the implementation to choose at each iteration
between two types of steps: a “standard” step, which, as in all bundle methods, requires solving
an auxiliary convex optimization program, and an “easy” step which involves only a subgradi-
ent step with a predetermined step size. The efficiency estimate of the method remains valid
regardless of the choices a specific implementation makes, thereby allowing the implementation
to find a balance between accuracy and speed (without performing aggregation on the iterates,
which affects the accuracy of the model).

One limitation of the method is that it requires choosing the number of iterations to be
performed in advance. However, this limitation is not severe since the “standard” steps provide
as a by-product a bound on the worst-case absolute inaccuracy at the end of the method’s run,
hence once the desired accuracy has been achieved, the implementation can choose to perform
only “easy” steps thereby quickly ending the execution of the method.

Literature The first successful approach for overcoming the instability in the Kelley method,
known as the bundle method, was introduced by Lemaréchal [61] and also independently by
Wolfe [100]. In the bundle approach, the instability in the Kelley method is tackled by introduc-
ing a regularizing quadratic term in the objective, thereby forcing the next iterate to remain in
close proximity to the previous iterates, where the model is more accurate. The bundle approach
proved to be very fruitful, and yielded many variations on the idea, see for instance [8, 56, 63]
and references therein. The bundle method and its variants also proved to perform very well in
practice; however, a theoretical rate of convergence is not available for most variants, and for
the variants where a rate of convergence was established, it was shown to be suboptimal [58].

Another fundamental approach is the level bundle method, introduced by Lemaréchal et
al. [62]. The idea behind this approach is that the level sets of the polyhedral model of the
objective are “stable”, and therefore they should be used instead of the complete model. Build-
ing on this idea, at each iteration the method performs a projection of the previous iterate on
a carefully selected level set of the model, then updates the model according to the first-order
information at the resulting point. Several extensions to the method were proposed, including
a restricted memory variant [57] and a variant for handling non-Euclidean metrics [24]. The
method was shown to possess an optimal rate of convergence, however, note that the constant
factor in the bound is not optimal, and leaves room for improvement.

Finally, let us mention that quite a few additional approaches were proposed. Among them
are trust-region bundle methods [91] and the bundle-newton method [65], where the objective
is approximated by a combination of polyhedral and quadratic functions. For a comprehensive
survey, we refer the reader to [66].

Outline. The chapter is organized as follows. In Section 3.2, we present the new Kelley-Like
Method (KLM), and state our main result: an optimal rate of convergence (Theorem 3.1). The
motivation for the method and our approach is described in Section 3.3. In Sections 3.4–3.6,
we provide a detailed description of the construction of the proposed method and prove its rate
of convergence. We conclude the main body of the work, in Section 3.7, where we discuss a
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limited-memory version of the method and present some additional cases where the approach
presented here is applicable. Finally, in Appendix 3.8, we give a new lower-complexity bound
for the class of convex and Lipschitz-continuous minimization problems, which shows that the
KLM attains the best possible rate of convergence for this class of problems.

Notation. For a convex function f , its subdifferential at x is denoted by ∂ f (x) and we use
f ′(x) to denote some element in ∂ f (x). We also denote f ∗=minx f (x) and x∗= x∗f ∈ argminx f (x).
The Euclidean norm of a vector x is denoted as ‖x‖. We use ei for the i-th canonical basis vector,
which consists of all zero components, except for its i-th entry which is equal to one. For an
optimization problem (P), val(P) stands for its optimal value. For a symmetric matrix A, A� 0
means A is positive semidefinite (PSD).

To simplify some expressions, we often write A � 0 for a non-symmetric matrix A: this
should be interpreted as 1

2(A+AT )� 0.

3.2 The Algorithm and its Rate of Convergence
In this section we present our main results, namely the new proposed algorithm and its rate of
convergence.

3.2.1 The Algorithm: a Kelley-Like Method (KLM)
Consider the minimization problem min{ f (x) : x ∈ Rp}, where f : Rp → R is convex and
Lipschitz-continuous with constant L > 0. The method described below assumes that x∗ ∈
argminx f (x) is located inside a ball of radius R > 0 around a given point x0 ∈ Rp and requires
knowing in advance the number of iterations to be performed, N. The method proceeds as
follows:

Algorithm KLM

Initialization: (The zeroth iteration.) Set

x1 := x0, s := 0, τ := 1, and µ :=
R

L
√

N
.

Iteration #M: At the Mth iteration (1 ≤ M ≤ N − 1), the method arbitrarily chooses
between two types of steps:

In the first type (the “standard step”), we set m ∈ argmin1≤i≤M f (xi) and solve

(BM) max
y∈Rp,ζ ,t∈R

f (xm)− t

s.t. f (xi)+ 〈y− xi, f ′(xi)〉 ≤ t, i = 1, . . . ,M,

f (xm)−Lζ ≤ t,

‖y− x0‖2 +(N−M)ζ 2 ≤ R2.
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Let y∗, ζ ∗ and t∗ be an optimal solution to the primal variables of problem (BM), and let β ∗

be the optimal dual multiplier that corresponds to the constraint f (xm)−Lζ ≤ t. The step
then proceeds by setting

(standard step) xM+1 := y∗,

and updating

s := M, τ := β
∗, µ :=

ζ ∗

L
.

The second type of step (the “easy step”) is a subgradient step with the previously se-
lected step size µ:

(easy step) xM+1 := xM−µ f ′(xM).

Output: The output is given by a convex combination of the best step from the first s
steps and the ergodic combination of the last N− s steps:

x̄N := (1− τ)xm +
τ

N− s

N

∑
j=s+1

x j,

here m ∈ argmin1≤i≤s f (xi).

Note that if the method chooses to perform an “easy” step at every iteration, it simply
reduces to the subgradient method with a constant step size. Also note that the “standard” step
shares the computational simplicity of the main step in the Kelley method (cf. next section),
where the two iteration rules differ only in the introduction of the optimization variable ζ and
in the inclusion of the second constraint in (BM).

3.2.2 An Optimal Rate of Convergence for KLM
We now state the efficiency estimate of the method, which shows that the new method is opti-
mal for the class of nonsmooth minimization with convex and Lipschitz-continuous functions
(see Appendix 3.8 and also [72, 74]).

Theorem 3.1. Suppose x̄N is generated by Algorithm KLM, and let s be the index of the last
iteration where a “standard” step was taken (or zero, when no such step was taken), then

f (x̄N)− f ∗ ≤ val(Bs)≤
LR√

N
. (3.2.1)

Note that although the rate of convergence is of same order as for the level bundle method [62],
which to the best of our knowledge has the best known efficiency estimate on a bundle method,
the constant term here is smaller by a factor of two. Hence, the proposed method requires a
quarter of the steps in order to the reach the same worst-case absolute inaccuracy.

The rest of this chapter is devoted to the detailed construction of the proposed Algorithm
KLM and to the proof of Theorem 3.1.
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3.3 Motivation

3.3.1 A New Look at the Kelley Method
Consider the problem

min
x∈Rp

f (x),

where f (x) is convex, nonsmooth, and Lipschitz-continuous with constant L. For a given set
of trial points, JM := {(x j, f (x j), f ′(x j))}M

j=1, denote by fM(x) the polyhedral model of the
function f , defined by

fM(x) = max{ f (x j)+ 〈 f ′(x j),x− x j〉 | 1≤ j ≤M}. (3.3.1)

Assuming that x∗f ∈ argminx f (x) lies inside a compact set, which we take here as {x : ‖x−
x0‖ ≤ R} for some x0 ∈ Rp and R > 0, the Kelley method chooses the next iterate, xM+1, by
solving

(Kelley) xM+1 ∈ argmin‖x−x0‖≤R fM(x).

Alternatively, we can write the previous rule as the following functional optimization problem:

(Kelley′) xM+1 ∈ argmin‖x−x0‖≤R min
ϕ∈CL,ϕ is convex

ϕ(x)

s.t. ϕ(xi) = f (xi), i = 1, . . . ,M,

f ′(xi) ∈ ∂ϕ(xi), i = 1, . . . ,M,

‖x∗ϕ − x0‖ ≤ R,

where the two formulations are equivalent since the solution to the inner minimization problem
reduces exactly to fM inside the ball ‖x− x0‖ ≤ R.

The well-known inefficient nature of the method is now apparent: the method chooses the
next iterate as one that minimizes the best-case function value, which is not a natural strategy
when we are interested in obtaining a bound on the worst-case absolute inaccuracy, f (xM+1)−
f ∗. This motivates us to consider the following alternative strategy.

3.3.2 The Proposed Approach
Since we are interested in deriving a bound on the worst-case behavior of the absolute inaccu-
racy, a natural approach, given a set of trial points, JM := {(x j, f (x j), f ′(x j))}M

j=1, might be to
choose the next iterate in a way such that the worst-case absolute inaccuracy is minimized, i.e.,

xM+1 ∈ argminx∈Rp max
ϕ∈CL,ϕ is convex

ϕ(x)−ϕ
∗

s.t. ϕ(xi) = f (xi), i = 1, . . . ,M,

f ′(xi) ∈ ∂ϕ(xi), i = 1, . . . ,M,

‖x∗ϕ − x0‖ ≤ R.

It appears, however, that this greedy approach forces the resulting iterates to be too conservative.
In fact, numerical tests show that in some cases the sequence generated by this approach does
not even converge to a minimizer of f !
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We therefore take a global approach and attempt to minimize a bound on the worst-case
behavior of the entire sequence, i.e., instead of choosing only the next iterate xM+1, given some
N >M, we look for a sequence xM+1, . . . ,xN for which the absolute inaccuracy at the last iterate,
xN , is minimized. In order to accomplish this, we need to assume some form of structure on the
sequence {x1, . . . ,xN}.

Let {v1, . . . ,vr} be an orthonormal set that spans { f ′(x1), . . . , f ′(xM),x1− x0, . . . ,xM− x0}.
Hereafter, we consider sequences xM+1, . . . ,xN that are generated according to a first-order
method of the form

xi = x0 +
i−1

∑
k=1

h(i)1,k(xk− x0)−
r

∑
k=1

h(i)2,kvk−
i−1

∑
k=M+1

h(i)3,k f ′(xk), i = M+1, . . . ,N, (3.3.2)

for step sizes h(i)j,k ∈ R that depend only on the data available at the current stage (i.e., L, R and
JM). Note that the first summation is redundant here and can be expressed using the other
terms, however, including it will significantly simplify the following analysis.

For sequences of this form, given h = (h(i)j,k), the worst-case absolute inaccuracy at xN is, by
definition, the solution to

PM(h) := max
ϕ∈CL,ϕ is convex

ϕ(xN)−ϕ
∗

s.t. xi = x0 +
i−1

∑
k=1

h(i)1,k(xk− x0)−
r

∑
k=1

h(i)2,kvk−
i−1

∑
k=M+1

h(i)3,kϕ
′(xk),

i = M+1, . . . ,N,

ϕ(xi) = f (xi), i = 1, . . . ,M,

f ′(xi) ∈ ∂ϕ(xi), i = 1, . . . ,M,

‖x∗ϕ − x0‖ ≤ R.

Therefore, the problem of finding step sizes h such that the worst-case absolute inaccuracy at
xN is minimized can be expressed by

(PM) min
h

PM(h).

Note that obtaining an optimal solution for (PM) is not necessary. Indeed, suppose that for
any h we can find a (preferably easy) upper bound QM(h) for PM(h), then it follows that

f (xN)− f ∗ ≤ PM(h)≤ QM(h),

hence a method with a “good” worst-case absolute inaccuracy might be found by minimizing
QM(h) with respect to h instead of PM(h). The analysis developed in the forthcoming two
sections show how to achieve this, and serves two main goals:

• Derive a tractable upper-bound for the worst-case absolute inaccuracy expressed via prob-
lem (PM).

• Show that the derivation of this bound leads itself to the construction of Algorithm KLM.
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3.4 A Tractable Upper-Bound for (PM)

Problem (PM(h)) (and hence problem (PM)) is a difficult abstract optimization problem in infi-
nite dimension through the functional constraint on ϕ . Inspired by the approach developed in
Chapter 2, we start by formulating a finite dimensional relaxation of the problem.

3.4.1 A Finite Dimensional Relaxation of (PM)

To relax (PM) into a finite dimensional problem, we need to tackle the constraint “ϕ ∈ CL,
ϕ is convex”, which states that for all u,v ∈ Rp

[subgradient inequality] ϕ(v)−ϕ(u)≤〈ϕ ′(v),v−u〉, (3.4.1)
[Lipschitz continuity] ‖ϕ ′(u)‖ ≤L, (3.4.2)

where ϕ ′(v) is an element of ∂ϕ(v). For that purpose, we introduce the variables

x∗ ∈ argminxϕ(x),
δi = ϕ(xi), i = M+1, . . . ,N,∗,
gi ∈ ∂ϕ(xi), i = M+1, . . . ,N,∗,

and for ease of notation, we set

δ j = f (x j), j = 1, . . . ,M,

g j = f ′(x j), j = 1, . . . ,M.

We now relax PM(h) by replacing the function variable ϕ with the new variables and by intro-
ducing constraints that follow from the application of the subgradient inequality (3.4.1) and the
Lipschitz-continuity of ϕ (3.4.2) at the points x1, . . . ,xN ,x∗. Minimizing the resulting problem
with respect to h, we reach the following minimax problem in finite dimension:

min
h

max
gM+1,...,gN ,g∗,x∗∈Rp,

δM+1,...,δN ,δ∗∈R

δN−δ∗

s.t. xi = x0 +
i−1

∑
k=1

h(i)1,k(xk− x0)−
r

∑
k=1

h(i)2,kvk−
i−1

∑
k=M+1

h(i)3,kgk, i = M+1, . . . ,N,

δi−δ j ≤ 〈gi,xi− x j〉, i, j = 1, . . . ,N,∗,
‖gi‖2 ≤ L2, i = 1, . . . ,N,∗
‖x∗− x0‖2 ≤ R2.

Recall that δ j,g j and x j, j = 1, . . . ,M, are given in advance (these are the trial points) and
are considered as the problem data.
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It appears that this minimax problem (which clearly is not convex-concave) remains non-
trivial to tackle. We therefore consider a relaxation obtained by removing some constraints:

(PI
M) min

h
max

gM+1,...,gN ,x∗∈Rp,
δM+1,...,δN ,δ∗∈R

δN−δ∗

s.t. xi = x0 +
i−1

∑
k=1

h(i)1,k(xk− x0)−
r

∑
k=1

h(i)2,kvk−
i−1

∑
k=M+1

h(i)3,kgk, i = M+1, . . . ,N,

δi−δ j ≤ 〈gi,xi− x j〉, i = M+1, . . . ,N, j = 1, . . . , i−1,
δi−δ∗ ≤ 〈gi,xi− x∗〉, i = 1, . . . ,N,

‖gi‖2 ≤ L2, i = M+1, . . . ,N,

‖x∗− x0‖2 ≤ R2.

The omitted constraints can be shown to be inactive. However, this is not necessary for the fol-
lowing arguments as we are currently only interested in finding an upper bound on the absolute
inaccuracy.

As before, the inner maximization problem is denoted by (PI
M(h)), and we have

val(PM)≤ val(PI
M) = min

h
PI

M(h).

Our first main objective is now to derive a tractable convex minimization problem which is an
upper-bound for the minimax problem (PI

M). The first step in that direction is the derivation
of a semidefinite programming relaxation of the inner maximization problem PI

M(h). At this
juncture, the reader might naturally be wondering why we do not derive directly a dual prob-
lem of the inner maximization to reduce our minimax problem to a minimization problem. It
turns out that the SDP relaxation derived below enjoys a fundamental monotonicity property
(see Lemma 3.9), which will play a crucial role in the proof of the main complexity result
Theorem 3.1.

3.4.2 Relaxing The Inner Maximization Problem to an SDP

We proceed by performing a semidefinite relaxation on PI
M(h), the inner maximization problem

of (PI
M). Let X ∈ S1+r+N−M be

X =



〈x∗− x0,x∗− x0〉 〈x∗− x0,v1〉 · · · 〈x∗− x0,vr〉 〈x∗− x0,gM+1〉 · · · 〈x∗− x0,gN〉
〈v1,x∗− x0〉 〈v1,v1〉 · · · 〈v1,vr〉 〈v1,gM+1〉 · · · 〈v1,gN〉

...
...

. . .
...

...
. . .

...
〈vr,x∗− x0〉 〈vr,v1〉 · · · 〈vr,vr〉 〈vr,gM+1〉 · · · 〈vr,gN〉
〈gM+1,x∗− x0〉 〈gM+1,v1〉 . . . 〈gM+1,vr〉 〈gM+1,gM+1〉 · · · 〈gM+1,gN〉

...
...

. . .
...

...
. . .

...
〈gN ,x∗− x0〉 〈gN ,v1〉 . . . 〈gN ,vr〉 〈gN ,gM+1〉 · · · 〈gN ,gN〉


,
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and let vi,gi,xi ∈ R1+r+N−M be such that

vi = e1+i, i = 1, . . . ,r,

gi =

{
∑

r
k=1〈gi,vk〉vk, i = 1, . . . ,M,

eT
1+r+i−M, i = M+1, . . . ,N,

xi =


∑

r
k=1〈xi− x0,vk〉vk, i = 1, . . . ,M,

∑
i−1
k=1 h(i)1,kxk−∑

r
k=1 h(i)2,kvk−∑

i−1
k=M+1 h(i)3,kgk, i = M+1, . . . ,N,

e1, i = ∗,

(3.4.3)

then it is straightforward to verify that the following identities hold

vT
i Xv j = 〈vi,v j〉, i, j = 1, . . . ,r,

gT
i Xg j = 〈gi,g j〉, i, j = 1, . . . ,N,

gT
i Xx j = 〈gi,x j− x0〉, i = 1, . . . ,N, j = 1, . . . ,N,∗,

xT
i Xx j = 〈xi− x0,x j− x0〉, i, j = 1, . . . ,N,∗.

(3.4.4)

Now, by using (3.4.4) in (PI
M) and by relaxing the definition of X to vT

i Xv j = 〈vi,v j〉 and X � 0,
we reach the following problem, whose inner maximization problem is an SDP:

(PII
M ) min

h
max

X∈S1+r+N−M ,
δi,δ∗∈R

δN−δ∗

s.t. δi−δ j ≤ gT
i X(xi−x j), i = M+1, . . . ,N, j = 1, . . . , i−1,

δi−δ∗ ≤ gT
i X(xi−x∗), i = 1, . . . ,N,

gT
i Xgi ≤ L2, i = M+1, . . . ,N,

xT
∗Xx∗ ≤ R2,

vT
i Xv j = 〈vi,v j〉, i, j = 1, . . . ,r,

X � 0.

3.4.3 Transforming the Minimax SDP to a Minimization Problem

To transform the minimax problem (PII
M ) into a minimization problem, we now use duality.

More precisely, as shown below, by using Lagrangian duality for the inner maximization prob-
lem in (PII

M ) we derive a nonconvex (bilinear) semidefinite minimization problem whose optimal
value coincides with the one of (PII

M ).

Lemma 3.2. The minimax problem (PII
M ) reduces to the bilinear semi-definite minimization
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problem (PIII
M ) defined by

(PIII
M ) min

h
min

a,b,c,d,Φ

N

∑
i=M+1

M

∑
j=1

ai, jδ j +
M

∑
i=1

bi(〈gi,xi− x0〉−δi)+L2
N

∑
i=M+1

ci +R2d +
r

∑
i=1

Φi,i

s.t. −
N

∑
i=M+1

(
i−1

∑
j=1

ai, j(xi−x j)+bixi

)
gT

i +
N

∑
i=1

bix∗gT
i

+
N

∑
i=M+1

cigigT
i +dx∗xT

∗ +
r

∑
i, j=1

Φi, jvivT
j � 0,

(a,b) ∈ Λ, ai, j ≥ 0, bi ≥ 0, ci ≥ 0, d ≥ 0,

where

Λ = {(a,b) :
N−1

∑
j=1

aN, j +bN = 1,
N

∑
j=1

b j = 1,
N

∑
j=i+1

a j,i−
i−1

∑
j=1

ai, j = bi, i = M+1, . . . ,N−1}.

Moreover, we have val(PII
M ) = val(PIII

M ).

Proof. Consider the inner maximization problem in (PII
M ). We attach the dual variables to each

of its constraints as follows:

ai, j ∈ R+ : δi−δ j ≤ gT
i X(xi−x j), i = M+1, . . . ,N, j = 1, . . . , i−1,

bi ∈ R+ : δi−δ∗ ≤ gT
i X(xi−x∗), i = 1, . . . ,N,

ci ∈ R+ : gT
i Xgi ≤ L2, i = M+1, . . . ,N,

d ∈ R+ : xT
∗Xx∗ ≤ R2,

Φi, j ∈ R : vT
i Xv j = 〈vi,v j〉, i, j = 1, . . . ,r.

Recalling that δi and gT
i Xxi = 〈gi,xi−x0〉 are fixed for i = 1, . . . ,M, and that the set {v1, . . . ,vr}

is orthonormal, the Lagrangian for this maximization problem is given by

L(X ,δ ;a,b,c,d,Φ) = δN−δ∗+
N

∑
i=M+1

Diδi +D∗δ∗+ tr(XW )+C ,

≡ L1(δ ;a,b)+ tr(XW )+C ,

with

Di = −
i−1

∑
j=1

ai, j +
N

∑
j=i+1

a j,i−bi, i = M+1, . . . ,N,

D∗ =
N

∑
j=1

b j,
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W =
N

∑
i=M+1

i−1

∑
j=1

ai, j(xi−x j)gT
i +

N

∑
i=M+1

bixigT
i −

N

∑
i=1

bix∗gT
i −

N

∑
i=M+1

cigigT
i

−dx∗xT
∗ −

r

∑
i, j=1

Φi, jvivT
j ,

C =
N

∑
i=M+1

M

∑
j=1

ai, jδ j +
M

∑
i=1

bi(〈gi,xi− x0〉−δi)+L2
N

∑
i=M+1

ci +R2d +
r

∑
i=1

Φi,i.

The dual objective function is then defined by

H(a,b,c,d,Φ) = max
δ ,X

L(X ,δ ;a,b,c,d,Φ) = C +max
δ

L1(δ ;a,b)+max
X�0

tr(XW ).

Since L1(δ ;a,b) is linear in the variables δi, i = M+1, . . . ,N,∗, the first maximization problem
is equal to zero whenever

Di =−
i−1

∑
j=1

ai, j +
N

∑
j=i+1

a j,i−bi = 0, i = M+1, . . . ,N−1,

1+DN = 1−
N−1

∑
j=1

aN, j−bN = 0,

−1+D∗ =−1+
N

∑
j=1

b j = 0,

i.e., when (a,b) ∈ Λ, and is equal to infinity otherwise. Likewise, the second maximization is
equal to zero whenever W � 0, and is equal to infinity otherwise. Therefore, the dual problem
of the inner maximization PII

M (h) reads as

min
a,b,c,d,Φ

H(a,b,c,d,Φ) = min
a,b,c,d,Φ

{C : W � 0, (a,b) ∈ Λ, ai, j ≥ 0, bi ≥ 0, ci ≥ 0, d ≥ 0},

and hence it follows that by minimizing the latter with respect to h, the minimax problem (PII
M )

reduces to the minimization problem (PIII
M ), and the proof of the first claim is completed.

Now, as a consequence of weak duality for the pair of problems (PII
M (h))–(PIII

M (h)) it imme-
diately follows that

val(PII
M ) = min

h
PII

M (h)≤min
h

PIII
M (h) = val(PIII

M ).

Furthermore, observing that the inner maximization problem in (PII
M ) is feasible and that the

inner minimization problem in (PIII
M ) is strictly feasible (since the elements in the diagonal of

the SDP constraint, i.e., ci, d, and Φi,i, can be chosen to be arbitrarily large), then by invoking
the conic duality theorem [23, Theorem 2.4.1], strong duality holds, and therefore it follows
that val(PII

M ) = val(PIII
M ).
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3.4.4 A Tight Convex SDP Relaxation for (PIII
M )

At this stage, the minimization problem (PIII
M ) we have just derived remains a nonconvex (bi-

linear) problem. Indeed, note that the vectors xi depend on the optimization variable h, hence
the terms ai, j(xi− x j) and bixi in (PIII

M ) are bilinear. We will now show that it is possible to
derive a tight convex relaxation for this problem. This will be achieved through two main steps
as follows.

Step I: Linearizing the bilinear SDP. As just noted, the terms ai, j(xi−x j) and bixi in (PIII
M )

are bilinear. Here we linearize these terms by introducing new variables ξi, j and ψi, j such that

−

(
i−1

∑
j=1

ai, j(xi−x j)+bixi

)
=

r

∑
j=1

ξi, jv j +
i−1

∑
j=M+1

ψi, jg j, i = M+1, . . . ,N. (3.4.5)

Using (3.4.5) to eliminate the bilinear terms in (PIII
M ) yields the following linear SDP:

(PIV
M ) min

a,b,c,d,ξ ,ψ,Φ

N

∑
i=M+1

M

∑
j=1

ai, jδ j +
M

∑
i=1

bi(〈gi,xi− x0〉−δi)+L2
N

∑
i=M+1

ci +R2d +
r

∑
i=1

Φi,i

s.t.
N

∑
i=M+1

(
r

∑
j=1

ξi, jv j +
i−1

∑
j=M+1

ψi, jg j

)
gT

i +
N

∑
i=1

bix∗gT
i

+
N

∑
i=M+1

cigigT
i +dx∗xT

∗ +
r

∑
i, j=1

Φi, jvivT
j � 0,

(a,b) ∈ Λ, ai, j ≥ 0, bi ≥ 0, ci ≥ 0, d ≥ 0.

Since any feasible point for (PIII
M ) can be transformed using (3.4.5) to a feasible point for

(PIV
M ) without affecting the objective value, we have

val(PIV
M )≤ val(PIII

M ). (3.4.6)

As a first step in establishing inequality in the other direction (and therefore equality), we in-
troduce the following lemma, which shows how to recover a feasible point for (PIII

M ) from a
feasible point for (PIV

M ) provided that the point satisfies a certain condition.

Lemma 3.3. Suppose that (a,b,c,d,ξ ,ψ,Φ) is feasible for (PIV
M ) and satisfies

i−1

∑
j=1

ai, j +bi = 0⇒ ξi,k = ψi,k = 0, ∀k < i. (3.4.7)

Then by taking1

h(i)1,k =
ai,k

∑
i−1
j=1 ai, j +bi

, h(i)2,k =
ξi,k

∑
i−1
j=1 ai, j +bi

, h(i)3,k =
ψi,k

∑
i−1
j=1 ai, j +bi

,

we get that (h,a,b,c,d,Φ) is feasible for (PIII
M ) and attains the same objective value.

1In order to avoid overly numerous special cases, we adopt the convention 0
0 = 0.
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Proof. It is enough to verify that the linearization identity (3.4.5) is satisfied for the chosen
values of h. First, when ∑

i−1
j=1 ai, j + bi = 0, recalling that we use the convention 0

0 = 0, the
identity (3.4.5) follows immediately from the assumption (3.4.7) and since the step sizes are
all zeros. Suppose ∑

i−1
j=1 ai, j + bi > 0, then substituting the term xi in (3.4.5) by its definition

in (3.4.3), we get that for every i = M+1, . . . ,N

−

(
i−1

∑
j=1

ai, j(xi−x j)+bixi

)
=

i−1

∑
j=1

ai, jx j−

(
i−1

∑
j=1

ai, j +bi

)
xi

=
i−1

∑
j=1

ai, jx j−

(
i−1

∑
j=1

ai, j +bi

)(
i−1

∑
k=1

h(i)1,kxk−
r

∑
k=1

h(i)2,kvk−
i−1

∑
k=M+1

h(i)3,kgk

)

=
r

∑
j=1

ξi, jv j +
i−1

∑
j=M+1

ψi, jg j,

where the last equality follows from the choice of h.

In order to establish that the relaxation performed in this step is indeed tight, it is enough
to show that condition (3.4.7) holds for an optimal solution of (PIV

M ). However, before we can
show how to obtain an optimal solution with the required property, we need to perform an
additional transformation on the problem, which in turn will also be very useful when deriving
the steps of Algorithm KLM in Section 3.5.

Step II: Simplifying the problem (PIV
M ). An equivalent and significantly simpler form of

problem (PIV
M ) can be derived using the matrix completion theorem.

Consider the PSD constraint in (PIV
M ) in its explicit form,

Q :=



d 1
2 ∑

M
k=1 bk〈gk,v1〉 · · · 1

2 ∑
M
k=1 bk〈gk,vr〉 1

2 bM+1 · · · 1
2 bN

1
2 ∑

M
k=1 bk〈gk,v1〉 Φ1,1 · · · Φ1,r

1
2 ξM+1,1 · · · 1

2 ξN,1
...

...
. . .

...
...

. . .
...

1
2 ∑

M
k=1 bk〈gk,vr〉 Φr,1 · · · Φr,r

1
2 ξM+1,r · · · 1

2 ξN,r
1
2 bM+1

1
2 ξM+1,1 · · · 1

2 ξM+1,r
...

...
. . .

... R
1
2 bN

1
2 ξN,1 · · · 1

2 ξN,r


� 0,

with

R :=


cM+1

1
2ψM+2,M+1 · · · 1

2ψN,M+1
1
2ψM+2,M+1 cM+2

. . . ...
... . . . . . . 1

2ψN,N−1
1
2ψN,M+1 · · · 1

2ψN,N−1 cN

 .

Then by the properties of PSD matrices, Q � 0 implies that the principal minors of Q are also
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PSD. As a result, we get that the problem

(PV
M) min

a,b,c,d,Φ

N

∑
i=M+1

M

∑
j=1

ai, jδ j +
M

∑
i=1

bi(〈gi,xi− x0〉−δi)+L2
N

∑
i=M+1

ci +R2d +
r

∑
i=1

Φi,i

s.t.
(

d 1
2 ∑

M
k=1 bk〈gk,vi〉

1
2 ∑

M
k=1 bk〈gk,vi〉 Φi,i

)
� 0, i = 1, . . . ,r,(

d 1
2bi

1
2bi ci

)
� 0, i = M+1, . . . ,N,

(a,b) ∈ Λ, ai, j ≥ 0, bi ≥ 0, ci ≥ 0, d ≥ 0,

obtained by replacing Q � 0 with constraints of the form Q{1,i}×{1,i} � 0, is a relaxation of
(PIV

M ), and thus val(PV
M) ≤ val(PIV

M ). As we shall prove below, it turns out that this relaxation
is, in fact tight, i.e., val(PV

M) = val(PIV
M ). To establish this result, we need the following lemma,

which is a special case of the matrix completion theorem [50].

Lemma 3.4. Suppose q1,i = qi,1 and qi,i (i = 1, . . . ,n) are numbers such that(
q1,1 q1,i
qi,1 qi,i

)
� 0, i = 2, . . . ,n.

Then by taking
qi, j = q j,i =

q1,iq1, j

q1,1
, (3.4.8)

for i, j = 2, . . . ,n, i 6= j, we get that the n×n matrix (qi, j) is positive semidefinite.

Proof. Suppose q1,1 = 0, then by the properties of PSD matrices, q1,i and qi,1 must also be equal
to zero. By adopting the convention 0

0 = 0, we get that qi, j = q j,i = 0 for i, j = 2, . . . ,n, hence
the matrix (qi, j) is diagonal and the result is trivial.

Now assume q1,1 > 0 and let γ = (q1,1, . . . ,q1,n)
T , then the claim follows immediately by

observing that the matrix (qi, j) is the sum of the positive semidefinite rank-one matrix q−1
1,1γγT

and the nonnegative diagonal matrix diag(0,q2,2−q2
1,2/q1,1, . . . ,qn,n−q2

1,n/q1,1).

The promised tightness of the relaxation performed in this step now follows.

Corollary 3.5. Suppose (a∗,b∗,c∗,d∗,Φ∗i,i) is an optimal solution for (PV
M), then taking

Φ
∗
i, j =

∑
M
k=1 b∗k〈gk,vi〉∑M

k=1 b∗k〈gk,v j〉
2d∗

, i, j = 1, . . . ,r, i 6= j,

ξ
∗
i, j =

b∗i ∑
M
k=1 b∗k〈gk,v j〉

2d∗
, i = M+1, . . . ,N, j = 1, . . . ,r,

ψ
∗
i, j =

b∗i b∗j
2d∗

, i = M+1, . . . ,N, j = M+1, . . . , i−1.

(3.4.9)

we get that (a∗,b∗,c∗,d∗,ξ ∗,ψ∗,Φ∗) is an optimal solution for (PIV
M ). In particular, we have

val(PIV
M ) = val(PV

M).
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Proof. Observing that the minors of Q selected in (PV
M) have the same form as in the premise

of Lemma 3.4 with n = 1+ r+(N−M),

q1,1 = d,
q1+i,1+i = Φi,i, i = 1, . . . ,r,
q1+r+i,1+r+i = ci, i = M+1, . . . ,N,

q1,1+i = q1+i,1 =
1
2 ∑

M
k=1 bk〈gk,v1〉, i = 1, . . . ,r,

q1,1+r+i = q1+r+i,1 =
1
2bi, i = M+1, . . . ,N,

we get that using the choice (3.4.9), the relations (3.4.8) are satisfied, hence Q is PSD and the
first constraint in (PIV

M ) is satisfied for (a∗,b∗,c∗,d∗,ξ ∗,ψ∗,Φ∗). Now, examining (PIV
M ), we

see that the variables Φi, j for i 6= j, ξi, j and ψi, j, do not participate in constraints beside the first
constraint or in the objective, hence we conclude that (a∗,b∗,c∗,d∗,ξ ∗,ψ∗,Φ∗) is feasible for
(PIV

M ) and furthermore val(PIV
M ) ≤ val(PV

M). Since we have already established that val(PV
M) ≤

val(PIV
M ), the proof is complete.

Another consequence of Lemma 3.4 is the tightness of the relaxation performed in Step I,
allowing us to complete our main goal of this section.

Corollary 3.6. The following equality holds:

val(PIV
M ) = val(PIII

M ).

Proof. Let (a∗,b∗,c∗,d∗,Φ∗i,i) be an optimal solution for (PV
M). Then from Corollary 3.5 we

get that by taking ξ ∗, ψ∗, and Φ∗ as in (3.4.9), the point (a∗,b∗,c∗,d∗,ξ ∗,ψ∗,Φ∗) is optimal
for (PIV

M ). Observing that from (3.4.9) we get that b∗i = 0 implies ξ ∗i, j = 0 and ψ∗i, j = 0, then it
follows that assumption (3.4.7) is satisfied, hence Lemma 3.3 is applicable on (a∗,b∗,c∗,d∗,ξ ∗,
ψ∗,Φ∗). As a result, the optimal value of (PIV

M ) is attainable by (PIII
M ), and since we also have

val(PIV
M ) ≤ val(PIII

M ) (see (3.4.6)), we conclude that val(PIII
M ) = val(PIV

M ), proving the desired
claim.

Summary. To summarize the results up to this point, by performing a series of relaxations and
transformations on (PM), which defined the worst-case absolute inaccuracy at xN , we obtained
a sequence of problems (PI

M)–(PV
M) that satisfy

val(PM)≤ val(PI
M)≤ val(PII

M ) = · · ·= val(PV
M),

where the solution of (PV
M) provides a tractable upper bound. We are now left with our second

main goal, namely to derive the steps of algorithm KLM as defined through problem (BM) in
Section 3.2.

3.5 Derivation of Algorithm KLM
At first glance, problem (PV

M) does not seem to share much resemblance to problem (BM).
We now proceed to show that this convex SDP problem admits a pleasant equivalent convex
minimization reformulation over a simplex in RM+1, and that this representation is, in fact, the
dual of problem (BM).
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3.5.1 Reducing (PV
M) to a Convex Minimization Problem Over the Unit

Simplex
The form (PV

M) allows us to derive analytical optimal solutions to some of the optimization
variables. First, for any fixed (a,b,d), it is easy to see that the minimization with respect to Φ

and c yields the optimal solutions

Φ
∗
i,i =

(∑M
k=1 bk〈gk,vi〉)2

4d
, i = 1, . . . ,r, (3.5.1)

c∗i =
b2

i
4d

, i = M+1, . . . ,N. (3.5.2)

Therefore, recalling that {v1, . . . ,vr} is an orthonormal set that spans g1, . . . ,gM, we get

r

∑
j=1

Φ
∗
j, j =

r

∑
j=1

(∑M
i=1 bi〈gi,v j〉)2

4d
=
‖∑

r
j=1 ∑

M
i=1 bi〈gi,v j〉v j‖2

4d
=
‖∑

M
i=1 bigi‖2

4d
,

and (PV
M) becomes

min
a,b,d

N

∑
i=M+1

M

∑
j=1

ai, jδ j +
M

∑
i=1

bi(〈gi,xi− x0〉−δi)+R2d +
L2

∑
N
k=M+1 b2

i +‖∑
M
i=1 bigi‖2

4d

s.t. (a,b) ∈ Λ, ai, j ≥ 0, bi ≥ 0, d ≥ 0.

Next, observe that for any fixed (a,b) the minimization with respect to d is also immediate and
yields

d∗ =

√
‖∑M

i=1 bigi‖2 +L2
∑

N
i=M+1 b2

i

2R
. (3.5.3)

Plugging this in the last form of the problem, we reach

min
a,b

N

∑
i=M+1

M

∑
j=1

ai, jδ j +
M

∑
i=1

bi(〈gi,xi− x0〉−δi)+R
√
‖∑M

i=1 bigi‖2 +L2
∑

N
i=M+1 b2

i

s.t. (a,b) ∈ Λ, ai, j ≥ 0, bi ≥ 0.

(3.5.4)

Now, fixing b, the above minimization problem is a linear program in the variable a, which, as
shown by the following lemma, can be solved analytically.

Lemma 3.7. Suppose b ∈ ∆N , where ∆N denotes the N-dimensional unit simplex, i.e., ∆N :=
{b ∈ RN : ∑

N
i=1 bi = 1,bi ≥ 0}. Then,

min
a

{
N

∑
i=M+1

M

∑
j=1

ai, jδ j : (a,b) ∈ Λ, ai, j ≥ 0

}
=

M

∑
i=1

biδm,

where an optimal solution is given by

a∗i, j =


∑

M
i=1 bi i = N, j = m,

b j, i = N, j ∈ {M+1, . . . ,N−1},
0, otherwise,

(3.5.5)
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with
m ∈ argmin1≤i≤Mδi. (3.5.6)

Proof. Observe that if we fix ai, j for j > M, the constraints in Λ have the form

M

∑
j=1

ai, j = constant, i = M+1, . . . ,N,

and we get that the problem is separable into N−M minimization problems over a simplex. This
implies that the optimal solution can be attained by setting a∗i, j = 0 for all j ∈ {1, . . . ,M}\{m}
(i.e., for all indices except for an index for which δ j is minimal). Using this assignment, the
objective now reads

N

∑
i=M+1

ai,mδm,

and Λ is reduced to (taking into account all variables):

−ai,m−
i−1

∑
j=M+1

ai, j +
N

∑
k=i+1

ak,i−bi = 0, i = M+1, . . . ,N−1,

1−aN,m−
N−1

∑
j=M+1

aN, j−bN = 0,

−1+
N

∑
i=1

bi = 0.

Summing up the constraints in Λ, we get

N

∑
i=M+1

ai,m =−
N−1

∑
i=M+1

(
i−1

∑
j=M+1

ai, j−
N

∑
k=i+1

ak,i

)
−

N−1

∑
j=M+1

aN, j +
M

∑
i=1

bi

=
N−1

∑
i=M+1

N

∑
k=i+1

ak,i−
N

∑
i=M+1

i−1

∑
j=M+1

ai, j +
M

∑
i=1

bi =
M

∑
i=1

bi,

which means that the optimal value for the objective is ∑
M
i=1 biδm. It is now straightforward to

verify that the given solution (3.5.5) is feasible and attains the optimal value of the problem,
hence the proof is complete.

Invoking Lemma 3.7, we can write problem (3.5.4) in the following form:

min
b∈∆N

M

∑
i=1

bi(〈gi,xi− x0〉+δm−δi)+R
√
‖∑M

i=1 bigi‖2 +L2
∑

N
i=M+1 b2

i . (3.5.7)

To complete this step, note that if b∗ is an optimal solution of the last convex problem then
optimality conditions imply that we must have b∗M+1 = · · · = b∗N . We can therefore assume,
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without affecting the optimal value of the problem, that bM+1 = · · ·= bN , hence, by introducing
the variable β = ∑

N
i=M+1 bi, we get

bM+1 = · · ·= bN =
β

N−M
, (3.5.8)

and hence
N

∑
i=M+1

b2
i = (N−M)b2

N = (N−M)

(
β

N−M

)2

=
β 2

N−M
.

Therefore, using this in (3.5.7), we have shown

Proposition 3.5.1. The convex SDP problem (PV
M) admits the equivalent convex minimization

formulation

(PV I
M ) min

(b1,...,bM ,β )∈∆M+1

M

∑
i=1

bi(〈xi− x0,gi〉+δm−δi)+R
√
‖∑M

i=1 bigi‖2 + L2β 2

N−M ,

and we have val(PV
M) = val(PV I

M ).

3.5.2 Completing the Derivation of KLM
We are now ready to complete the main goal of this section, namely the derivation of Algorithm
KLM. Indeed, as shown below, it turns out that the convex problem (PV I

M ) is nothing else but a
dual representation of problem (BM) defined in Section 3.2. More precisely, we establish that
strong duality holds for the pair of convex problems (PV I

M )–(BM). Furthermore, as a by-product,
we derive the desired output of the method as described in Section 3.2. To prove this result, we
first recall the following elementary fact.

Lemma 3.8. Let D ∈ Sl
++,q ∈ Rl and R > 0 be given. Then,

max
u∈Rl
{〈q,u〉 : uT Du≤ R2}= R‖D−1/2q‖ with optimal u∗ = R

D−1q
‖D−1/2q‖

. (3.5.9)

Proof. The claim is an immediate consequence of Cauchy-Schwartz inequality and can also be
derived by simple calculus.

The first main result of this section now follows.

Proposition 3.5.2. The pair of convex problems (PV I
M )–(BM) are dual to each other, and strong

duality holds2, i.e., val(PV I
M ) = val(BM). Moreover, given an optimal solution (b∗1, . . . ,b

∗
M,β ∗)

for (PV I
M ), an optimal solution (y∗,ζ ∗) for (BM) is recovered via

y∗ = x0−
1

2d∗
M

∑
j=1

b∗jg j and ζ
∗ =

Lβ ∗

2(N−M)d∗
, (3.5.10)

with

d∗ =

√
‖∑M

i=1 b∗i gi‖2 + L2(β ∗)2

N−M

2R
.

2Note that since both problems admit a compact feasible set, attainment of both values is warranted.
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Proof. Invoking Lemma 3.8 with u := (y− x0,ζ ) and q := (−∑
M
i=1 bigi,Lβ ), both in Rp×R,

and with the block diagonal matrix D := [Ip;(N−M)−1] ∈ Sp+1
++ , it easily follows that problem

(PV I
M ) reads as the convex-concave minimax problem:

V∗ := min
(b1,...,bM ,β )∈∆M+1

max
‖y−x0‖2+(N−M)ζ 2≤R2

M

∑
i=1

bi(〈xi− y,gi〉+δm−δi)+βLζ .

Applying the minimax theorem [44], we can reverse the min-max operations, and hence by
using the simple fact minα∈∆l ∑

l
i=1 αivi = min1≤i≤l vi it follows that

V∗ = max
‖y−x0‖2+(N−M)ζ 2≤R2

min {δm−δ1 + 〈x1− y,g1〉, . . . ,δm−δM + 〈xM− y,gM〉,Lζ} ,

which is an obvious equivalent reformulation of the problem (BM), defined in Section 3.2.
This establishes the strong duality claim val(PV I

M ) = val(BM). Furthermore, if (b∗,β ∗) ∈ ∆M+1
is optimal for (PV I

M ), again thanks to Lemma 3.8, (with (q,u,D) as defined above), one im-
mediately recovers an optimal solution (y∗,ζ ∗) of (BM) as given in (3.5.10) and the proof is
completed.

As we now show, Proposition 3.5.2 paves the way to determine the iterative steps of Algo-
rithm KLM. For that purpose, we first derive an expression for xM+1, . . . ,xN in terms an optimal
solution (b∗1, . . . ,b

∗
M,β ∗) for (PV I

M ). First, recall that (a∗,b∗,c∗,d∗,ξ ∗,ψ∗,Φ∗) with a∗, b∗, c∗,
Φ∗i,i, d∗, ξ ∗, ψ∗, and Φ∗ defined according to (3.5.5), (3.5.8), (3.5.2), (3.5.1), and (3.4.9), is
optimal for (PIV

M ) and satisfies the assumption (3.4.7). Thus, as a result of Lemma 3.3 and the
definition of the sequence xi in (3.3.2), the corresponding sequence xM+1, . . . ,xN can be found
via the rule

xi = x0 +
1

∑
i−1
j=1 a∗i, j +b∗i

(
i−1

∑
j=1

a∗i, j(x j− x0)−
r

∑
j=1

ξ
∗
i, jv j−

i−1

∑
j=M+1

ψ
∗
i, jg j

)
. (3.5.11)

From definitions of ξ ∗ and ψ∗ in (3.4.9) we get that
r

∑
j=1

ξ
∗
i, jv j =

b∗i
2d∗

r

∑
j=1

M

∑
k=1

b∗k〈gk,v j〉v j =
b∗i

2d∗
M

∑
k=1

b∗kgk,

and
r

∑
j=1

ξ
∗
i, jvk +

i−1

∑
j=M+1

ψ
∗
i, jg j =

b∗i
2d∗

i−1

∑
j=1

b∗jg j,

which, together with (3.5.11), yields an expression for xi that is independent of ξ ∗i, j and ψ∗i, j:

xi =
1

∑
i−1
j=1 a∗i, j +b∗i

(
i−1

∑
j=1

a∗i, jx j +b∗i

(
x0−

1
2d∗

i−1

∑
j=1

b∗jg j

))
, i = M+1, . . . ,N. (3.5.12)

Now, using the definition of a∗ from (3.5.5), we reach the expression

xi =


x0−

1
2d∗

i−1

∑
j=1

b∗jg j, i = M+1, . . . ,N−1,

M

∑
j=1

b∗jxm +
N−1

∑
j=M+1

b∗jx j +b∗N

(
x0−

1
2d∗

N−1

∑
j=1

b∗jg j

)
, i = N,
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where m as in (3.5.6).
This rule can be written in a more convenient form using a solution to the pair of convex

problems (PV I
M )–(BM). For that, note that by writing xi in terms of xi−1, breaking the computa-

tion of the last step, xN into two parts xN and x̄N , and applying (3.5.10) of Proposition 3.5.2, we
obtain

xi =


x0−

1
2d∗

M

∑
j=1

b∗jg j = y∗, i = M+1,

xi−1−
β ∗

2(N−M)d∗
gi−1 = xi−1−

ζ ∗

L
gi−1, i = M+2, . . . ,N,

x̄N = (1−β
∗)xm +

β ∗

N−M

N

∑
j=M+1

x j,

(3.5.13)

which is precisely the output of Algorithm KLM after performing a “standard” step followed
by N−M−1 “easy” steps.

3.6 The Rate of Convergence: Proof of Theorem 3.1

Before we proceed with the proof of Theorem 3.1, we need the following lemma, which estab-
lishes that the optimal value of (PII

M ) is non-increasing during the run of the method.

Lemma 3.9. Let l ∈ N be such that M + l ≤ N and suppose xM+1, . . . ,xM+l satisfy the recur-
sion (3.3.2) with h = h̄, where h̄ is optimal for the outer minimization problem in (PII

M ). Then
val(PII

M+l)≤ val(PII
M ).

Proof. Denote by ĥ the steps sizes in h̄ which correspond to the last N−M− l steps performed
by the method, xM+l+1, . . . ,xN , (i.e., ĥ(i)j,k = h̄(i)j,k for i = M + l + 1, . . . ,N), and let (X̂ , δ̂ ) be
optimal for the inner maximization problem in (PII

M+l) when fixing h = ĥ. We proceed by
constructing a matrix X̄ and a vector δ̄ such that (h̄; X̄ , δ̄ ) is feasible to (PII

M ) and achieves the
same objective value as (ĥ; X̂ , δ̂ ) achieves for (PII

M+l).
Denote by v̄i, ḡi and x̄i the vectors vi, gi and xi as defined for (PII

M ) in (3.4.3), and let v̂i, ĝi
and x̂i be the vectors vi, gi and xi that correspond to (PII

M+l), i.e.,

v̄i = e1+i, i = 1, . . . ,r,

ḡi =

{
∑

r
k=1〈gi,vk〉vk, i = 1, . . . ,M,

eT
1+r+i−M, i = M+1, . . . ,N,

x̄i =


∑

r
k=1〈xi− x0,vk〉vk, i = 1, . . . ,M,

∑
i−1
k=1 h(i)1,kxk−∑

r
k=1 h(i)2,kvk−∑

i−1
k=M+1 h(i)3,kgk, i = M+1, . . . ,N,

e1, i = ∗,
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and

v̂i = ei+1, i = 1, . . . ,r,

ĝi =

{
∑

r
k=1〈gi,vk〉v̂k, i = 1, . . . ,M+ l,

eT
1+r+i−M, i = M+ l +1, . . . ,N,

x̂i =


∑

r
k=1〈xi− x0,vk〉v̂k, i = 1, . . . ,M+ l,

∑
i−1
k=1 h(i)1,kx̂k−∑

r
k=1 h(i)2,kv̂k−∑

i−1
k=M+1 h(i)3,kĝk, i = M+ l +1, . . . ,N,

e1 i = ∗.

Now, by taking V as the (1+ r+N−M− l)× (1+ r+N−M) matrix

V = (x̂∗, v̂1, . . . , v̂r, ĝM+1, . . . , ĝN),

it follows from the construction above that

v̂i =V v̄i, i = 1, . . . ,r,
ĝi =V ḡi, i = 1, . . . ,N,

x̂i =V x̄i, i = 1, . . . ,N,∗.

Hence, by setting

X̄ =V T X̂V,

δ̄i =

{
f (xi), i = M+1, . . . ,M+ l,
δ̂i, i = M+ l +1, . . . ,N,∗,

we get that the equalities

ḡT
i X̄ ḡ j = ĝT

i X̂ ĝ j, i, j = 1, . . . ,N,

ḡT
i X̄ x̄ j = ĝT

i X̂ x̂ j, i = 1, . . . ,N, j = 1, . . . ,N,∗.

are satisfied, and therefore (h̄; X̄ , δ̄ ) satisfies all the constraints in (PII
M ) that also appear in

(PII
M+l). Note, however, that (PII

M ) includes some additional constraints that do not appear in
(PII

M+l), namely
δ̄i− δ̄ j ≤ ḡT

i X(x̄i− x̄ j),

for i = M+1, . . . ,M+ l−1, and j = 1, . . . , i−1, and

ḡT
i X ḡi ≤ L2,

for i = M + 1, . . . ,M + l− 1. Nevertheless, since for i, j ≤ M + l the values of δ̄i, ḡT
i X̄ ḡ j and

ḡT
i X̄ x̄ j originate from the convex function f , i.e.,

ḡT
i X̄ ḡ j = ĝT

i X̂ ĝ j = 〈 f ′(xi), f ′(x j)〉, i, j = 1, . . . ,M+ l,

ḡT
i X̄ x̄ j = ĝT

i X̂ x̂ j = 〈 f ′(xi),x j〉, i = 1, . . . ,M+ l, j = 1, . . . ,M+ l,
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we immediately get from the subgradient inequality and the Lipschitz-continuity of f that these
additional constraints hold. We conclude that (h̄; X̄ , δ̄ ) is feasible for (PII

M ) and attains the same
objective value as does (ĥ; X̂ , δ̂ ) for (PII

M+l).
For a feasible point (h;X ,δ ), denote by PII

M (h;X ,δ ) the value of the objective in (PII
M ) at

the given point, then we have just shown that PII
M+l(ĥ; X̂ , δ̂ ) = PII

M (h̄; X̄ , δ̄ ). As an immediate
consequence, we get

val(PII
M+l)≤ PII

M+l(ĥ; X̂ , δ̂ ) = PII
M (h̄; X̄ , δ̄ )≤ val(PII

M ),

where the first inequality follow since (X̂ , δ̂ ) is optimal for the inner maximization problem in
(PII

M+l) and the last inequality follows since h̄ is optimal for the outer minimization problem in
(PII

M ).

We are now ready to give the proof of Theorem 3.1.

Proof. (Theorem 3.1.) First, we need to establish that the initialization step corresponds to the
solution of (B0). Indeed, observing that y∗ = x0, it is straightforward to verify that val(B0) =
LR/
√

N is attained for ζ ∗ = R/
√

N, and that β ∗, the dual variable that corresponds to the
constraint f (xm)−Lζ ≤ t, is equal to one.

Recalling that s is the index of the last step where a “standard” step was taken, then by
the definition of the “easy” steps, the sequence xs+1, . . . ,xN , x̄N satisfies (3.5.13), where y∗, ζ ∗

and β ∗ are given by a solution of (Bs). Let h̄ be the vector of step sizes in (3.3.2) that matches
xs+1, . . . ,xN−1, x̄N , then by the construction of (Bs) from (PII

s ), we get that h̄ is optimal for (PII
M ),

i.e., val(PII
s ) = PII

s (h̄) (we use PII
s (h̄) to denote the optimal value of the inner maximization

problem in (PII
s ) with h set to h̄). We therefore have

f (x̄N)− f ∗ ≤ Ps(h̄)≤ PII
s (h̄) = val(PII

s )≤ val(PII
0 ),

where the first two inequalities follow from the construction of (PII
s ) and last inequality follow

from Lemma 3.9 by a simple inductive argument.
Finally, since we have already established during the construction and analysis of Sec-

tion 3.4 that the series of relaxations and transformations preserve the optimal value of the
problem, we have val(PII

M ) = · · ·= val(PV I
M ) = val(BM) for every M, and the claim immediately

follows.

3.7 Concluding remarks

Through a constructive approach, we have derived a new method for non-smooth convex min-
imization, which is surprisingly similar to the Kelley method, yet it attains the optimal rate of
convergence. We conclude by outlining a refined version of the method, and by briefly dis-
cussing how the construction derived in this work can be extended onto some other situations
as well, which often arise in nonsmooth optimization schemes/models.
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A memory-limited version of Algorithm KLM. The current form of the method requires
storing all of the past iterates, which can translate to a significant amount of memory for large
values of N. This requirement can be eliminated, as in the aggregation technique described in
[55], by observing that Lemma 3.9 makes no assumptions on the way the steps x1, . . . ,xM are
generated, hence Theorem 3.1 still holds if, at any iteration M where a “standard” step is taken,
the trial point set is replaced by another set of points in a way that maintains the solution of
(BM). In fact, by a well-known result from convex optimization, if b∗1, . . . ,b

∗
M are the optimal

dual variables corresponding to the constraints

f (xi)+ 〈y− xi, f ′(xi)〉 ≤ t, i = 1, . . . ,M,

by replacing these constraint with the conical combination

M

∑
i=1

b∗i
(

f (xi)+ 〈y− xi, f ′(xi)〉
)
≤

M

∑
i=1

b∗i t,

we reach a problem that has the same optimal solution as the original problem. Hence, the
trial points set can be aggregated to one scalar, ∑

M
i=1 b∗i ( f (xi)− 〈xi, f ′(xi)〉), and one vector,

∑
M
i=1 b∗i f ′(xi), without affecting the efficiency estimate of the method. The same technique can

be applied to any subset of the trial points, hence the cardinality of the trial points set can be
maintained at any desired level.

Knowledge of Lower Bound on f ∗. When a lower bound, f , on f ∗ is known, (e.g., though
a dual bound), the constraint f ≤ ϕ∗ can be added to (PM) and the analysis can continue with
only little change. The resulting method turns out to be nearly the same as the method described
above, where the only change is the introduction of the constraint f ≤ t to (BM). Furthermore,
the resulting efficiency estimate remains unchanged.

Extension with Inexact Subgradients. Another situation is the case where, instead of an
exact subgradient, an ε-subgradient f ′(x) ∈ ∂ε f (x) is available for some given ε ≥ 0, i.e., for
any y, instead of the usual subgradient inequality, we have

f (x)− f (y)≤ 〈 f ′(x),x− y〉+ ε.

The use of ε-subgradients instead of exact subgradients has some practical advantages, see e.g.,
[10, 38] and references therein for motivating examples and for some recent work in this setting.
As in the previous case, only minor changes are needed in the analysis we developed, and the
resulting method turns out to be identical to the method presented in Section 3.2, except for the
first set of constraint in (BM), which becomes

f (xi)+ 〈y− xi, f ′(xi)〉− ε ≤ t, i = 1, . . . ,M,

and for the efficiency estimate of the method (3.2.1), which turns out to be

f (x̄N)− f ∗ ≤ val(Bs)+ ε ≤ LR/
√

N + ε.
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3.8 Appendix: A Tight Lower-Complexity Bound
In this appendix, we refine the proof in [74, Section 3.2] to obtain a new lower-complexity
bound on the class of nonsmooth, convex, and Lipschitz-continuous functions, which together
with the results discussed above form a tight complexity result for this class of problems. More
precisely, under the setting of §3.2.1, we show that for any first-order method, the worst-case
absolute inaccuracy after N steps cannot be better than LR√

N
, which is exactly the bound attained

by Algorithm KLM.
In order to simplify the presentation, and following [74, Section 3.2], we restrict our atten-

tion to first-order methods that generate sequences that satisfy the following assumption:

Assumption A. The sequence {xi} satisfies

xi ∈ x1 + span{ f ′(x1), . . . , f ′(xi−1)},

where f ′(xi) ∈ ∂ f (xi) is obtained by evaluating a first-order oracle at xi.

As noted by Nesterov [74, Page 59], this assumption is not necessary and can be avoided by
some additional reasoning.

The lower-complexity result is stated as follows.

Theorem 3.10. For any L,R > 0, N, p ∈ N with N ≤ p, and any starting point x1 ∈ Rp, there
exists a convex and Lipschitz-continuous function f : Rp → R with Lipschitz constant L and
‖x∗f − x1‖ ≤ R, and a first-order oracle O(x) = ( f (x), f ′(x)), such that

f (xN)− f ∗ ≥ LR√
N

for all sequences x1, . . . ,xN that satisfies Assumption A.

Proof. The proof proceeds by constructing a “worst-case” function, on which any first-order
method that satisfies Assumption A will not be able to improve its initial objective value during
the first N iterations.

Let fN : Rp→ R and f̄N : Rp→ R be defined by

fN(x) = max
1≤i≤N

〈x,ei〉,

f̄N(x) = Lmax( fN(x),‖x‖−R(1+N−1/2)),

then it is easy to verify that f̄N is Lipschitz-continuous with constant L and that

f̄ ∗N =− LR√
N

is attained for x∗ ∈ Rp such that

x∗ =− R√
N

N

∑
i=1

ei.
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We equip f̄N with the oracle ON(x) = ( f̄N(x), f̄ ′N(x)) by choosing f̄ ′N(x) ∈ ∂ f̄N(x) according to:

f̄ ′N(x) =

{
L f ′N(x), fN(x)≥ ‖x‖−R(1+N−1/2),

L x
‖x‖ , fN(x)< ‖x‖−R(1+N−1/2),

(3.8.1)

where
f ′N(x) = ei∗, i∗ = min{i : fN(x) = 〈x,ei〉}. (3.8.2)

We also denote
Ri,p := {x ∈ Rd : 〈x,e j〉= 0, i+1≤ j ≤ p}.

Now, let x1, . . . ,xN be a sequence that satisfies Assumption A with f = f̄N and the oracle
ON , where without loss of generality we assume x1 = 0. Then f̄ ′N(x1) = e1 and we get x2 ∈
span{ f̄ ′N(x1)} = R1,p. Now, from 〈x2,e2〉 = · · · = 〈x2,eN〉 = 0, we get that min{i : fN(x) =
〈x,ei〉} ≤ 2 and it follows by (3.8.1) and (3.8.2) that f ′N(x2) ∈ R2,p and f̄ ′N(x2) ∈ R2,p. Hence,
we conclude from Assumption A that x3 ∈ span{ f̄ ′N(x1), f̄ ′N(x2)} ⊆ R2,p. It is straightforward
to continue this argument to show that xi ∈ Ri−1,p and f̄ ′N(xi) ∈ Ri,p for i = 1, . . . ,N, thus xN ∈
RN−1,p. Finally, since for every x ∈ RN−1,p we have f̄N(x)≥ 〈x,eN〉= 0, we immediately get

f̄N(xN)− f̄ ∗N ≥
LR√

N
,

which completes the proof.
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Chapter 4

An O(1/ε) Algorithm for a Class of
Nonsmooth Convex-Concave Saddle-Point
Problems

We introduce a novel algorithm for solving a class of structured nonsmooth convex-concave
saddle-point problems involving a smooth function and the sum of finitely many bilinear terms
and nonsmooth functions. The proposed method is simple. It uses only one gradient of the
smooth term, one proximal map of each nonsmooth part, and matrix-vector multiplication per
iteration. We prove that the proposed algorithm globally converges to a saddle-point with an
O(1/ε) efficiency estimate. We illustrate its relevance for tackling a broad class of composite
minimization problems and its performance through numerical examples for the image deblur-
ring problem and for the fused lasso logistic regression problem.

4.1 Introduction

In this chapter, we consider a class of nonsmooth structured convex-concave saddle-point (SP)
problems. By structured we mean that the model consists of a saddle-point function that is a
sum of a smooth function (i.e., with Lipschitz continuous gradient), with a finite collection of
nonsmooth functions and bilinear terms. The precise definition of the model appears in Section
4.2. This model is very rich and encompasses most convex optimization models arising in a
wide array of applications in signal/image processing and machine learning, see for instance
the two very recent edited volumes [80, 92].

The past and current research activities in the search of methods for solving the alluded
class of convex-concave SP problems and their relatives composite nonsmooth minimization
problems, have been intensive over the past five decades and has been recently revived due to
their relevance in many applications. As a result, the body of literature is rather very large,
and clearly this chapter does not intend to review all these developments. For some of earlier
representative works see, e.g., [3, 6, 7, 59, 81, 64, 46, 97, 41, 35, 98] and for more recent
studies see, e.g., [12, 70, 28, 84] and references therein. The main focus of these works has
been on the sequential convergence analysis of algorithms for various types of problems as
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well as their extensions through abstract frameworks, see for instance the very recent work
[84] which introduces a generalized forward-backward algorithm and also provides a very good
synthesis of many methods (old and more recent), including an up-to-date comprehensive list
of references. Here, we focus on methods with provable nonasymptotic efficiency estimates.

The main goal of this chapter is to present a simple and novel algorithm for the class SP and
their relatives composite nonsmooth minimization problems that achieves the nonasymptotic
efficiency estimate O(1/ε), where ε > 0 is the desired accuracy. To the best of our knowledge,
this is the best known rate that can be achieved for this class of composite nonsmooth SP with
first order methods (FOM) capable of efficiently solving large scale applied problems. The
motivation emerges from the current trends of research efforts on FOM which rely on special
structures and data information to devise simple schemes that are faster than the more gen-
eral approaches which rely on classical nonsmooth optimization algorithms, e.g., subgradient
methods which are often very slow, sharing an O(1/ε2) efficiency estimate [72, 18].

To put our contribution in perspective, let us briefly review some state-of-the-art methods
which have led to these improvements in the efficiency estimates for FOM. For the simplest
convex composite minimization problem which consists of minimizing the sum of a smooth
function with a nonsmooth one, Nesterov [78] and Beck-Teboulle [19] have proven that it is
possible to devise schemes with the improved efficiency estimate O(1/

√
ε), namely like the

so-called “optimal gradient method” [73]. Both methods assumes that the proximal map of the
nonsmooth function is “easy” to compute. However, when the nonsmooth function is composed
with a linear map, the resulting proximal map is generally not an easy task any more. Moreover,
for problems involving a finite sum of such terms, which is one of the problem of interest in this
chapter, the situation obviously becomes much harder and often leads to intractable problems.

We now briefly describe three main approaches that can overcome this difficulty as well
as their limitations and which have motivated the present study. It is well known (see, e.g.,
[43]) that convex-concave SP problems can be reformulated as special case of the more general
variational inequality problem. Korpelevitch [59] proposed the so-called extra-gradient method
which can solve the monotone Lipshcitz continuous variational inequality problem, and hence
the general but smooth convex-concave SP problem. Extra-gradient based algorithms have been
recently shown to exhibit an O(1/ε) efficiency estimate by Nemirovsky [71] and independently
by Auslender-Teboulle [11]. However, these extra-gradient type methods cannot in general be
applied for nonsmooth SP problems without adequate reformulations or further assumptions,
see for instance the recent work [52]. Moreover, they double the amount of computation of pro-
jections, due to the needed extra-projected gradient step, and as a result this can often severely
affect their performance, see Section 4.5 for more details.

Another approach is to exploit the “max-structure” inherently present in the SP formulation.
This was proposed by Nesterov [76], who developed a smoothing method combined with a spe-
cific fast gradient scheme to derive a method with an O(1/ε) efficiency estimate. This method
requires knowledge of the smoothing parameter (which depends on the desired accuracy) and
on compactness assumption. For a unified framework analysis on smoothing, FOM and their
extension, see the recent work [21].

The third approach relies on primal-dual methods. Recently, Chambolle and Pock presented
in [33] a primal-dual method that can solve the nonsmooth SP which emerges from the classical
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convex minimization model, i.e., the sum of two nonsmooth convex functions, one composed
with a linear map. The method was proven to achieve an O(1/ε) efficiency estimate and has
been shown to be successful in solving a wide variety of problems in image sciences. However,
an O(1/ε) efficiency estimate is not known for the method [33] if applied to problems involving
the sum of finitely many composite nonsmooth terms. Moreover, the model and algorithm [33]
does not distinguish (and hence does not exploit) the possible presence of a smooth term. As
a consequence, when a smooth function is present, it requires computing the proximal map of
both the nonsmooth and the smooth function, and the later can often be a major computational
issue, see Section 4.5 for further discussion and details.

Motivated by the above recent developments, we present a novel and simple algorithm to
tackle the class of SP problems which is proven to globally converge to a saddle-point with effi-
ciency estimate O(1/ε), where ε > 0 is the desired accuracy. By simple we mean an algorithm
which at each iteration utilizes one gradient and one proximal map operation on the given nons-
mooth function, assumed to be easy to compute or/and can be efficiently computed. Moreover,
the remaining operations consist only of multiplying a matrix by a vector, that is, no matrix in-
version is involved and furthermore we do not rely on nested optimization schemes. To achieve
these goals we blend in a peculiar fashion some fundamental and old ideas such as duality,
predictor-corrector steps and proximal methods which are reminiscent to [35] and its extension
in [98], see Section 4.2 for details and the proposed algorithm. In Section 4.3 we derive the
promised global nonasymptotic efficiency estimate, and as an easy by-product the sequential
convergence is also obtained. Our approach, which exploits the interplay between optimization
problems and their saddle-point representation, allows to efficiently address the important class
of structured convex models involving the sum of smooth function with a finite sum of nons-
mooth functions composed with linear maps in the objective or in the constraints. In particular,
the much more difficult and computationally demanding task which often required to compute
the proximal map of the (sum of) composition of the given nonsmooth functions with linear
maps is avoided, yet our method allows to preserve the O(1/ε) efficiency estimate within mini-
mal computational effort, see Section 4.4. To demonstrate the relevance and performance of the
proposed algorithm when compared to some recent state-of-the-art schemes sharing the same
iteration complexity, numerical illustration on the constrained total-variation image deblurring
problem and the fused lasso logistic regression problem are presented in Section 4.5. Lastly, we
conclude with two appendices: the first appendix discusses a rate of convergence result for the
primal representation of a problem that is solved via its saddle-point representation. The second
appendix presents a formulation of the proposed method in the PEP framework introduced in
Chapter 2.

Notation. The set of symmetric p× p positive (semi)-definite matrices is denoted by Sp
++

(Sp
+). We also use M � 0 (M � 0). For any vector z ∈ Rp and any M ∈ Sp

+, we define the
semi-norm induced by M, as follows ‖z‖M := 〈z,Mz〉1/2. When M ≡ Ip, the p× p identity
matrix, the standard Euclidean norm is recovered, and will simply be denoted by ‖z‖. Also,
recall that for any real matrix W ∈ Rn×p and any given vector norm ‖·‖′, the induced norm of
W is defined by ‖W‖′=max

{
‖Wz‖′ : ‖z‖′ = 1

}
. For h :Rp→ (−∞,∞] which is proper, lower-

semi-continuous (lsc) and convex, its conjugate is defined by h∗ (y) := supx∈Rp {〈x,y〉−h(x)}.
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Other standard convex analysis notations not explicitly defined here can be found in any text,
e.g., [86].

4.2 The Saddle-Point Model and The Algorithm
We begin by describing the setting of the nonsmooth convex-concave structured saddle- point
problem of interest.

4.2.1 The Saddle-Point Problem
We consider convex-concave saddle-point problems of the form

(M) min
u∈Rn

max
v∈Rd
{K (u,v) := f (u)+ 〈u,A v〉−g(v)} ,

where f and g are convex functions and A is a linear map such that

(i) f : Rn→ R is a convex function which is continuously differentiable and its gradient ∇ f
is Lipschitz continuous with constant L f , i.e., for all u1,u2 ∈ Rn, we have

‖∇ f (u1)−∇ f (u2)‖ ≤ L f ‖u1−u2‖ .

(ii) gi : Rdi → (−∞,+∞], i = 1,2, . . . ,m, is a proper, lower semicontinuous (lsc) and convex
function (possibly nonsmooth). With vi ∈Rdi , we define v := (v1,v2, . . . ,vm) ∈Rd where
d = ∑

m
i=1 di and we let g : Rd→ (−∞,+∞] be the proper, lsc and convex function defined

by

g(v) :=
m

∑
i=1

gi (v) .

(iii) Ai : Rdi → Rn, i = 1,2, . . . ,m, is a linear map and we let A : Rd → Rn be the linear map
defined by A v = ∑

m
i=1 Aivi.

Note that the model (M) can easily include constraints on the variable v, thanks to the fact that
g is extended valued. On the other hand, our model’s formulation does not include constraint
on the variable u. We will later show on Section 4.4 how constraints on u can be adequately
handled.

The choice of our model (M) is not accidental. As we shall see, the saddle-point approach
will offer much flexibility in tackling various composite optimization models arising in many
important applications within the proposed algorithm (see Sections 4.4 and 4.5).

4.2.2 The Standing Assumption
Throughout this chapter, our standing assumption is that the convex-concave function K(·, ·)
has a saddle-point, i.e., there exists (u∗,v∗) ∈ Rn×Rd such that

K (u∗,v)≤ K (u∗,v∗)≤ K (u,v∗) , ∀ u ∈ Rn, v ∈ Rd.
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The existence of a saddle point corresponds to zero duality gap for the induced optimization
problems

(P) inf
u∈Rn

[
r (u) = sup

v∈Rd
K (u,v)

]
and (D) sup

v∈Rd

[
q(v) = inf

u∈Rn
K (u,v)

]
.

One always has infu∈Rn r (u)≥ supv∈Rd q(v) (i.e., weak duality). In addition, (u∗,v∗) is a saddle-
point of K if and only if u∗ is an optimal solution of the primal problem (P), v∗ is an optimal
solution of the dual problem (D), and

inf
u∈Rn

sup
v∈Rd

K (u,v) = sup
v∈Rd

inf
u∈Rn

K (u,v) = K (u∗,v∗) ,

where K (u∗,v∗) is the saddle-point value. For ease of reference, we denote by SP and SD the
optimal solutions sets of the primal-dual pair (P)-(D), respectively. For standard qualification
conditions (as well as more conditions) which warrant this equality, i.e., the existence of saddle-
points for convex-concave K, we refer the reader to the monographs [9, Chapter 5] and [89,
Chapter 11].

4.2.3 The Algorithm
Before we state our algorithm we need to recall the definition of the Moreau proximal map [68]
and to introduce some convenient notations.

Let h : Rp→ (−∞,∞] be a proper, lsc and convex function. For any x ∈ Rp and M ∈ Sp
++,

the proximal map associated with h is defined by:

proxh
M (x) := argminy

{
h(y)+

1
2
‖y− x‖2

M

}
. (4.2.1)

Clearly, the proximal mapping is well (uniquely) defined for any x ∈ Rp and any M ∈ Sp
++.

When M = µ−1Ip, µ > 0, where Ip stands for the p× p identity matrix, we simply use the
following notation proxh

µ (·). We also recall the fundamental Moreau proximal identity [68]
which states that the proximal mapping of a function can be easily computed from the proximal
mapping of its conjugate (and vice-versa), that is, for any z ∈ Rp

proxh
M (z)+Mproxh∗

M−1

(
M−1z

)
= z, (4.2.2)

where M−1 is the inverse of the symmetric positive definite matrix M.

For any given real numbers σ1,σ2, . . . ,σm > 0, we denote Si := σ
−1
i Idi , i = 1,2, . . . ,m,

where Idi stands for the di × di identity matrix, and define the block diagonal matrix S :=
Diag [S1,S2, . . . ,Sm] ∈ Sd

++ with d = ∑
m
i=1 di.

The algorithm we propose consists of a predictor-corrector gradient step for handling the
smooth part of K and a proximal step for handling the nonsmooth part. The idea of using
predictor-corrector steps goes back to the work of [35] in the context of augmented Lagrangian
methods, and was further extended in [98] to handle general monotone inclusions, and in par-
ticular convex-concave saddle point problems like (M). This will be further discussed below.
The main steps of the algorithm now follow.
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PAPC: Proximal Alternating Predictor Corrector
Initialization.

(
u0,v0) ∈ Rn×Rd and let τ > 0,S� 0.

General Step. For k = 1,2, . . ., compute

pk = uk−1− τ

(
A vk−1 +∇ f

(
uk−1

))
, (4.2.3)

vk = proxg
S

(
vk−1 +S−1A T pk

)
, (4.2.4)

uk = uk−1− τ

(
A vk +∇ f

(
uk−1

))
. (4.2.5)

The choice of the parameters τ and S will be made precise in Section 4.3.

A few remarks regarding the computational steps involved in the PAPC method are now in
order.

• A major computational effort of the method is given in the second step (4.2.4). Since here
g(v) = ∑

m
i=1 gi (vi), using the definition of the matrix S we immediately obtain that at any

given point xi ∈ Rdi , i = 1,2, . . . ,m,

proxg
S (x) =

(
proxg1

σ1 (x1) ,proxg2
σ2 (x2) , . . . ,proxgm

σm (xm)
)
,

and hence the second step of the algorithm (4.2.4) decomposes accordingly and for all
i = 1,2, . . . ,m we have

vk
i = proxgi

σi

(
vk−1

i +σiAT
i pk
)
= argminvi∈Rdi

{
gi (vi)+

1
2σi

∥∥∥vi−
(

vk−1
i +σiAT

i pk
)∥∥∥2
}
.

Thus, the algorithm PAPC achieves full decomposition for the given structure of K in the
sense that for each i, it avoids the much more difficult task of computing the proximal
map of the composite function gi ◦Ai, and only requires computing the proximal map of
gi (·), i = 1,2, . . . ,m.

• The algorithm uses only one evaluation of the gradient of the smooth function f , and a
careful implementation requires only one application of the operator A and one appli-
cation of the operator A T per iteration. Thus, for large scale problems this potentially
amounts to a considerable reduction of computation time compared to the straightforward
implementation.

Before proceeding with the analysis and convergence properties of the algorithm, we end
this section with some remarks discussing the underlying nature of the PAPC method and its
relation to well-known methods.

Despite some striking similarities between PAPC and the scheme proposed in [98, Example
4, p. 963], the algorithm PAPC is different. Indeed, a simple computation shows that applying
the algorithm in [98] on model (M) would require to compute two gradients of f (one at pk

and one at uk−1) per each iteration (as opposed to one in PAPC), and it uses the same step-size
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for all iterations, as opposed to PAPC which used (τ,S). Moreover and most importantly, the
iteration complexity of the method [98] appears to be unknown.

In fact, it turns out that we can give an interesting dual interpretation of PAPC via the well-
known proximal gradient (ProxGrad) (e.g., [20]). For simplicity of exposition, it is enough to
consider the saddle-point model with m = 1, that is, A := A ≡ A1, d1 ≡ d and g1 ≡ g. More
precisely we thus consider,

(M1) min
u∈Rn

max
v∈Rd
{ f (u)+ 〈u,Av〉−g(v)}= min

u∈Rn

{
f (u)+g∗

(
AT u

)}
,

and its dual (conveniently rewritten as a minimization problem with appropriate change of sign)

(DM1) min
v∈Rd
{ f ∗ (−Av)+g(v)}= min

v∈Rd ,η∈Rn
{ f ∗ (η)+g(v) : η +Av = 0} .

Since f is assumed with L f -Lipschitz gradient, it means that by [89, Proposition 12.60, page
565], its conjugate f ∗ is L−1

f -strongly convex. It is then well-known that applying the ProxGrad
on (M1) is equivalent to applying the so-called alternating minimization (AM) algorithm [46,
97] on (DM1). An easy computation show that this reduces to the following steps: for k =
1,2, . . ., compute

vk = argminv∈Rd

{
g(v)+

τ

2

∥∥∥Av+∇ f
(

uk−1
)
− τ
−1uk−1

∥∥∥2
}
≡ argminv∈Rd {g(v)+Pk (v)}

uk = uk−1− τ

(
Avk +∇ f

(
uk−1

))
. (4.2.6)

The main difficulty is in the step to compute vk, which in general will be a computationally a too
demanding task1 due to the least-squares term Pk(·). This step consists of minimizing the sum of
nonsmooth function, g(·), with a smooth one Pk (here with Lipschitz constant LPk = τ

∥∥AT A
∥∥).

In the spirit of [35], the alluded difficulty can thus be avoided by solving it approximately. More
precisely, let us apply “one shot” (iteration) of the ProxGrad scheme. That is, given some σ > 0,
with στ

∥∥AT A
∥∥≤ 1, we replace the first step by its approximate version,

vk = argminv∈Rd

{
g(v)+

σ

2

∥∥∥v−
(

vk−1−σ
−1

∇vPk

(
vk−1

))∥∥∥2
}
, (4.2.7)

where
∇vPk

(
vk−1

)
= τAT

(
Avk−1 +∇ f

(
uk−1

)
− τ
−1uk−1

)
≡−AT pk

with
pk := uk−1− τ

(
Avk−1 +∇ f

(
uk−1

))
. (4.2.8)

It can be immediately seen that the resulting Approximate Alternating Minimization (APxAM)
scheme just derived and defined via (4.2.6), (4.2.7) and (4.2.8) reduces exactly to the proposed
PAPC method.

1In the particular case AT A = I, we simply obtain that vk = proxg
τ−1

(
A(uk−1− τ∇ f (uk−1))

)
.
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Remark 4.2.1. As a by-product of the above development, the forthcoming sublinear rate of
convergence result for PAPC (see Theorem 4.5) also proves that the same rate of convergence is
shared by this approximate version of the so-called alternating minimization algorithm, a result
which to the best of our knowledge appears to be new. The connection between the 4 discussed
algorithms can be conveniently summarized as follows

ProxGrad on (M1) ⇐⇒ AM on (DM1)
PAPC on (M1) ⇐⇒ APxAM on (DM1)

Thus, in the particular case when A ≡ I, the four algorithms coincide and reduce to the Prox-
Grad method when applied to the standard composite model minimizing the sum of a smooth
and nonsmooth function.

Remark 4.2.2. A this juncture, we also note that very recently, a fast version of the alternating
minimization was derived in [22]. It was shown there that the dual objective function sequence
converges at the rate of O(1/k2) while the rate of convergence of the primal sequence is of the
order of O(1/k). Unfortunately, the results of [22] are not applicable to our model (M1).

4.3 Main Convergence Results for PAPC
In this section, we establish the main convergence properties of the PAPC algorithm. In particu-
lar, we prove its global rate of convergence, showing that it shares the claimed O(1/ε) efficiency
estimate. As an easy by-product we also derive a global convergence of the sequence generated
by PAPC to a saddle-point of K (·, ·). We start with few preliminaries.

4.3.1 Elementary Preliminaries
Let h : Rp → R be a continuously differentiable function whose gradient ∇h is assumed to
be Lh-Lipschitz continuous. Then, we have the well-known property (usually referred as the
Descent Lemma for smooth functions, see for instance [26]):

h(u)≤ h(v)+ 〈u− v,∇h(v)〉+ Lh

2
‖u− v‖2 , ∀ u,v ∈ Rp. (4.3.1)

For convex functions, we can then deduce the following useful inequality.

Lemma 4.1. Let h : Rp→ R be a convex and continuously differentiable function such that its
gradient is Lipschitz continuous with constant Lh. Then, for any three points x,y,z ∈ Rp, we
have

h(x)≤ h(y)+ 〈∇h(z) ,x− y〉+ Lh

2
‖x− z‖2 .

Proof. Since h is convex and differentiable, the gradient inequality holds, i.e.,

0≤ h(y)−h(z)−〈∇h(z) ,y− z〉 , ∀ y,z ∈ Rp,

and from (4.3.1) we obtain

h(x)≤ h(z)+ 〈∇h(z) ,x− z〉+ Lh

2
‖x− z‖2 .

Adding these two inequalities yields the desired result.
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The next lemma is the well-known proximal inequality (slightly extended with respect to a
given matrix M ∈ Sp

+) that will be systematically used in the forthcoming analysis.

Lemma 4.2. Let h : Rp → (−∞,∞] be a proper, lsc and convex function. Given M ∈ Sp
+ and

x ∈ Rp, let

z ∈ argminξ∈Rp

{
h(ξ )+

1
2
‖ξ − x‖2

M

}
.

Then, for all ξ ∈ Rp, we have

h(z)−h(ξ )≤ 〈ξ − z,M (z− x)〉 .

Proof. The optimality condition characterizing z yields γ +M (z− x) = 0 with γ ∈ ∂h(z). In-
voking the subgradient inequality for the convex function h we get that for any z,ξ ∈ Rp,

h(z)−h(ξ )≤ 〈ξ − z,−γ〉= 〈ξ − z,M (z− x)〉 ,

which completes the proof.

Finally, we recall the Pythagoras identity that will be useful in the analysis. For any matrix
M ∈ Sp

+, we have

2〈w− v,M (u− v)〉= ‖w− v‖2
M−‖w−u‖2

M +‖u− v‖2
M , ∀ u,v,w ∈ Rp. (4.3.2)

4.3.2 Global Rate of Convergence of the PAPC Method
To establish the iteration complexity of the PAPC algorithm and the convergence of the gener-
ated sequence

{(
uk,vk)}

k∈N, we consider the following quantity

Γk (u,v) = K
(

uk,v
)
−K

(
u,vk

)
, ∀ u ∈ Rn, v ∈ Rd.

Our main task is to find an upper-bound for Γk(u,v), k ∈ N. Indeed, Γk (u,v)≤ 0 for all u ∈ Rn

and all v ∈ Rd implies

K
(

uk,vk
)
≤ K

(
u,vk

)
, ∀ u ∈ Rn

K
(

uk,v
)
≤ K

(
uk,vk

)
, ∀ v ∈ Rd,

namely, that (uk,vk) is a saddle-point of K with saddle-point value K(uk,vk). We now proceed
to prove two key inequalities which will be the basis for proving our main convergence results.

Lemma 4.3. Let {(pk,vk,uk)}k∈N be the sequence generated by the PAPC algorithm, then for
every k ∈ N and every u ∈ Rn, we have

K
(

uk,vk
)
−K

(
u,vk

)
≤ 1

2τ

(∥∥∥u−uk−1
∥∥∥2
−
∥∥∥u−uk

∥∥∥2
)
− 1

2

(
1
τ
−L f

)∥∥∥uk−uk−1
∥∥∥2

.
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Proof. Applying Lemma 4.1 on the convex and differentiable function h(u) := K
(
u,vk) with

x := uk, y := u and z := uk−1, yields

K
(

uk,vk
)
−K

(
u,vk

)
≤
〈

∇uK
(

uk−1,vk
)
,uk−u

〉
+

L f

2

∥∥∥uk−uk−1
∥∥∥2

.

Using the fact that ∇uK
(
uk−1,vk)= A vk +∇ f

(
uk−1)= τ−1 (uk−1−uk), where the last equa-

tion follows from the definition of step (4.2.5), we get

K
(

uk,vk
)
−K

(
u,vk

)
≤ 1

τ

〈
uk−1−uk,uk−u

〉
+

L f

2

∥∥∥uk−uk−1
∥∥∥2

.

The desired result follows by using the identity (4.3.2) with M ≡ In, for the first term in the right
hand side of the above inequality.

Lemma 4.4. Let {(pk,uk,vk)}k∈N be the sequence generated by the PAPC algorithm and as-
sume that the matrix G := S− τA T A is positive semidefinite. Then, for every k ∈ N and every
v ∈ Rd , we have

K
(

uk,v
)
−K

(
uk,vk

)
≤ 1

2

(∥∥∥v− vk−1
∥∥∥2

G
−
∥∥∥v− vk

∥∥∥2

G
−
∥∥∥vk− vk−1

∥∥∥2

G

)
.

Proof. First, note that by the definition of K (·, ·) we have

−K
(

pk,v
)
= g(v)−

〈
A T pk,v

〉
− f

(
pk
)
,

and hence step (4.2.4) of PAPC can be written (after omitting constant terms) as

vk = prox−K(pk,·)
S

(
vk−1

)
= argminv∈Rd

{
−K

(
pk,v

)
+

1
2

∥∥∥v− vk−1
∥∥∥2

S

}
.

Applying Lemma 4.2 to the convex function h(ν) := −K(pk,ν) with ξ := v, z := vk and x :=
vk−1, yields

K
(

pk,v
)
−K

(
pk,vk

)
≤
〈

vk− vk−1,S
(

v− vk
)〉

. (4.3.3)

Now, from the definition of K(·, ·), simple algebra shows that the following identity holds

K
(

uk,v
)
−K

(
uk,vk

)
+K

(
pk,vk

)
−K

(
pk,v

)
=
〈

uk− pk,A
(

v− vk
)〉

. (4.3.4)

Using the definitions of pk and uk given in steps (4.2.3) and (4.2.5), respectively, we have

uk− pk = τA
(

vk−1− vk
)
,

hence, together with (4.3.3) and (4.3.4), we obtain

K
(

uk,v
)
−K

(
uk,vk

)
=
〈

uk− pk,A
(

v− vk
)〉

+K
(

pk,v
)
−K

(
pk,vk

)
≤ τ

〈
vk−1− vk,A T A

(
v− vk

)〉
+
〈

vk− vk−1,S
(

v− vk
)〉

=
〈

vk− vk−1,
(
S− τA T A

)(
v− vk

)〉
.

Thus, with G := S− τA T A , which assumed to be positive semidefinite, the desired result
follows by using the identity (4.3.2) with M ≡ G.

78



CHAPTER 4. AN O(1/ε) ALGORITHM FOR SADDLE-POINT PROBLEMS

Before we proceed with the convergence results, we need some additional notations. For
any sequence {xk}k∈N and any integer N ≥ 1, we denote by

x̄N :=
1
N

N

∑
k=1

xk,

the average (ergodic) sequence associated with {xk}k∈N. For the parameters σ1,σ2, . . . ,σm > 0
used in PAPC, we denote σ := max1≤i≤m σi.

The global rate of convergence result for the ergodic sequence now follows.

Theorem 4.5. Let {(pk,uk,vk)}k∈N be the sequence generated by the PAPC algorithm with
τL f ≤ 1 and στ ∑

m
i=1 ‖Ai‖2 ≤ 1. Then, G = S− τA T A is positive semidefinite and for every

u ∈ Rn and v ∈ Rd , we have

K
(
ūN ,v

)
−K

(
u, v̄N)≤ τ−1

∥∥u−u0
∥∥2

+
∥∥v− v0

∥∥2
G

2N
.

Proof. We begin by showing that the condition στ ∑
m
i=1 ‖Ai‖2 ≤ 1 implies that the symmetric

d× d matrix G is positive semi-definite. First, note that G = S− τA T A � 0 if λmin (S) ≥
τλmax

(
A T A

)
, where λmin (·) (λmax (·)) stands for the minimal (maximal) eigenvalue of the

given symmetric matrix. Recalling the definition of S given in Section 4.2.3, we obtain

λmin (S) = min
1≤i≤m

σ
−1
i =

1
max1≤i≤m σi

=
1
σ
,

and hence the last condition reduces to στλmax
(
A T A

)
≤ 1. On the other hand, using the

definition of A we have

λmax
(
A T A

)
=
∥∥A T A

∥∥= ∥∥∥∥∥ m

∑
i=1

AT
i Ai

∥∥∥∥∥≤ m

∑
i=1

∥∥AT
i Ai
∥∥= m

∑
i=1
‖Ai‖2 ,

and the first part of the claim follows. Now, let u ∈ Rn and v ∈ Rd . Since we assume that
τL f ≤ 1, using Lemma 4.3 we get that for all k ∈ N

K
(

uk,vk
)
−K

(
u,vk

)
≤ 1

2τ

(∥∥∥u−uk−1
∥∥∥2
−
∥∥∥u−uk

∥∥∥2
)
− 1

2

(
1
τ
−L f

)∥∥∥uk−uk−1
∥∥∥2

≤ 1
2τ

(∥∥∥u−uk−1
∥∥∥2
−
∥∥∥u−uk

∥∥∥2
)
. (4.3.5)

On the other hand, with G� 0, from Lemma 4.4 we immediately obtain that for all k ∈ N

K
(

uk,v
)
−K

(
uk,vk

)
≤ 1

2

(∥∥∥v− vk−1
∥∥∥2

G
−
∥∥∥v− vk

∥∥∥2

G

)
.

Adding this inequality to (4.3.5) we get for every k ∈ N, and for all u ∈ Rn, v ∈ Rd

K
(

uk,v
)
−K

(
u,vk

)
≤ 1

2τ

(∥∥∥u−uk−1
∥∥∥2
−
∥∥∥u−uk

∥∥∥2
)
+

1
2

(∥∥∥v− vk−1
∥∥∥2

G
−
∥∥∥v− vk

∥∥∥2

G

)
.
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Now, since K (u,v) is convex-concave, using the definition of
(
ūN , v̄N), by the Jensen inequality

and using the last inequality we get

K
(
ūN ,v

)
−K

(
u, v̄N)= K

(
1
N

N

∑
k=1

uk,v

)
−K

(
u,

1
N

N

∑
k=1

vk

)

≤ 1
N

N

∑
k=1

(
K
(

uk,v
)
−K

(
u,vk

))
≤ 1

N

N

∑
k=1

1
2τ

(∥∥∥u−uk−1
∥∥∥2
−
∥∥∥u−uk

∥∥∥2
)

+
1
N

N

∑
k=1

1
2

(∥∥∥v− vk−1
∥∥∥2

G
−
∥∥∥v− vk

∥∥∥2

G

)
=

1
2τN

(∥∥u−u0∥∥2−
∥∥u−uN∥∥2

)
+

1
2N

(∥∥v− v0∥∥2
G−

∥∥v− vN∥∥2
G

)
≤ 1

2τN

∥∥u−u0∥∥2
+

1
2N

∥∥v− v0∥∥2
G ,

which proves the claimed result.

Two important consequences of this global upper-bound established in Theorem 4.5 can be
deduced. The first states that the PAPC method possesses a sub-linear global rate of conver-
gence. More precisely, let ε > 0, then following Nemirovsky and Yudin [72], a point (uε ,vε) is
called an ε-saddle-point for K if

sup{K (uε ,v)−K (u,vε) : u ∈ SP,v ∈ SD} ≤ ε,

where SP is the optimal solutions set of the primal problem and SD is the optimal solutions
set of the dual problem associated to the saddle-point function K (see Section 4.2). Using
this definition, we thus immediately obtain from Theorem 4.5 the following efficiency estimate
result.

Corollary 4.6. Let
{(

pk,uk,vk)}
k∈N be the sequence generated by the PAPC algorithm with

τL f ≤ 1 and στ ∑
m
i=1 ‖Ai‖2 ≤ 1. Assume that both optimal solutions sets SP and SD associated

to the saddle-point problem (M) are compact2. Then, given a desired accuracy ε > 0, the PAPC
method produces an ε-saddle-point (ūN , v̄N) of K in N = O(1/ε) iterations.

Another easy consequence of Theorem 4.5 is a convergence result of the sequence generated
by PAPC to a saddle-point of problem (M).

Corollary 4.7. Let {(pk,uk,vk)}k∈N be the sequence generated by the PAPC algorithm with
τL f < 1 and στ ∑

m
i=1 ‖Ai‖2 < 1.Then, the sequence {(uk,vk)}k∈N converges to a saddle-point

(ũ, ṽ) of K.

2Note that under standard qualification conditions, which is our standing assumption (cf. Section 4.2.2), the
optimal set SD of the dual problem associated to (M) is always compact.
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Proof. From Lemmas 4.3 and 4.4 it immediately follows that for any u ∈Rn, v ∈Rd and for all
k ∈ N

K
(

uk,v
)
−K

(
u,vk

)
≤ 1

2τ

(∥∥∥uk−1−u
∥∥∥2
−
∥∥∥uk−u

∥∥∥2
)
− 1

2

(
1
τ
−L f

)∥∥∥uk−uk−1
∥∥∥2

+
1
2

(∥∥∥vk−1− v
∥∥∥2

G
−
∥∥∥vk− v

∥∥∥2

G
−
∥∥∥vk− vk−1

∥∥∥2

G

)
. (4.3.6)

In particular, let (u∗,v∗) ∈ Rn×Rd be an arbitrary saddle-point of the function K, then by the
saddle-point property, K(uk,v∗)−K(u∗,vk)≥ 0, and it follows from the last inequality that(

1
τ
−L f

)∥∥∥uk−uk−1
∥∥∥2

+
∥∥∥vk− vk−1

∥∥∥2

G
≤ D

(
wk−1,w∗

)
−D

(
wk,w∗

)
, (4.3.7)

where w := (u,v) ∈ Rn×Rd and we define

D(w1,w2) :=
1
τ
‖u1−u2‖2 +‖v1− v2‖2

G .

As a consequence of (4.3.7), the sequence {D(wk,w∗)}k∈N is non-increasing and therefore the
sequence {wk}k∈N is bounded. On the other hand, summing (4.3.7) for any k = 1,2, . . . ,N yields

D
(
wN ,w∗

)
+

N

∑
k=1

[(
1
τ
−L f

)∥∥∥uk−uk−1
∥∥∥2

+
∥∥∥vk− vk−1

∥∥∥2

G

]
≤ D

(
w0,w∗

)
,

and hence with G� 0 and L f τ < 1, we obtain

lim
k→∞

∥∥∥uk−uk−1
∥∥∥= 0 and lim

k→∞

∥∥∥vk− vk−1
∥∥∥

G
= 0. (4.3.8)

Since the sequence {wk}k∈N is bounded, it has at least one limit point. Suppose that w̃ = (ũ, ṽ)
is a limit point of the sequence {wk}k∈N, then taking the limit in (4.3.6) over the appropriate
subsequences and using (4.3.8) yields

K (ũ,v)−K (u, ṽ)≤ 0, ∀ u ∈ Rn, v ∈ Rd,

which proves that (ũ, ṽ) is a saddle-point of K. To complete the proof it only remains to show
that {wk}k∈N has a unique limit point. This follows by a standard argument, see e.g., [87, page
885].

The saddle-point model (M) covers a very broad class of generic convex optimization prob-
lems arising in many applications. Below we describe some typical important prototype prob-
lems.
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4.4 Composite Minimization via Saddle-Point
Our main purpose in this section is, on one hand, to illustrate the flexibility of the model (M),
and on the other hand, the simplicity of the resulting PAPC algorithm when applied to these
problems. To do so, we first recall the following fundamental result [86] which states that the
bi-conjugate of a proper, lsc and convex function h : Rp→ (−∞,∞] coincides with itself, i.e.,
h∗∗ = h. Thus, any proper, lsc and convex function h admits the following variational max-
representation

h(x) = max
u∈Rp
{〈u,x〉−h∗ (u)} .

This well-known and fundamental relation is in fact the key player for handling constraints
as well as for deriving “full splitting” of most optimization problems involving composition
with linear maps through their saddle-point representation in the form (M). This mechanism is
described in the next part, and then we illustrate it on various class of optimization models.

4.4.1 The Dual Transportation Trick
Let U ⊂ Rn be a closed and convex set, consider the following constrained convex problem

(C) min
u∈Rp
{F (u) : u ∈U} .

Let δU denotes the usual convex indicator function of the set U (i.e., 0 if u∈U and ∞ otherwise).
Recall that the conjugate of δU is the so-called support function of the set U , denoted by σU :
Rp→ (−∞,∞] and given for any x ∈ Rp by

σU (x) := sup
u∈Rp
{〈u,x〉 : u ∈U}= δ

∗
U (x) . (4.4.1)

The support function σU (·) is always convex (with U convex or not). Moreover, σU is proper,
lsc and convex when U is a closed and convex set, thus in this case σ∗U = δU . Equipped with
these basic objects, problem (C) can be written

min
u∈Rp
{F (u)+δU (u)}= min

u∈Rp
max
v∈Rp
{F (u)+ 〈u,v〉−δ

∗
U (v)} (4.4.2)

= min
u∈Rp

max
v1,v2∈Rp

{〈u,v1〉−F∗ (v1)−〈u,v2〉−δ
∗
U (v2)} . (4.4.3)

Clearly, both saddle-point representations given in (4.4.2) and (4.4.3) can be seen as particular
cases of model (M), yet they illustrate two important different goals: (4.4.2) provides a way to
reinterpret a constrained optimization problem as an unconstrained saddle-point problem, while
(4.4.3) provides a way to continue and further decompose the problem to fit our model (M) in
the case where F is also nonsmooth. For ease of reference we call this the dual transportation
trick. It allows to transport the primal constraint variable u ∈U into the objective function, but
with an additional nonsmooth convex function σU = δ ∗U in the dual space of the saddle-point
function.

This elementary transportation trick plays a key role in our way to treat primal constraints
in saddle-point problems as well as quite general convex composite optimization problems as
described below.
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4.4.2 Handling Constrained Saddle-Point Problems

Let U ⊆Rn be a closed and convex set, consider the following constrained saddle-point problem
(here for simplicity of exposition it is enough to look at m = 1, which means that, d ≡ d1,
A = A1 ≡ A, g1 (v)≡ g(v) and σ1 = σ ):

(CM) min
u∈U

max
v∈Rd
{K (u,v) = f (u)+ 〈u,Av〉−g(v)} .

Since the PAPC method requires the problem to be unconstrained (cf. problem (M)), the method
cannot be directly applied here. However, using the dual transportation trick just described
above, we obtain the following equivalent unconstrained saddle-point problem which is com-
patible with the requirements of the PAPC method

(CM′) min
u∈Rn

max
v∈Rd ,w∈Rn

{
K′ (u;v,w) := f (u)+ 〈u,Av〉−g(v)+ 〈u,w〉−σU (w)

}
.

Observing that the inner maximization problem in (CM′) is separable in the variables v and w,
the PAPC method for solving the constrained saddle-point problem (CM) can be formulated as
follows.

PAPC: constrained version
Initialization.

(
u0,v0,w0) ∈ Rn×Rd×Rn and τ,σ > 0.

General Step (k = 1,2, . . .)

pk = uk−1− τ

(
Avk−1 +wk−1 +∇ f

(
uk−1

))
, (4.4.4)

vk = proxg
σ

(
vk−1 +σAT pk

)
, (4.4.5)

wk = proxσU
σ

(
wk−1 +σ pk

)
, (4.4.6)

uk = uk−1− τ

(
Avk +wk +∇ f

(
uk−1

))
. (4.4.7)

Thanks to the Moreau proximal identity, the step (4.4.6) can be readily computed using the
proximal mapping of the function δU , which is nothing else but the projection onto the set U ,
and thus reads as:

wk = wk−1 +σ pk−σPU

(
wk−1 +σ pk

σ

)
.

It is important to notice that while the support function of the set U was needed to model our
constrained problem in the form (M), the computation/knowledge of the support itself is not nec-
essary. Theorem 4.5 holds on problem (P′) with the parameters τL f ≤ 1 and στ

(
‖A‖2 +1

)
≤ 1.
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4.4.3 Composite Minimization with Sum of Finitely Many Terms
Let U ⊆ Rn be a closed and convex set. The problem of interest can be described as follows

(Gen) min
u∈Rp

{
F (u)+

m

∑
i=1

Hi (Biu) : u ∈U

}
,

where F is a smooth and convex function on Rp (see (ii) of the problems setting in Section 4.2),
Hi, i = 1,2, . . . ,m, is a proper, lsc and convex function over Rdi (extended valued) and Bi ∈
Rdi×Rp. This model is quite general and covers many interesting problems in imaging sciences
and machine learning for which numerical results will be presented in Section 4.5. This model
also includes convex problems with separable structure in the objective and coupling linear
constraints of the form

(SC) min
xi

{
m

∑
i=1

ψi (xi) :
m

∑
i=1

Bixi = b

}
.

Indeed, a direct computation shows that a dual formulation of problem (SC)3 also fits the model
(Gen) with F := 〈u,b〉, Hi := ψ∗i and Bi←−BT

i .

Using the dual transportation trick for the constraint u ∈U , and the fact that Hi is proper, lsc
and convex, problem (Gen) can be written as

min
u∈Rp

max
yi∈Rdi ,w∈Rp

{
F (u)+

m

∑
i=1

〈
BT

i yi,u
〉
+ 〈w,u〉−

m

∑
i=1

H∗i (yi)−σU (w)

}
,

which clearly reduces to a saddle-point problem in the form (M) with saddle-point function
K (u,v)=F (u)+〈u,A v〉−g(v) through the identification g(v) :=∑

m
i=1 H∗i (yi)+σU (w), A :=[

BT
1 ,B

T
2 , . . . ,B

T
m, Ip

]
and v := (y1,y2, . . . ,ym,w).

Observe that this yields a fully separable nonsmooth part in the variables yi, i = 1,2, . . . ,m
and w, which allows for adequate decomposition in the main computational step of PAPC. In
particular, this eliminates the difficulty of computing the proximal map of the composition of a
convex function with a linear map. Thus, here the resulting proximal mapping in PAPC can be
computed separately and reads for each i = 1,2, . . . ,m as follows

vk
i = proxH∗i

σi

(
vk−1

i +σiBi pk
)
,

wk = proxσU
σ

(
wk−1 +σ pk

)
.

As noted earlier, thanks to the Moreau’s proximal identity, the proximal map of the conjugate
function H∗i , i = 1,2, . . . ,m, can be easily computed from the proximal map of the function Hi
(which are assumed to be simple) and the computational step for w amounts to computing a
projection onto the set U .

Note that very recently a different algorithm was proposed in [84], where it was assumed
that F = 0 and Ai = I for all 1≤ i≤ m, and for which no efficiency estimate was established.

3For convenience, dual problems will always be re-written as minimiztion problems after an appropriate change
of sign.
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4.4.4 Constrained Composite Minimization
Another interesting model is the following constrained composite convex minimization problem

(C-Gen) min
u∈Rp

{
F (u) :

m

∑
i=1

Hi (Biu)≤ α

}
,

where F , Hi (i = 1,2, . . . ,m) and Bi (i = 1,2, . . . ,m) as in the (Gen) model and here Hi (·) is
finite valued. To tackle this problem, we first reformulate the constraint set as the intersection
of adequate closed and convex sets defined as follows:

∆m :=

{
z ∈ Rm :

m

∑
i=1

zi ≤ α

}
,

Ci := {(y, t) ∈ Rp×R : Hi (y)≤ t}
Di := {(u,y) ∈ Rp×Rm : Biu = y} .

Then with these sets, problem (C-Gen) can be written as follows:

min

{
F (u)+δ∆m (z)+

m

∑
i=1

δCi (yi,zi)

+
m

∑
i=1

δDi (u,yi) : u ∈ Rp,zi ∈ R,yi ∈ Rdi, i = 1,2 . . . ,m

}
.

As previously explained, using the dual transportation trick, it is then easy to see that the
later can then be written as a saddle-point problem of the form (M) which will involve a sep-
arable sum of support functions. Applying the PAPC algorithm on the resulting minimax for-
mulation of problem (C-Gen), requires in this case (thanks to Moreau proximal identity) the
computation of the projection onto each set ∆m, Ci and Di, i = 1,2, . . . ,m. The projection onto
∆m and Di admits a closed form solution. Furthermore, the projection onto a set of the form Ci,
namely the epigraph of Hi, can also be computed via the following result whose simple proof is
left to the reader.

Proposition 4.4.1. Let H : Rp→ R be convex and let C := {(y, t) ∈ Rp×R : H (y)≤ t}. For
any (x,s) 6∈C, let (ȳ, t̄) = PC ((x,s)) be the projection of (x,s) onto C. Then,

ȳ = argminy∈Rn

{
‖y− x‖2 +(H (y)− s)2

}
and t̄ = H(ȳ).

For example, when H is a norm, i.e., H (·) := ‖·‖, then C is the second-order cone and a
closed form solution can be derived.

4.4.5 Rate of Convergence for the Primal Formulation
Consider the problem:

(CC) min
u∈Rn

F(u),

s.t. Au ∈C,
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where A : Rn → Rd is a linear transformation and C ⊂ Rd is a convex set which admits an
efficient projection operator and has an nonempty interior. We now proceed to show that the
sequence generated by applying the PAPC method on the saddle-point reformulation converges
in terms of the problem (CC).

We start by deriving a saddle-point reformulation for (CC). Let δC be the convex delta
function of the set C, and let δ ∗C(v) = maxu{〈v,u〉−δC(u)} be the convex conjugate of δC, then
by the identity δ ∗∗C ≡ δC, we get that the following problem is equivalent to (CC)

(CC′) min
u∈Rn

max
v∈Rd
{F(u)+ 〈Au,v〉−δ

∗
C(v)}.

Suppose we applied the PAPC method on this problem with the initial point (u0,v0) and
the output was (ūN , v̄N), then from Theorem 4.5 we get that for every u ∈ Rn and v ∈ Rd the
following bound holds

F(ūN)+ 〈AūN ,v〉−δ
∗
C(v)− (F(u)+ 〈Au, v̄N〉−δ

∗
C(v̄N))

≤ τ−1‖u−u0‖2 +‖v− v0‖2
M

2N
,

(4.4.8)

where M = 1
σ

I− τAT A.
The next proposition establishes a bound on the rate of convergence for the absolute inac-

curacy of the primal problem, F(ūN)−F(u∗). Note that the sequence {ūN} generated by the
PAPC method on problem (CC′) in not necessarily feasible for (CC).

Proposition 4.4.2. Suppose ūN is generated by applying the PAPC method on problem (CC′)
then {F(ūi)}i∈N converges to F(u∗) at a sublinear rate or, more precisely,

− τ−1‖u∗−u0‖2 +‖2κµ− v0‖2
M

2κN
≤ F(ūN)−F(u∗)≤ τ−1‖u∗−u0‖2 +‖v0‖2

M
2N

, (4.4.9)

where κ > 0 is some constant and µ ≡ µ(N) ∈ Rd is some unit vector.
Note that although µ depends on N, the expression ‖2κµ − v0‖2

M is bounded since µ is a
unit vector.

Proof. The upper bound. Choosing u = u∗ and v = 0 in (4.4.8) and noting that δ ∗C(0) = 0, we
get:

F(ūN)−F(u∗)− (〈Au∗, v̄N〉−δ
∗
C(v̄N))≤

τ−1‖u∗−u0‖2 +‖v0‖2
M

2N
.

Now, the term 〈Au∗, v̄N〉−δ ∗C(v̄N) must be non-positive (since u∗ is feasible), and we reach the
desired bound

F(ūN)−F(u∗)≤ τ−1‖u∗−u0‖2 +‖v0‖2
M

2N
. (4.4.10)

The lower bound. From this point on, we assume that our point, ūN , is infeasible, i.e.,
AūN /∈C, since otherwise F(ūN)−F(u∗) is trivially bounded from below by zero. Denote by
(CCt) the problem

(CCt) min
u∈Rn

F(u),

s.t. φC(Au)≤ t,
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where φC(u) is the signed distance to the set C, i.e.,

φC(u) =

{
− infv/∈C ‖u− v‖, u ∈C,

infv∈C ‖u− v‖, u /∈C

(it is well-known that φC is a convex function [29, Excercise 8.5]). We have

val(CC0) = F(u∗).

Now, denote by ρ the constraint violation of the point AūN ,

ρ := φC(AūN), (4.4.11)

then from the definition of ρ , ūN is feasible for (CCρ) and we have F(ūN)≥ val(CCρ) hence

F(ūN)−F(u∗)≥ val(CCρ)−val(CC0). (4.4.12)

Furthermore, by the sensitivity analysis theorem [29, Section 5.6] on problem (CCt), it follows
that there exists a constant κ ≥ 0 (which is equal to the value of the optimal dual variable for
the constraint in (CCt)) such that for any t ≥ 0

val(CCt)−val(CC0)≥−κt, (4.4.13)

which together with (4.4.12) (taking t = ρ) yields

F(ūN)−F(u∗)≥−κρ. (4.4.14)

Before proceeding, we need to establish another property of ρ . Since ρ ≥ 0 is the Euclidean
distance from AūN to the set C, we can equivalently say that AūN lie at the boundary of the set
C⊕ρB (where ⊕ denotes the Minkowski sum and B is the unit ball). Let µ be a unit vector,
normal to a supporting plane to the (convex) set C⊕ ρB that passes through the point AūN ,
then AūN ∈ argmaxu{〈µ,u〉 − δC⊕ρB(u)} and we get δ ∗C⊕ρB(µ) = 〈µ,AūN〉. From the basic
properties of support functions we get

δ
∗
C⊕ρB(µ) = δ

∗
C(µ)+δ

∗
ρB(µ) = δ

∗
C(µ)+ρ‖µ‖= δ

∗
C(µ)+ρ,

hence µ is a unit vector such that

〈AūN ,µ〉−δ
∗
C(µ) = ρ.

We return to (4.4.8), with u = u∗ but this time we take v = 2κµ in (4.4.8), we get

〈AūN ,2κµ〉−δ
∗
C(2κµ) = 2κρ,

hence

κρ ≤ F(ūN)−F(u∗)+2κρ ≤ τ−1‖u∗−u0‖2 +‖2κµ− v0‖2
M

2N
, (4.4.15)

where the left inequality follows from (4.4.14). A lower bound on the primal error function
F(ūN)−F(u∗) immediately follows:

F(ūN)−F(u∗)≥ Pρ −P0 ≥−ρ ≥−τ−1‖u∗−u0‖2 +‖2κµ− v0‖2
M

2κN
. (4.4.16)

(When κ = 0, the value of F(ūN)−F(u∗) is nonnegative from (4.4.14), and the last inequality
holds for any positive value for κ .)

Combining the bounds derived above, we reach the claimed result.
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4.5 Numerical Examples
In this section, we illustrate the behavior of the PAPC method on the image deblurring and the
fused logistic regression problems. Our objective is just to demonstrate the flexibility and the
potential of the proposed algorithm. For that purpose we also compare PAPC with two state of
the art algorithms sharing the same efficiency estimate: the primal-dual method given in [33]
and the extra-gradient based method of [71, 11].

4.5.1 Image Deblurring
In the image deblurring problem we seek to recover an unknown image that has undergone
some known, but ill-conditioned transformation and was then corrupted by some statistically
independent random noise. In order to choose the best image from the possibly large set of
solutions to the inverse transformation, we turn to the successful Rudin-Osher-Fatemi (ROF)
model for image restoration, introduced in [90]. Under this model the set of feasible solutions
is reduced by assuming that the original image has a bounded value of total variation (TV),
defined in the discrete (and anisotropic) case for x ∈ Rm×n by (e.g., see [32])

TV (x) =
m−1

∑
i=1

n−1

∑
j=1

{∣∣xi, j−xi+1, j
∣∣+ ∣∣xi, j−xi, j+1

∣∣}
+

m

∑
i=1

∣∣xi,n−xi+1,n
∣∣+ n

∑
j=1

∣∣xm, j−bxm, j+1
∣∣ .

More precisely, let x ∈ Rm×n be the original image, M : Rm×n→ Rm×n be a linear (blurring)
transformation, and w ∈Rm×n be the (unknown) random noise. Then given the observed image
b=M x+w, the goal is to find an image x∈Rm×n which under the transformation M produces
an image that is “close” to the observed image (i.e., has a low value of ‖M x−b‖) and has TV
value of no more than α , for some given α > 0. This problem can be formulated as a constrained
convex optimization problem:

(BTV) min
x∈Rm×n

{
‖M x−b‖2 : TV (x)≤ α

}
,

and is often solved via the penalty approach, which thus requires the tuning of the penalty
parameter. Here we demonstrate the applicability of PAPC on the original constrained formu-
lation.

One of the main difficulties encountered when solving problem (BTV) is the inability to
efficiently compute projections onto the feasible set {x : TV (x)≤ α} thus prohibiting the use
of many successful first order methods such as the celebrated fast gradient method [73].

One approach for overcoming the difficulty alluded above is by rewriting the problem as a
smooth convex-concave saddle-point problem. For that goal we introduce the linear operator
L : Rm×n→ R(m−1)×n×Rm×(n−1) defined by

L (x) = (p,q)
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where p ∈ R(m−1)×n and q ∈ Rm×(n−1) are the matrices defined by

pi, j = xi, j− xi+1, j, i = 1,2, . . . ,m−1 and j = 1,2, . . . ,n,
qi, j = xi, j− xi, j+1, i = 1,2, . . . ,m and j = 1,2, . . . ,n−1.

Using this notation, we can write (with some abuse of notation with respect to the usual matrix
norm) the total variation of the variable x as the `1 norm of L x, i.e.,

TV (x) = ‖L x‖1 .

Now, using the technique given in Section 4.4.1, problem (BTV) can be rewritten as the follow-
ing saddle-point problem

(BTV′) min
x∈E

max
z∈F

{
‖M x−b‖2 + 〈L x,z〉−α ‖z‖

∞

}
,

where E :=Rm×n and F :=R(m−1)×n×Rm×(n−1). The PAPC method for problem (BTV′) reads
as follows.

PAPC for image deblurring – (BTV′) formulation
Initialization.

(
x0,z0) ∈ E×F and τ,σ > 0.

General Step (k = 1,2, . . .)

pk = xk−1− τ

(
2M T

(
M xk−1−b

)
+L T zk−1

)
, (4.5.1)

zk = prox‖·‖∞

1/(ασ)

(
zk−1 +σL pk

)
(4.5.2)

xk = xk−1− τ

(
2M T

(
M xk−1−b

)
+L T zk

)
. (4.5.3)

Note that the extra-gradient method [59, 71] cannot be applied on problem (BTV′) since the
objective is not differentiable. Furthermore, the Chambolle-Pock (CP) method [33] is theoret-
ically applicable on (BTV′), however, it requires calculating the inverse of the ill conditioned
operator M . A natural observation at this point is that the problem (BTV) has alternative
saddle-point formulations that are suitable for applying these methods; in the rest of this part
we compare (BTV′) to two such formulations of the (BTV) problem: one that is suitable for the
Chambolle-Pock method, and the other suitable for the extra-gradient method.

Example 4.5.1. We begin by constructing a formulation that satisfies the assumptions of the
successful CP method. As mentioned above, the reason that the CP method cannot be ap-
plied directly on problem (BTV′) is because the proximal mapping of the quadratic term in
the objective cannot be efficiently computed, however, by taking advantage of the identity
‖M x−b‖2 = maxy∈E

{
2〈M x−b,y〉−‖y‖2

}
we arrive to the following problem, which can

be readily solved by the CP method

(BTV′′) min
x∈E

max
y∈E,z∈F

{
2〈M x−b,y〉−‖y‖2 + 〈L x,z〉−α ‖z‖

∞

}
.
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Figure 4.1: Left: the value of the objective function for the ergodic sequences generated by each
method. Right: the PSNR improvement for each iteration.

Note that the PAPC method can also be applied on this formulation.

Next, we construct a formulation that is suitable for the extra-gradient method. The desired
formulation can be derived from (BTV) by introducing an auxiliary variable z = L x with the
constraint ‖z‖1 ≤ α , then considering the Lagrangian-based representation of the problem. We
arrive to

(BTV′′′) min
x∈E,z∈F

max
y∈F

{
‖M x−b‖2 + 〈y,L x− z〉 : ‖z‖1 ≤ α

}
,

which is amenable to the extra-gradient method since the objective has Lipschitz continuous
gradient and the constraint set is “simple” (i.e., a projection onto this set can be easily com-
puted).

We applied the PAPC, CP, and extra-gradient methods on the (BTV′), (BTV′′), and (BTV′′′)
problems (respectively), and also the PAPC method on the (BTV′′) problem (for the purpose of
a fair comparison with the CP method).

For the purpose of this demonstration we took the standard 256×256 Lena test image, where
the pixel values were normalized to be in the range [0,1], applied a 5× 5 Gaussian blurring
operator with standard deviation of 4, and added random Gaussian noise with standard deviation
of 0.05. The parameter α was chosen as half the total variation of the original image. The
initial point for all methods was chosen as the all-zero vector, and the “free” method parameters
(i.e., parameters whose values are not determined by the respective convergence theorem) were
hand-tuned to give the best possible performance for the problem instance.

Figure 4.1 summarizes the performance after the first 500 iterations of the ergodic sequences
generated by the PAPC, CP and extra-gradient methods on the (BTV′), (BTV′′) and (BTV′′′)
problems (respectively), and by the PAPC method on the (BTV′′) problem. In all cases the
sequences remained feasible throughout the run, and the CPU time of the algorithms was ap-
proximately the same in all cases, except for the extra-gradient method, which took about two
times longer to complete (as it requires four applications of the operator A per iteration).
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The results show that the performance of the PAPC method was unaffected by the change
of problem formulation and was virtually identical to the performance of the CP method, which
is often regarded as state of the art. On the other hand, the extra-gradient method on (BTV′′′)
performed significantly worse.

We conclude by noting that PAPC was applicable to the original problem’s formulation and
its performance appears to be robust with respect to different formulations of the problem (and
which were needed to apply the other two schemes). However, adequate reformulation of a
given problem is not always easily accessible. The next example exemplifies this situation,
whereby PAPC is applicable while the proximal map of the objective function as required by
the CP method is a difficult computational task, and we can’t reformulate the problem such that
the CP method could be effectively applied through simple computations.

4.5.2 Fused Lasso Regression
The main problem in the supervised machine learning framework is defined as follows: given
a set of training examples, where each example consists of a vector of features and a label,
correctly determine the label for an unseen vector of features. A common approach for solving
this problem is by assuming that there is some underlying statistical model which describes the
distribution of the label given the feature vector. One such model is the logistic model, under
which the probability that the vector of features a∈Rn will be labeled by b∈ {−1,+1} is given
by

P(b|a) = 1
1+ exp(−b(wT a+ v))

, (4.5.4)

where v ∈ R and w ∈ Rn are the parameters of the model.

Suppose that the training set consists of N training examples {(ai,bi)}N
i=1, where a1, . . . ,aN ∈

Rn are the feature vectors and b1,b2, . . . ,bN ∈ {−1,+1} are the respective labels, then the like-
lihood function of the training set is given by

L
(

v,w;{(ai,bi)}N
i=1

)
=

N

∏
i=1

1
1+ exp(−b(wT ai + v))

.

Following standard practice, we define the average logistic loss function by

lavg (v,w) :=− 1
N

log
(

L
(

v,w;{(ai,bi)}N
i=1

))
=

1
N

N

∑
i=1

log
(
1+ exp

(
bi
(
wT ai + v

)))
,

now, using these notations, the logistic regression problem (LRP) is defined as the problem
of finding the maximum likelihood estimator (MLE) for v and w, i.e., finding v and w that
minimize lavg (v,w). Note that since the average logistic loss is convex, we have reached a
convex optimization problem.

When the dimension of the model is large relatively to the number of samples, the LRP
quickly becomes ill-conditioned, and additional assumptions are required for finding a mean-
ingful result. For the purpose of this demonstration, we consider the assumptions introduced
by Tibshirani et al. in [96] where, similarly to the popular lasso model [95], the vector w is
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assumed to have a bounded `1 norm, and in addition we assume that the vector of differences
wi+1−wi, i = 1,2, . . . ,n−1 also has a bounded `1 norm. These assumptions can be interpreted
as a requirement on the model parameters to have a sparse and “staircase-like” pattern. This
can happen when the model parameters are given in some natural order. For more discussion
on this model see, for example, [36].

Under the assumptions described above, the problem of finding the MLE for v and w be-
come:

(FLR) min
v∈R,w∈Rn

{
lavg (v,w) : ‖w‖1 ≤ s1, ‖Dw‖1 ≤ s2

}
,

where D : Rn → Rn−1 is the linear operator defined by (Dw)i = wi+1−wi, i = 1,2, . . . ,n− 1
and s1,s2 > 0 are two constants. Using the transportation technique given in Section 4.4.1, we
can “transport” the constraints in the primal variables to the dual variable, thereby reaching the
following saddle-point formulation of the problem:

(FLR′) min
v∈R,w∈Rn

max
y∈Rn,z∈Rn−1

{
lavg (v,w)+ 〈w,y〉− s1 ‖y‖∞

+ 〈Dw,z〉− s2 ‖z‖∞

}
.

A straightforward analysis shows that lavg has a Lipscihtz continuous gradient with constant

Llavg := ∑
N
i=1

(
‖ai‖2 +1

)
/(4N), hence the PAPC method can be applied here. The PAPC iter-

ates for this problem then reads as follows.

PAPC for fused lasso regression
Initialization.

(
v0,w0,y0,z0) ∈ R×Rn×Rn×Rn−1 and τ,σ > 0.

General Step (k = 1,2, . . .)

pk = wk−1− τ

(
∇wlavg

(
vk−1,wk−1

)
+ yk−1 +DT zk−1

)
, (4.5.5)

yk = prox‖·‖∞

1/(s1σ)

(
yk−1 +σ pk

)
(4.5.6)

zk = prox‖·‖∞

1/(s2σ)

(
zk−1 +σDpk

)
(4.5.7)

vk = vk−1− τ∇vlavg

(
vk−1,wk−1

)
. (4.5.8)

wk = wk−1− τ

(
∇wlavg

(
vk−1,wk−1

)
+ yk +DT zk

)
. (4.5.9)

We would like to emphasize that this method requires only one evaluation of the compu-
tationally expensive gradient ∇lavg per iteration. Also, note that thanks to Moreau’s idendity,
the proximal map computations in steps (4.5.6) and (4.5.7) reduce to projection onto an l1 ball.
It is easy to see that the later problem can be reduced to a projection onto a simplex, and thus
as proven in [30] can be efficiently computed (with linear complexity O(p), where p is the
problem’s dimension).
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Figure 4.2: Left: the absolute error at each iteration. Right: the constraint violation at each
iteration.

Example 4.5.2. In this example we apply the PAPC method to the problem (FLR′). For this
purpose we generated 1000 samples from the logistic model that corresponds to v = 0 and the
vector w ∈ R100 defined by

wi =


0.1, i ∈ {11, . . . ,14} ,
−0.2, i ∈ {41, . . . ,44} ,
0.3, i ∈ {91, . . . ,94} ,
0, otherwise.

The features ai ∈ R100 (i = 1,2, . . . ,1000) were generated such that each component was inde-
pendently drawn from the standard normal distribution, and the labels bi ∈ {−1,+1} were then
randomly chosen according to the logistic model (4.5.4).

We applied the PAPC method with τ = 1/Llavg , σ = Llavg/
(
‖D‖2 +1

)
. The starting point

was v0 = 0 and w0 = 0 and the bounds s1 and s2 were chosen according to their value in the
model, i.e., s1 = 3 and s2 = 1.2. An exact solution for the optimization problem was then
obtained using the CVX modelling package for MATLAB [49, 48].

Figure 4.2 shows the absolute error of the objective lavg (v,w)− l∗avg and the constraint vi-
olation max{‖w‖1− s1,0}+max{‖Dw‖1− s2,0} after the first 1000 iterates of the main and
the ergodic sequences of the PAPC method. As can be seen, the ergodic sequence generated
by the PAPC method performs as expected from the rate of convergence theorem and remains
in the feasible region for the entire run. The main sequence

{(
vk,wk)}

k∈N, on the other hand,
performs much better and appears to converge at a linear rate, where the constraints violations
for the primal iterates remained very small throughout the run and reached about 10−6 after
1000 iterations.
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Figure 4.3: Left: the w parameter of the model and its approximation by PAPC. Right: the lasso
solution of the problem.

The model parameters estimated by the PAPC method (the ergodic sequence) and the exact
solution of problem (FLR) given by the CVX modeling package are shown in the left part of
Figure 4.3. The right part of the figure shows the estimated model using the classical lasso
model, min

{
lavg (v,w) : ‖w‖1 ≤ s1

}
. As can be seen, adding the “fused” constraints consider-

ably increases the quality and the ability to interpret the recovered model.

4.6 Appendix: A PEP for PAPC
In this section, we show how to apply the PEP approach to structured minimax problem of the
form

min
u∈Rd

max
v∈Rd
{ f (u)+ 〈u,Av〉−g(v)} ,

where f and g are convex, f is differentiable, with a Lipschitz continuous gradient, and A ∈
Rd×d is a matrix with ‖A‖ ≤ ω . Although no new analytical results on the performance of the
PAPC method are derived here, the following formulation may open a possibility for finding
new methods for this class of problems.

We consider a simplified version of the PAPC method:

Initialization.
(
u0,v0) ∈ Rd×Rd and τ,σ > 0.

General Step (k = 1,2, . . .)

pk = uk−1− τ

(
Avk−1 + f ′(uk−1)

)
,

vk = proxg
1/σ

(vk−1 +σAT pk),

uk = uk−1− τ

(
Avk + f ′(uk−1)

)
.
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Since we want an upper bound on the ergodic convergence rate of the method, the corre-
sponding PEP is given by:

max
φ∈C1,1

L ,ψ convex, A ∈Rd×d

N

∑
i=1

(ϕ(ui)+ 〈A ui,v∗〉−ψ(v∗))− (ϕ(u∗)+ 〈A u∗,vi〉−ψ(vi))

s.t. pk = uk−1− τ

(
A vk−1 + f ′(uk−1)

)
, k = 1, . . . ,N,

vk = proxg
1/σ

(vk−1 +σA pk), k = 1, . . . ,N,

uk = uk−1− τ

(
A vk + f ′(uk−1)

)
, k = 1, . . . ,N,

φ
′(uk) = f ′(uk), k = 0, . . . ,N,

(u∗,v∗) is a saddle point,
‖u0−u∗‖ ≤ R, ‖v0− v∗‖ ≤ R,
‖A ‖ ≤ ω.

Alternatively, we can choose the objective to correspond to the best point encountered in the
first N iterations, i.e.,

min
0≤i≤N

{(ϕ(ui)+ 〈Aui,v∗〉−ψ(v∗))− (ϕ(u∗)+ 〈Au∗,vi〉−ψ(vi))}.

There are three challenges in developing a finite-dimensional relaxation for this problem,
compared to the PEP for unconstrained first-order methods:

• The PAPC method employs a proximal mapping step.

• The applications of the linear mappings A and A T need to be expressed.

• The bound on the matrix norm of A must be imposed.

In order to reach a finite-dimensional relaxation, we use the following properties:

1
2L
‖ f ′(x)− f ′(y)‖2 ≤ F(x)−F(y)−〈 f ′(y),x− y〉, for all x,y ∈ Rd,

0≤ g(x)−g(y)−〈g′(y),x− y〉, for all x,y ∈ Rd, g′(y) ∈ ∂g(y),
u = proxg

1/σ
(x)⇔ x−u ∈ σ∂g(u),

ω
2V TV −V T AT AV � 0, for any matrix V .

We denote:

yk = ϕ(uk)−ϕ(u∗),
zk = ψ(vk)−ψ(v∗),
gk = ∇ϕ(uk),

hk ∈ ∂ψ(vk),

vA
k = A vk,

uA
k = A T uk,

pA
k = A T pk,
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then from these definitions, we get the following relations

〈pA
i ,v j〉= 〈pi,vA

j 〉, i, j = 0, . . . ,N,∗,
〈uA

i ,v j〉= 〈ui,vA
j 〉, i, j = 0, . . . ,N,∗.

The properties of f and g induce the following inequalities:

1
2L
‖gi−g j‖2 ≤ yi− y j−〈g j,ui−u j〉, i, j = 0, . . . ,N,∗,

0≤ hi−h j−〈h j,vi− v j〉, i, j = 0, . . . ,N,∗.

Finally, from the properties of A , we get that

ω
2 pT

I pI− (pA
I )

T pA
I � 0,

ω
2uT

I uI− (uA
I )

T uA
I � 0,

ω
2vT

I vI− (vA
I )

T vA
I � 0,

where I = {0, . . . ,N,∗} and uI (vI) stands for the matrix whose columns are ui (vi) for i ∈ I.
The PAPC method can now be expressed as follows:

pk = uk−1− τ

(
vA

k−1 +gk−1

)
,

vk = vk−1 +σ pA
k −σhk,

uk = uk−1− τ

(
vA

k +gk−1

)
.

and the corresponding finite-dimensional PEP for the PAPC method, is given by

max
ui,uAT

i ,vi,vA
i ,v

AT A
i ,

gi,gA
i ,hi,yi,zi

1
N

N

∑
i=1

(
yi + 〈vA

∗ ,ui〉− z∗−
(

y∗+ 〈vA
i ,u∗〉− zi

))

s.t. pk = uk−1− τ

(
vA

k−1 +gk−1

)
,

vk = vk−1 +σ pA
k −σhk,

uk = uk−1− τ

(
vA

k +gk−1

)
,

〈pA
i ,v j〉= 〈pi,vA

j 〉, i, j = 0, . . . ,N,∗,
〈uA

i ,v j〉= 〈ui,vA
j 〉, i, j = 0, . . . ,N,∗,

1
2L
‖gi−g j‖2 ≤ yi− y j−〈g j,ui−u j〉, i, j = 0, . . . ,N,∗,

0≤ hi−h j−〈h j,vi− v j〉, i, j = 0, . . . ,N,∗.
ω

2uT
I uI− (uA

I )
T uA

I � 0, I = {0, . . . ,N,∗}
ω

2vT
I vI− (vA

I )
T vA

I � 0, I = {0, . . . ,N,∗}
‖u0−u∗‖2 ≤ R, ‖v0− v∗‖2 ≤ R,
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An efficient SDP relaxation can be devised in the usual way, by defining a matrix

Z = (gi,hi,ui, pi,vi,uA
k , pA

k ,v
A
k )

T (gi,hi,ui, pi,vi,uA
k , pA

k ,v
A
k )

and expressing the inequalities in the problem above through Z. A MATLAB code that imple-
ments this SDP relaxation is available at Listing 4.1.

Numerical experiments suggest that the bound in Theorem 4.5 can be slightly improved,
where the constant in the denominator can be increased from N to N +1.

Listing 4.1: A PEP of PAPC
1 function bound = PAPC_pep(N, L, normA , R)

2 %Returns the efficiency estimate of the PAPC method on problems of the

form

3 %min_u max_v f(u)+<Au,v>-g(v),

4 %where f has a Lipchitz constant L, |A|=normA , |u-u*|<=R, |v-v*|<=R

5 if (nargin <=4)

6 N=4;

7 L=1;

8 normA =1;

9 R=1;

10 end

11
12 global n; n=N;

13 global gL; gL=L;

14 global gSigma; gSigma=L/normA ^2;

15
16 problemdim=totalvars ();

17 cvx_precision best;

18 cvx_solver sedumi;

19 cvx_begin quiet

20 variable Z(problemdim ,problemdim);

21 variable deltay_var(N+1);

22 variable deltaz_var(N+1);

23
24 global gZ;gZ=Z;

25 global dyuv;dyuv=deltay_var;

26 global dzv;dzv=deltaz_var;

27
28 expression objective(N);

29 for i=1:N

30 objective(i)=deltay(i)+Zdot(u(i),Av(N+1))+deltaz(i)-deltay(N+1)-

Zdot(u(N+1),Av(i))-deltaz(N+1);

31 end

32 maximize (sum(objective)/N); %Alternatively:maximize (min(objective)

)

33
34 subject to

35 Z== semidefinite(problemdim);

36 %Lipschitz cont. of f’ and convexity of g

37 for i=0:N+1 %N+1 stands for *

38 for j=0:N+1

39 if i~=j
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40 1/(2*L)*Znorm2(gu(i)-gu(j))+Zdot(gu(j),u(i)-u(j)) <=

deltay(i)-deltay(j);

41 deltaz(i)-deltaz(j)<=Zdot(h(i),v(i)-v(j));

42 end

43 end

44 end

45 %<p, Av> = <A’p, v>

46 for i=1:N

47 for j=0:N+1

48 Zdot(p(i),Av(j))==Zdot(ATp(i),v(j));

49 end

50 end

51 %Bounded start

52 Znorm2(u(0)-u(N+1))<=R*R;

53 Znorm2(v(0)-v(N+1))<=R*R;

54 %Definition of normA

55 (normA ^2)*p(1:N) ’*Z*p(1:N)-ATp(1:N) ’*Z*ATp(1:N)== semidefinite(N)

;

56 (normA ^2)*v(0:N+1) ’*Z*v(0:N+1)-Av(0:N+1) ’*Z*Av(0:N+1)==

semidefinite(N+2);

57 cvx_end

58
59 bound=cvx_optval;

60 end

61 %*******************************************

62 %Helper functions:

63 %*******************************************

64 function n=Znorm2(v)

65 global gZ;

66 n=v’*gZ*v;

67 end

68 function d=Zdot(u,v)

69 global gZ;

70 d=u’*gZ*v;

71 end

72 function p=gupos

73 p=0;

74 end

75 function nv=guvars

76 global n;

77 nv=n+2;

78 end

79 function v=gu(idx)

80 global n;

81 if (min(idx)<0 || max(idx)>n+1)

82 error(’argument error in gu(i)’);

83 end

84 v=sparse(totalvars (),length(idx));

85 for k=1: length(idx)

86 i=idx(k);

87 v(gupos ()+i+1,k)=1;

88 end

89 end
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90 function p=hpos

91 p=gupos ()+guvars ();

92 end

93 function nv=hvars

94 global n;

95 nv=n+2;

96 end

97 function v=h(idx)

98 global n;

99 if (min(idx)<0 || max(idx)>n+1)

100 error(’argument error in h(i)’);

101 end

102 v=sparse(totalvars () ,1);

103 for k=1: length(idx)

104 i=idx(k);

105 v(hpos()+i+1,k)=1;

106 end

107 end

108 function p=upos

109 p=hpos()+hvars ();

110 end

111 function nv=uvars

112 nv=1;

113 end

114 function rv=u(idx)

115 global gL;

116 global n;

117 if (min(idx)<0 || max(idx)>n+1)

118 error(’argument error in u(idx)’);

119 end

120 rv=sparse(totalvars (),length(idx));

121 for k=1: length(idx)

122 i=idx(k);

123 if (i==0)

124 %Leave the vector to be 0

125 elseif (i~=n+1)

126 rv(:,k)=u(i-1) -(1/gL)*(Av(i)+gu(i-1)); %The definition of

the PAPC method

127 else

128 rv(upos()+1,k)=1;

129 end

130 end

131 end

132 function v=p(idx)

133 global gL;

134 global n;

135 if (min(idx)<1 || max(idx)>n)

136 error(’argument error in p(idx)’);

137 end

138 for k=1: length(idx)

139 i=idx(k);

140 v(:,k)=u(i-1) -(1/gL)*(Av(i-1)+gu(i-1)); %The definition of the

PAPC method
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141 end

142 end

143 function p=vpos

144 p=upos()+uvars();

145 end

146 function nv=vvars

147 nv=1;

148 end

149 function rv=v(idx)

150 global n;

151 if (min(idx)<0 || max(idx)>n+1)

152 error(’argument error in v(idx)’);

153 end

154 global gSigma;

155 rv=sparse(totalvars (),length(idx));

156 for k=1: length(idx)

157 i=idx(k);

158 if (i==0)

159 %Leave the vector to be 0

160 elseif (i~=n+1)

161 rv(:,k)=v(i-1)+gSigma *(ATp(i)-h(i)); %The definition of the

PAPC method

162 else

163 rv(vpos()+1,k)=1;

164 end

165 end

166 end

167 function p=Avpos

168 p=vpos()+vvars();

169 end

170 function nv=Avvars

171 global n;

172 nv=n+2;

173 end

174 function v=Av(idx)

175 global n;

176 if (min(idx)<0 || max(idx)>n+1)

177 error(’argument error in Av(idx)’);

178 end

179 v=sparse(totalvars (),length(idx));

180 for k=1: length(idx)

181 i=idx(k);

182 v(Avpos ()+i+1,k)=1;

183 end

184 end

185 function p=ATppos

186 p=Avpos()+Avvars ();

187 end

188 function nv=ATpvars

189 global n;

190 nv=n;

191 end

192 function v=ATp(idx)
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193 global n;

194 if (min(idx)<0 || max(idx)>n)

195 error(’argument error in ATp(i)’);

196 end

197 v=sparse(totalvars (),length(idx));

198 for k=1: length(idx)

199 i=idx(k);

200 v(ATppos ()+i,k)=1;

201 end

202 end

203 function t=totalvars

204 t=ATppos ()+ATpvars ();

205 end

206 function d=deltay(i)

207 global dyuv;

208 global n;

209 if (i<0 || i>n+1)

210 error(’argument error in deltay(i)’);

211 end

212 if (i~=n+1)

213 d=dyuv(i+1);

214 else

215 d=0;

216 end

217 end

218 function d=deltaz(i)

219 global dzv;

220 global n;

221 if (i<0 || i>n+1)

222 error(’argument error in deltaz(i)’);

223 end

224 if (i~=n+1)

225 d=dzv(i+1);

226 else

227 d=0;

228 end

229 end
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Chapter 5

A new SDP relaxation scheme for a class of
quadratic matrix problems

We consider a special class of quadratic matrix optimization problems which often arise in
applications. By exploiting the special structure of these problems, we derive a new semidefinite
relaxation, which under mild assumptions is proven to be tight for a larger number of constraints
than could be achieved via a direct approach. We show the potential usefulness of these results
when applied to the robust least squares problem, the sphere packing problems, and to problems
over the complex domain.

This chapter is based on the published paper [16].

5.1 Introduction

The class of nonconvex quadratically constrained quadratic programming (QCQP) problems
plays a key role in both subproblems arising in optimization algorithms such as trust region
methods (see for example [31, 45]) and is also a bridge to the analysis of many combinatorial
optimization problems that can be formulated as such. In principle, nonconvex QCQP problems
are hard to solve, and as a result many approximation techniques were devised in order to tackle
them. Many of these techniques rely on the so-called semidefinite relaxation (SDR), which is a
related convex problem over the matrix space that can be solved efficiently, see e.g., [51, 99].

A key issue in the analysis of QCQPs is to determine under which conditions the semidefi-
nite relaxation is tight, meaning that it has the same optimal value as the original QCQP prob-
lem. In these cases, one can construct the global optimal solution of the QCQP problem from
the optimal solution of the SDR via a rank reduction procedure. There are several classes of
QCQP problems which posses this ”tight semidefinite relaxation” result; among them are the
class of generalized trust region subproblems [45, 67] which are QCQPs with a single quadratic
constraint, problems with two constraints over the complex number field [17] as well as prob-
lems arising in the context of quadratic assignment problem [2, 1].

Another class of QCQP problems is the class of Quadratic Matrix Programming (QMP)
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problems whose general form is given by

(QMP)

min
X∈Rn×r

tr(XT A0X)+2tr(B̃T
0 X)+ c0

s.t. tr(XT AiX)+2tr(B̃T
i X)+ ci ≤ αi, i ∈I ,

tr(XT A jX)+2tr(B̃T
j X)+ c j = α j, j ∈ E ,

where n,r are positive integers, I and E are sets of indices such that I ∩ E = /0, Ai ∈ Sn,
B̃i ∈ Rn×r and ci,αi ∈ R. This class of problems was introduced and studied in [15] where it
was also shown that it encompasses a broad class of important problems both in theory and in
applications. The main result in [15] is that problem (QMP) with at most r constraints has a tight
SDR property. In the homogeneous case (i.e., when B̃i = 0 for all i) this question was already
studied by Barvinok [13, 14] for the problem of determining the feasibility of this problem;
Barvinok’s results were then extended by Pataki [82] to include any homogeneous quadratic
objective function. In both cases it was shown that it is possible to use the SDP relaxation to
solve the original nonconvex problem when the number of constraints is at most

(r+2
2

)
−1.

In this chapter we concentrate on a special type of QMP problems defined by

(sQMP)

min
X∈Rn×r

tr(XT A0X)+2tr(V T BT
0 X)+ c0

s.t. tr(XT AiX)+2tr(V T BT
i X)+ ci ≤ αi, i ∈I ,

tr(XT A jX)+2tr(V T BT
j X)+ c j = α j, j ∈ E ,

(5.1.1)

with Ai ∈ Sn, Bi ∈ Rn×s (i ∈ {0} ∪I ∪ E ) and 0 6= V ∈ Rs×r, s ≤ r. Essentially, this
type of QMP problems is characterized by the property that the matrices B̃i are of the special
form B̃i = BiV ; for the case n > r > s, this means that the range spaces of the n× r matrices
B̃i, (i ∈ {0}∪I ∪E ) are all contained in the same s-dimensional subspace, which is the range
space of V . Note that when s = r and V = Ir we are back to the original QMP setting.
At a first glance, it seems that this property of the matrices B̃i is quite restrictive, however, it
naturally appears in applications as the example below demonstrates.

Example 5.1.1 (Robust Least Squares). Consider the robust least squares problem which
seeks to minimize ‖Ax− b‖2 when the matrix A ∈ Rr×n is perturbed by an unknown matrix
∆ ∈U . This problem was defined and studied in [42] and [34] and was later inspected via the
QMP framework in [15]. The problem can be formulated as

min
x

max
∆∈U
‖b− (A+∆

T )x‖2, (5.1.2)

where in the following we assume that the set U has the following form:

U = {∆ ∈ Rn×r : ‖Li∆‖2 ≤ ρi, i = 1, . . . ,m}

for some Li ∈ Rki×n and where the norm used is the Frobenius norm. Under these assumptions
we can rewrite the robust least squares problem (5.1.2) as follows:

(RLS)
min

x
max

∆∈Rn×r
tr(∆T xxt

∆)+2tr((b−Ax)xT
∆)+ tr((b−Ax)(b−Ax)T )

s.t. tr(∆T LT
i Li∆)≤ ρi, i = 1, . . . ,m.
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The inner maximization problem is an sQMP with s = 1 since here we can take V = (b−
Ax)T ,B0 = x,Bi = 0, i = 1, . . . ,m.

The main result of this chapter, developed in Section 5.3, is that a specially devised SDR of
problem sQMP is tight as long as the number of constraints does not exceed

(r+2
2

)
−
(s+1

2

)
−1,

which is an improvement of the result from [15] that allows only r constraints. To do so,
we use a rank reduction argument which can be traced back to Barvinok and Pataki (see the
beginning of the introduction). Further analysis of the robust least squares example along with
an additional sphere packing application are given in Section 5.4.

Notation. We use the following notations: Suppose (P) is an optimization problem that attains
its optimal value (e.g., (P) minx∈C f (x)), then we denote (P)’s optimal value by val(P). We use
Sn to denote the set of n×n symmetric matrices over R, and for two matrices A,B, A� B,(A�
B) means A−B is positive semidefinite (positive definite). The n×m matrix of zeros is denoted
by 0n×m; Ir is the r× r identity matrix and ei ∈Rn, i = 1, . . . ,n stands for the i-th canonical unit
vector.

5.2 Preliminaries
We record here some results that will be useful to our analysis. We begin with a fundamental
result on existence of low rank solutions to general semidefinite programming (SDP) problems
which was established by Pataki [82].

Consider the general SDP problem:

min
X∈Sn

tr(C0X)

s.t. tr(CiX)≤ bi, i ∈I ,

tr(CiX) = bi, i ∈ E ,

X � 0,

(5.2.1)

where Ci ∈ Sn, i ∈ {0}∪I ∪E . We state here a slightly different (but equivalent) version of
Pataki’s result which was given in [15, Theorem 3.1].

Theorem 5.1. Suppose that the SDP problem (5.2.1) attains its optimal value. Then if |I |+
|E | ≤

(r+2
2

)
−1, there exists an optimal solution X∗ ∈ Sn satisfying rankX∗ ≤ r.

The next result recalls the so-called Schur-Complement Lemma, see e.g., [23].

Lemma 5.2. Consider a square matrix in the block form:

M =

(
F GT

G H

)
,

where F is a square matrix assumed to be positive definite. Then,

M � 0 (� 0) if and only if H−GF−1GT � 0 (� 0).

104



CHAPTER 5. A NEW SDP RELAXATION SCHEME

Finally, we need the following result that plays an important role in the forthcoming analysis.

Lemma 5.3. Let A,B ∈ Rm×n be two matrices satisfying AAT = BBT . Then there exists an
orthogonal matrix Q ∈ Rn×n such that A = BQ.

Proof. Since AAT = BBT , it follows that A and B have the same singular values. Let U be an
orthogonal matrix diagonalizing AAT = BBT , namely, UT AATU = UT BBTU is diagonal. The
matrices A and B have the following singular value decomposition (SVD):

A =UΣV T
1 ,B =UΣV T

2 ,

where V1,V2 ∈ Rn×n are orthogonal matrices and Σ is an m×n diagonal matrix containing the
singular values of A (which are also the singular values of B). Thus, A = BV2V T

1 , and the result
is established with Q =V2V T

1 .

5.3 A Tight SDR Result for (sQMP)
Consider the problem (sQMP) (given in (5.1.1)). For i ∈ {0}∪I ∪E , define

Mi =

(
Ai Bi
BT

i
ci

trVV T Is

)
∈ Sn+s,

and consider the following homogenized program

(sQMP2)

min
Z∈Sn+s

tr(M0Z)

s.t. tr(MiZ)≤ αi, i ∈I ,

tr(M jZ) = α j, j ∈ E ,

Z � 0,
rankZ ≤ r,

Zn+i,n+ j = (VV T )i, j, i, j = 1, . . . ,s,

where the last set of constraints essentially state that the bottom right s× s submatrix of Z
is VV T . Note that these constraints can be expressed using

(s+1
2

)
trace constraints. As the

following lemma shows, (sQMP) and (sQMP2) are essentially the same problem.

Lemma 5.4. Problem (sQMP) attains its optimal value if and only if (sQMP2) attains its op-
timal value. Furthermore, if either val (sQMP) or val (sQMP2) is finite, then val (sQMP) =
val (sQMP2).

Proof. We will show that any feasible point for one problem can be transformed into a feasible
point for the other problem without affecting the objective value.

Suppose that X is feasible for (sQMP), then define

Z =

(
XXT XV T

V XT VV T

)
.
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Since

Z =

(
X
V

)(
XT V T) ,

we get that rankZ ≤ r. In addition,

tr(MiZ) = tr(AiXXT )+2tr(BT
i XV T )+ ci, i ∈ {0}∪I ∪E , (5.3.1)

which immediately implies that Z is feasible for (sQMP2) and has the same objective function
value as X for (sQMP). In the reverse direction, suppose that Z is feasible for (sQMP2). Since
the rank of Z is at most r and Z is positive semidefinite, there exists a matrix W ∈R(n+s)×r such
that Z =WW T . Denote the first n rows of W by Y ∈Rn×r and the last s rows of W by U ∈Rs×r

(i.e., W = (Y ;U) in “Matlab notation”); we can therefore write

Z =

(
YY T YUT

UY T UUT

)
From the constraints on Z we obtain that UUT =VV T , and thus it follows from Lemma 5.3 that
there exists an orthogonal matrix Q ∈ Sr such that U =V Q. Now, define X = Y QT , then since
YUT = XQQTV T = XV T , we get

Z =

(
XXT XV T

V XT VV T

)
and therefore, following the same argument as in the first part or the proof, X is feasible for
(sQMP) and achieves the same objective value.

We now omit the hard rank constraint and consider the SDP relaxation of (sQMP2) given by

(sQMP-R)

min
Z∈Sn+s

tr(M0Z)

s.t. tr(MiZ)≤ αi, i ∈I

tr(M jZ) = α j, j ∈ E

Z � 0

Zn+i,n+ j = (VV T )i, j, i, j = 1, . . . ,s

Remark 5.3.1. Note that when n+ s≤ r the relaxation (sQMP-R) is exact since the rank con-
straint in (sQMP2) is trivially satisfied.

We now proceed to give a condition, similar to Theorem 3.2 in [15], under which (sQMP)
can be solved via (sQMP-R). Note that the number of trace constraints in (sQMP-R) is |I |+
|E |+

(s+1
2

)
instead of |I |+ |E |+

(r+1
2

)
in the corresponding setting of Theorem 3.2 in [15].

This property of the new SDP relaxation allows us to improve and extend the result of Theo-
rem 3.2 as follows:

Theorem 5.5. Suppose that problem (sQMP-R) attains its optimal value and that either n+s≤
r or |I |+ |E | ≤

(r+2
2

)
−
(s+1

2

)
−1. Then val (sQMP) is finite and val (sQMP) = val (sQMP-R).
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Proof. Suppose that problem (sQMP-R) attains its optimal value and that |I |+ |E | ≤
(r+2

2

)
−(s+1

2

)
−1. Then the number of constraints in (sQMP-R) is

(r+2
2

)
−1. Hence, by Theorem 5.1,

problem (sQMP-R) has a an optimal solution with rank at most r. This solution is therefore fea-
sible and optimal for (sQMP2), and by Lemma 5.4 val (sQMP) = val (sQMP2) = val (sQMP-R).

When n+ s≤ r, the claim follows immediately from Lemma 5.4 and Remark 5.3.1.

In particular, note that when s= r the SDP relaxation is tight when the number of constraints
is at most r, thus we recover [15, Theorem 3.2].

In the following we need the dual of (sQMP-R) which is given by

(sQMP-D)

max
λi,Φ∈Ss

− ∑
i∈I∪E

λiαi− tr(VV T
Φ)

s.t. M0 + ∑
i∈I∪E

λiMi +

(
0n×n 0n×s
0s×n Φ

)
� 0,

Φ ∈ Ss,

λi ≥ 0, i ∈I .

From the conic duality theorem [23], if (sQMP-D) is strictly feasible and bounded from
above, then (sQMP-R) and (sQMP-D) have the same optimal value. The next claim immediately
follows.

Corollary 5.6. Suppose that (sQMP-D) is strictly feasible and bounded from above. Then if
either n+ s≤ r or |I |+ |E | ≤

(r+2
2

)
−
(s+1

2

)
−1, we have val (sQMP) = val (sQMP-D).

A simple condition given in [15, Lemma 3.2] that ensures the strict feasibility and bound-
edness of (sQMP-D) is the following: there exist numbers λi ∈ R, i ∈ {0}∪I ∪E for which

A0 + ∑
i∈I∪E

λiAi � 0 and λi ≥ 0 ∀i ∈I .

5.4 Applications

5.4.1 Robust Least Squares

Consider robust least squares problem (RLS) discussed in Example 5.1.1. Recall that the prob-
lem is formulated as:

(RLS)
min

x
max

∆∈Rn×r
tr(∆T xxt

∆)+2tr((b−Ax)xT
∆)+ tr((b−Ax)(b−Ax)T )

s.t. tr(∆T LT
i Li∆)≤ ρi, i = 1, . . . ,m.

We begin our analysis by deriving the dual of the inner maximization problem in (RLS). Sup-
pose that Ax = b. Then in this case the inner maximization problem in (RLS) is a homogeneous
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quadratic problem; performing the standard SDP relaxation technique for homogeneous prob-
lems and taking the dual, we reach the following problem

(RLS-D′)

min
λi,t

m

∑
i=1

λiρi

s.t. − xxT +
m

∑
i=1

λiLT
i Li � 0,

λi ≥ 0, i = 1, . . . ,m.

In the case Ax 6= b, the inner maximization problem in (RLS) is of the form of problem (sQMP)
with s = 1 and

A0 =−xxT ,

B0 =−‖b−Ax‖x,
c0 =−‖b−Ax‖2,

Ai = LT
i Li, i = 1, . . . ,m,

Bi = 0, i = 1, . . . ,m,

ci = 0, i = 1, . . . ,m,

αi = ρi, i = 1, . . . ,m,

V =
1

‖b−Ax‖
(b−Ax)T .

By taking the dual form (sQMP-D) we get

(RLS-D)

min
λi,t

m

∑
i=1

λiρi + t

s.t.
(
−xxT +∑

m
i=1 λiLT

i Li −‖b−Ax‖x
−‖b−Ax‖xT −‖b−Ax‖2 + t

)
� 0

λi ≥ 0, i = 1, . . . ,m.

Note that if we set Ax = b in (RLS-D), the optimal value for t becomes 0 and we are left with
the problem (RLS-D′); hence, (RLS-D) can be used as the dual problem for both cases.

Now, if we further assume that (RLS-D) is strictly feasible and bounded (e.g., when the
linear combination ∑

m
i=1 λiLT

i Li� 0 for some λi≥ 0) and that either r≥ n+1 or that the number
of constraints satisfies m ≤

(r+2
2

)
− 2, then (RLS-D) and the inner maximization problem in

(RLS) have the same optimal solution for every x. Therefore, in order to solve (RLS) it is
sufficient to solve the following problem:

(RLS2)

min
x,λi,t

m

∑
i=1

λiρi + t

s.t. A (x) =
(
−xxT +∑

m
i=1 λiLT

i Li −‖b−Ax‖x
−‖b−Ax‖xT −‖b−Ax‖2 + t

)
� 0,

λi ≥ 0, i = 1, . . . ,m.

We will now show that it is possible to rewrite (RLS2) as a standard SDP.
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Proposition 5.4.1. The point (x∗,λ ∗, t∗) is an optimal solution for (RLS2) if and only if it is an
optimal solution for the following SDP problem:

min
x,λi,t

m

∑
i=1

λiρi + t

s.t.

 1 xT (b−Ax)T

x ∑
m
i=1 λiLT

i Li 0
b−Ax 0 tIr

� 0,

λi ≥ 0, i = 1, . . . ,m.

Proof. The matrix inequality in (RLS2) is given by

A (x)� 0,

which is equivalent to (
A (x) 0n×(r−1)

0(r−1)×n Ir−1

)
� 0.

The later inequality can be rewritten as(
−xxT +∑

m
i=1 λiLT

i Li −‖b−Ax‖xeT
1

−‖b−Ax‖e1xT −‖b−Ax‖2e1eT
1 + tIr

)
� 0. (5.4.1)

Now, let Q ∈ Sr be an orthogonal matrix such that Qe1 =
b−Ax
‖b−Ax‖ (when Ax = b, one can choose

Q = Im), then(
In 0
0 Q

)(
−xxT +∑

m
i=1 λiLT

i Li −xeT
1 ‖b−Ax‖

−‖b−Ax‖e1xT −‖b−Ax‖2e1eT
1 + tIr

)(
In 0
0 QT

)
=

(
−xxT +∑

m
i=1 λiLT

i Li −x(b−Ax)T

−(b−Ax)xT −(b−Ax)(b−Ax)T + tIr

)
.

Hence, (5.4.1) is equivalent to(
−xxT +∑

m
i=1 λiLT

i Li −x(b−Ax)T

−(b−Ax)xT −(b−Ax)(b−Ax)T + tIr

)
� 0. (5.4.2)

Finally, writing the last constraint in the form(
∑

m
i=1 λiLT

i Li 0
0 tIr

)
−
(

x
b−Ax

)(
x

b−Ax

)T

� 0

and applying the Schur complement Lemma (see Lemma 5.2), we obtain the desired equivalent
SDP formulation.

Note that the dimension of the matrix constraint is n+ r + 1 instead of nr + r + 1 in the
standard formulation [15]. Thus, assuming strong duality holds, this new formulation can han-
dle much more complex sets of uncertainty, with

(r+2
2

)
−2 constraints if r ≤ n and an arbitrary

number of quadratic constraints if r ≥ n+1.
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5.4.2 The Sphere Packing Problem
In the sphere packing problem we are interested in determining a feasible configuration of non-
overlapping spheres bounded within a given shape. This problem was extensively studied in
various settings over the years. See for example [27, 69, 93, 94] and many more.

Consider the problem of finding a packing of n spheres with given radii within the intersec-
tion of k balls with known centers and radii in Rd (k ≤ d +1). This problem can be formulated
as determining whether the following set of constraints is feasible:

‖XT ei− c j‖ ≤ R j− ri, i = 1, . . . ,n, j = 1, . . . ,k,
‖XT ei−XT e j‖ ≥ ri + r j, i, j = 1, . . . ,n,

X ∈ Rn×d.

where c1, . . . ,ck ∈ Rd are the centers of the containing balls, R1, . . . ,Rk > 0 are the respective
radii and r1, . . . ,rn > 0 are the radii of the inner spheres. The radii are assumed to satisfy the
relation min j=1,...,k R j ≥ maxi=1,...,n ri which is necessary in order to make the problem feasi-
ble. The rows of the decision variables matrix X represent the centers of the spheres to be
determined.

Since we can assume without loss of generality that c1 = 0, by choosing

V =

cT
2
...

cT
k

=
k

∑
j=2

e j−1cT
j

and for the first kn constraints taking

Bi,1 = 0d×k−1, i = 1, . . . ,n

Bi, j = ei︸︷︷︸
∈Rd×1

eT
j−1︸︷︷︸

∈R1×(k−1)

, i = 1, . . . ,n, j = 2, . . . ,k,

it can be readily seen that this problem is of the form (sQMP) discussed above with s = k− 1
and kn+

(n
2

)
constraints. According to Theorem 5.5, the SDP relaxation is tight when kn+

(n
2

)
≤(d+2

2

)
−
(k

2

)
−1 or when d ≥ n+ k−1. The first condition is equivalent to

n≤−k+
1
2
+

√
d2 +3d +

1
4

and since

d− k+1 =−k+
1
2
+

√
d2 +d +

1
4
<−k+

1
2
+

√
d2 +3d +

1
4
,

it follows that the validity of the second condition implies the validity of the first condition.
Thus we have proved the following:

Proposition 5.4.2. The problem of finding the feasibility of packing n spheres in the intersection
of k balls in d dimensions can be solved by an SDP when n≤ d− k+1.

Note that the standard homogenization scheme can be applied when kn+
(n

2

)
≤ d, hence for

a fixed k only O(
√

d) spheres can be handled this way and thus the technique presented in this
chapter provides a major improvement.
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5.4.3 A Strong Duality Result for QCQP Problems Over the Complex Do-
main

Here we consider the following optimization problem over the complex domain

(P) min
z∈Cn
{ f0(z) : fi(z)≤ 0, i = 1, . . . ,m} (5.4.3)

for
fi(z) = z∗Qiz+R(u∗i z)+di,

where Qi ∈ Sn is a symmetric real matrix, ui ∈Rn and di ∈R. z∗ denotes the conjugate transpose
and R(·) denotes the real part of a complex number.

Lemma 5.7. Problem (P) is an sQMP with s = 1 and r = 2.

Proof. Consider the decomposition z = x+ iy, where x,y ∈ Rn. Then

fi(z) = z∗Qiz+R(u∗i z)+di

= (x− iy)T Qi(x+ iy)+R(uT
i (x+ iy))+di

= xT Qix+ yT Qiy+uT
i x+di.

Now, let e1 = (1,0)T ∈ R2, e2 = (0,1)T ∈ R2, and set

X = xeT
1 + yeT

2 =
(
x y

)
∈ Rn×2.

Then

tr(XT QiX)+ tr(e1uT
i X)+di

= tr((xeT
1 + yeT

2 )
T Qi(xeT

1 + yeT
2 ))+ tr(e1uT

i (xeT
1 + yeT

2 ))+di

= xT Qix+ yT Qiy+ tr(uT
i x)+di

= fi(z),

thus, by taking Ai = Qi, Bi = ui, ci = di and V = eT
1 , we get that (P) is an sQMP with the claimed

parameters.

As an immediate result of the previous lemma and the discussion at the end of Section 5.3,
we have the following corollary.

Corollary 5.8. Suppose there exist numbers λi ≥ 0, i = 1, . . . ,m such that

Q0 +
m

∑
i=1

λiQi � 0.

Then if either n = 1 or the number of constraints, m, is at most
(4

2

)
−
(2

2

)
−1 = 4, problem (P)

admits strong duality.

Note that if we assume that ui ∈ Cn, then we can still perform the above analysis, but get
an sQMP with s = 2 and r = 2, hence strong duality is attained when the number of constraints
is at most

(4
2

)
−
(3

2

)
− 1 = 2. This recovers the result by Beck and Eldar for strong duality in

nonconvex quadratic optimization with two quadratic constraints [17].

111



Bibliography

[1] K. Anstreicher, X. Chen, H. Wolkowicz, and Y. Yuan. Strong duality for a trust-region
type relaxation of the quadratic assignment problem. Linear Algebra Appl., 301(1-
3):121–136, 1999.

[2] K. Anstreicher and H. Wolkowicz. On Lagrangian relaxation of quadratic matrix con-
straints. SIAM J. Matrix Anal. Appl., 22(1):41–55, 2000.

[3] K. J. Arrow, L. Hurwicz, and H. Uzawa. Studies in linear and non-linear program-
ming. With contributions by H. B. Chenery, S. M. Johnson, S. Karlin, T. Marschak,
R. M. Solow. Stanford Mathematical Studies in the Social Sciences, vol. II. Stanford
University Press, Stanford, Calif., 1958.

[4] H. Attouch, J. Bolte, and P. Redont. Optimizing properties of an inertial dynami-
cal system with geometric damping. Link with proximal methods. Control Cybernet.,
31(3):643–657, 2002. Well-posedness in optimization and related topics (Warsaw, 2001).

[5] H. Attouch, X. Goudou, and P. Redont. The heavy ball with friction method. I. The
continuous dynamical system: global exploration of the local minima of a real-valued
function by asymptotic analysis of a dissipative dynamical system. Commun. Contemp.
Math., 2(1):1–34, 2000.
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[65] L. Lukšan and J. Vlček. A bundle-newton method for nonsmooth unconstrained mini-
mization. Math. Programming, 83(1-3):373–391, 1998.
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 תקציר

 אופטימיזציההתכנסות של אלגוריתמי בהצגת גישה חדשה לניתוח קצב  מתמקד זוהחלק המרכזי בעבודה 

ההתכנסות של אלגוריתם קצב החסם על ניתן להציג את כי  בחנההעל ההגישה מבוססת  .בעיות קמורותל

זו  הלאלגוריתם( ולפתור בעי "הקלט הרע ביותר")אשר מחפשת את  בפני עצמה נתון כבעית אופטימיזציה

מראים גזירות, וקמורות ובעיות אופטימיזציה במתמקדים אנו , 4בפרק  כלים מתחום האופטימיזציה.עזרת ב

משיגים חסם חדש והדוק על אלגוריתם מכך אה וכתוצשיטת הגרדיאנט על  הנ"לגישה את הישם ילניתן כיצד 

שיטת את  הכוללתעל מחלקה רחבה של אלגוריתמים  הגישה זה. בנוסף, אנו מראים כיצד להפעיל את

האופטימיזציה  במקרים בהם פתרון אנליטי לבעיתכי מראים ו ,הגרדיאנט המהירה ושיטת הכדור הכבד

חסם עליון על קצב ההתכנסות של על מנת לקבל  להשתמש בכלים נומרייםניתן אינו ידוע, המתקבלת 

י את האלגוריתם הטוב ביותר במחלקת מראים כיצד למצוא באופן נומר ו. כמו כן, אנהנתוןהאלגוריתם 

קצבי על ידועים חסמים מכפליים טוב זה קצב ההתכנסות של אלגוריתם המדוברת וכי  האלגוריתמים

 .קלאסיים אלגוריתמיםתכנסות של הה

 ל העבודה, אנו מרחיבים את הגישה הנ"ל ומראים כיצד ניתן בעזרתה למצוא אלגוריתם חדשש 3בפרק 

כי קצב מוכיחים האלגוריתם ואת בניית בפירוט לאופטימיזציה קמורה במקרה הלא גזיר. אנו מראים 

באופן מפתיע,  מחלקת הפונקציות הקמורות שמקיימות את תנאי ליפשיץ. עלאופטימלי ההתכנסות שלו 

 של קלי.גוריתם המתקבל דומה לאלגוריתם המישור החותך האל

. האלגוריתם פשוט במיוחד בעלות מבנה מקס-מיניתם חדש לפתרון בעיות אלגוריים עאנו מצי, 2בפרק 

את מהמשתמש לקבוע אינו דורש שבכך למשל  אלגוריתמים קיימים לבעיהבעל מספר יתרונות טכניים על ו

. אנו מציגים את האלגוריתם, מוכיחים את קצב ההתכנסות שלו האלגוריתםלפני הפעלת הדיוק המבוקש 

כמו כן, אנו מראים כיצד ניתן ליישם את הגישה  ומדגימים את היעילות שלו על מספר בעיות מעשיות.

 .אלגוריתם זהקצב ההתכנסות של לקבל חסם נומרי על על מנת שהוצגה בפרקים הקודמים החדשה 

לא קמורה של פונקציות ריבועיות עם אילוצים  אופטימיזציהמקדים בבעיות מתאנו  ,5בפרק  לבסוף,

תנאים חדשים בהם קיים פתרון יעיל מציגים באמצעות בחינה מעודנת של מבנה הבעיה אנו  .ריבועיים

, הן שימושיות התוצאותאנו מדגימים את  .שלילי-מוגדר אי קמור בעיות תכנותאלו באמצעות לבעיות 

 .מספר דוגמאות באמצעות י והן במישור המעשי,במישור התיאורט





 

 אביב-אוניברסיטת תל

 הפקולטה למדעים מדוייקים ע"ש ריימונד ובברלי סאקלר

 הספר למדעי המתמטיקה-בית

 המחלקה לסטטיסטיקה וחקר ביצועים

 

 

לניתוח הסיבוכיות של אלגוריתמי  תרומות

 אופטימיזציה
 

 

  אביב-לתהוגש לסנט של אוניברסיטת 

 לשם קבלת תואר "דוקטור לפילוסופיה"

 

 ידי-על

 יואל דרורי

 

 

נעשתה בהדרכת פרופ' מרק טבולעבודה זו   
 

 

 

 

 

 4102דצמבר 

 טבת תשע"ה

  


	Introduction
	Analysis of Smooth First-Order Methods
	An Optimal Method for of Non-Smooth Optimization
	Saddle-Point Problems
	Nonconvex Quadratic Optimization

	A new approach for analyzing optimization algorithms
	Introduction
	The Problem and the Main Approach
	The Problem and Basic Assumptions
	Basic Idea and Main Approach

	An Analytical Bound for the Gradient Method
	A Performance Estimation Problem for the Gradient Method
	A Tight Performance Estimate for the Gradient Method

	New Bounds on a Class of First-Order Methods
	A General First-Order Algorithm: Definition and Examples
	Numerical Estimation of a Bound on Algorithm FO
	Numerical Illustrations

	A Best Performing Algorithm
	Conclusions
	Appendix I: Proof of Lemma 2.3
	Appendix II: An Analytical Bound for the Projected Gradient Method
	Appendix III: A PEP for the Class of Strongly Convex Functions

	An optimal variant of Kelley's cutting-plane method
	Introduction
	The Algorithm and its Rate of Convergence
	The Algorithm: a Kelley-Like Method (KLM)
	An Optimal Rate of Convergence for KLM

	Motivation
	A New Look at the Kelley Method
	The Proposed Approach

	A Tractable Upper-Bound for (PM)
	A Finite Dimensional Relaxation of (PM)
	Relaxing The Inner Maximization Problem to an SDP
	Transforming the Minimax SDP to a Minimization Problem
	A Tight Convex SDP Relaxation for (PIIIM)

	Derivation of Algorithm KLM
	Reducing (PVM) to a Convex Minimization Problem Over the Unit Simplex
	Completing the Derivation of KLM

	The Rate of Convergence: Proof of Theorem 3.1
	Concluding remarks
	Appendix: A Tight Lower-Complexity Bound

	An O(1/) Algorithm for Saddle-Point Problems
	Introduction
	The Saddle-Point Model and The Algorithm
	The Saddle-Point Problem
	The Standing Assumption
	The Algorithm

	Main Convergence Results for PAPC
	Elementary Preliminaries
	Global Rate of Convergence of the PAPC Method

	Composite Minimization via Saddle-Point
	The Dual Transportation Trick
	Handling Constrained Saddle-Point Problems
	Composite Minimization with Sum of Finitely Many Terms
	Constrained Composite Minimization
	Rate of Convergence for the Primal Formulation

	Numerical Examples
	Image Deblurring
	Fused Lasso Regression

	Appendix: A PEP for PAPC

	A new SDP relaxation scheme
	Introduction
	Preliminaries
	A Tight SDR Result for (sQMP)
	Applications
	Robust Least Squares
	The Sphere Packing Problem
	A Strong Duality Result for QCQP Problems Over the Complex Domain



