16 Integration: from single-chart to many-chart

16a Curvilinear iterated integral

16b Many-chart integration

Single-chart pieces of a manifold are combined via partitions of unity. Curvilinear iterated integrals, Stokes’ and divergence theorems take their global geometric form.

16a Curvilinear iterated integral

Recall several facts.

* The iterated integral approach (Sect. 7) decomposes an integral over the plane into integrals over parallel lines. It also decomposes an integral over 3-dimensional space into integrals over parallel planes.\(^1\)

* A 3-dimensional integral decomposes into integrals over spheres, see 14b12 and 15d12.

* However, a naive attempt to decompose an integral over the plane into integrals over curves \(y = f(x) + a\) fails (see 15d9); a new factor appears, like Jacobian.

Thus, we want to understand, whether or not a 2-dimensional integral decomposes into integrals over curves \(\varphi(\cdot) = \text{const}\), and what about a new factor; and what happens in dimension 3 (and more).

First we try dimension \(0 + 1\). Let \(\varphi \in C^1(\mathbb{R})\), \(\forall x \varphi'(x) \neq 0\). A set \(M_c = \{x : \varphi(x) = c\}\), being a singleton \(\{\varphi^{-1}(c)\}\), may be treated as a 0-dimensional manifold in \(\mathbb{R}\); naturally, \(\int_{M_c} f = f(\varphi^{-1}(c))\). Thus, generally \(\int dc \int_{M_c} f \neq \int_{\mathbb{R}} f\); rather, \(\int dc \int_{M_c} f = \int f(\varphi^{-1}(c)) dc = \int f(x)|\varphi'(x)| dx = \int f|\varphi'|\); the new factor \(|\varphi'|\) appears. Roughly, it shows how many 0-manifolds \(M_c\) appear within an infinitesimal neighborhood of \(x\).

We turn to dimension \(1 + 1\). Let \(\varphi : \mathbb{R}^2 \to \mathbb{R}\) be of class \(C^1\) near \(0\), \(\varphi(0) = 0\), \((D\varphi)_0 \neq 0\). Then \(\varphi\) is a co-chart of the set \(M_0 = \{(x, y) : \varphi(x, y) = 0\}\) around \((0, 0)\), and \(\varphi(\cdot) - c\) is a co-chart of \(M_c = \{(x, y) : \varphi(x, y) = c\}\) provided that \(c\) is small enough. We restrict ourselves to small \(c\) and small \((x, y)\), then \(M_c\) are 1-manifolds. Assuming that a function \(f \in C(\mathbb{R}^2)\) has a compact

\(^1\)Or alternatively, parallel lines. In this course we restrict ourselves to dimension \(n + 1\); for dimension \(n + m\) see the "Coarea formula".
support within the small neighborhood of \((0, 0)\), we consider \(\int dc \int_{M_c} f\). It is easy to guess that

\[(16a1) \quad \int dc \int_{M_c} f = \int_{\mathbb{R}^2} f|\nabla \varphi|,
\]

since \(|\nabla \varphi(x, y)|\) shows roughly, how many curves \(M_c\) intersect an infinitesimal neighborhood of \((x, y)\). Note that both sides of \((16a1)\) are invariant under rotations of the plane (since the volume form is well-defined for an \(n\)-manifold in an \(N\)-dimensional Euclidean space).

The case of a linear function \(\varphi\) is simple and instructive. When proving \((16a1)\) for a linear \(\varphi\) we may assume (due to the rotation invariance) that \(\varphi(x, y) = ay\). Then

\[
\int dc \int_{M_c} f = \int dc \int dx f\left(x, \frac{c}{a}\right) = a \int dy \int dx f(x, y),
\]

which proves \((16a1)\) for a linear \(\varphi\). Taking \(\varphi(x, y) = ax + by\) with \(b \neq 0\) we get

\[
M_c = \left\{ \left(x, \frac{c - ax}{b}\right) : x \in \mathbb{R} \right\}, \quad |\nabla \varphi| = \sqrt{a^2 + b^2},
\]

\[
\int_{M_c} f = \int_{\mathbb{R}} f\left(x, \frac{c - ax}{b}\right) \sqrt{1 + \left(-\frac{a}{b}\right)^2} \, dx;
\]

\[
\int dc \int_{M_c} f = \frac{\sqrt{a^2 + b^2}}{|b|} \iint f\left(x, \frac{c - ax}{b}\right) \, dx \, dc;
\]

\[
\int_{\mathbb{R}^2} f|\nabla \varphi| = \sqrt{a^2 + b^2} \iiint f(x, y) \, dx \, dy;
\]

\[(16a1)\] becomes

\[
\frac{1}{|b|} \iiint f\left(x, \frac{c - ax}{b}\right) \, dx \, dc = \iiint f(x, y) \, dx \, dy,
\]

which follows also from the fact that the Jacobian \(\frac{\partial(x, c)}{\partial(x, y)} = |\begin{smallmatrix} 1 & 0 \\ a & b \end{smallmatrix}|\) of the mapping \((x, y) \mapsto (x, ax + by)\) is equal to \(b\).

The former argument (the rotation) fails for nonlinear \(\varphi\) (think, why), but the latter argument (the change of variables) still works, and generalizes to dimension \(n + 1\), as we’ll see soon.

Recall the implicit function theorem 5c1 (for \(c = 1\), and some notations changed): if \(x_0 \in \mathbb{R}^n\), \(y_0 \in \mathbb{R}\), \(\varphi : \mathbb{R}^{n+1} \to \mathbb{R}\) is continuously differentiable near \((x_0, y_0)\), \(\varphi(x_0, y_0) = 0\), and \(\frac{\partial \varphi}{\partial y}(x_0, y_0) \neq 0\), then there exist open neighborhoods \(U\) of \(x_0\) and \(V\) of \(y_0\) such that
(a) for every \(x \in U \) there exists one and only one \(y \in V \) satisfying \(\varphi(x, y) = 0 \);

(b) a function \(g : U \to V \) defined by \(\varphi(x, g(x)) = 0 \) is continuously differentiable, and \(\nabla g(x_0) = -\frac{1}{(\varphi_y(x_0, y_0))}\left(\frac{\partial \varphi}{\partial x}\right)(x_0, y_0) \).

Recall also the idea of the proof: a mapping \(h(x, y) = \left(x, \varphi(x, y) \right) \) is a diffeomorphism \(U \times V \to h(U \times V) \), and

\[
h^{-1}\left(\begin{array}{c} x \\ 0 \end{array}\right) = \left(\begin{array}{c} x \\ g(x) \end{array}\right).
\]

We need a bit more: there exists an open neighborhood \(W \) of \(0 \) in \(\mathbb{R}^n \) such that for every \(c \in W \),

(a’) for every \(x \in U \) there exists one and only one \(y \in V \) satisfying \(\varphi(x, y) = c \);

(b’) a function \(g_c : U \to V \) defined by \(\varphi(x, g_c(x)) = c \) is continuously differentiable, and \(\nabla g_c(x) = -\frac{1}{(\varphi_y(x, y))}\left(\frac{\partial \varphi}{\partial x}\right)(x, y) \) whenever \(x \in U, \ y = g_c(x) \).

This is easy to prove; basically, \(h^{-1}\left(\begin{array}{c} x \\ c \end{array}\right) = \left(\begin{array}{c} x \\ g_c(x) \end{array}\right) \); for (b’), differentiate in \(x \) the relation \(\varphi(x, g_c(x)) = c \).

Thus, for every \(c \in W \) the set

\[
M_c = \{ (x, y) \in U \times V : \varphi(x, y) = c \}
\]

is an \(n \)-manifold in \(\mathbb{R}^{n+1} \); the function \(\varphi(\cdot) - c \) is a co-chart of \(M_c \); and the mapping \(U \ni x \mapsto \psi_c(x) = (x, g_c(x)) \) is a chart of the whole \(M_c \); in other words, \(M_c \) is the graph of \(g_c \). The set

\[
\bigcup_{c \in W} M_c = h^{-1}(U \times W)
\]

is an open neighborhood of \((x_0, y_0) \).

16a2 Proposition. For every continuous, compactly supported function \(f \) on \(\bigcup_{c \in W} M_c \),

\[
\int_W dc \int_{M_c} f = \int f|\nabla \varphi|.
\]
16a3 Exercise. Find J_{ψ} given $\psi(x) = (x, g(x)) \in \mathbb{R}^{n+1}$ for $x \in \mathbb{R}^n$ and $g \in C^1(\mathbb{R}^n)$.

Answer: $\sqrt{1 + |\nabla g|^2}$.

Proof of Prop. 16a2 For every $c \in W$,

$$\int_{M_c} f = \int_U f(x, g_c(x)) \sqrt{1 + |\nabla g_c|^2} \, dx$$

due to 16a3, thus, the function $c \mapsto \int_{M_c} f$ is continuous, and

$$\int_W dc \int_{M_c} f = \int_{U \times W} f(x, g_c(x)) \sqrt{1 + |\nabla g_c(x)|^2} \, dx \, dc.$$

On the other hand, $Dh = \left(\begin{array}{cc} \frac{\partial \varphi}{\partial x} & 0 \\ \frac{\partial \varphi}{\partial y} & 0 \end{array} \right)$, therefore $\det(Dh) = \frac{\partial \varphi}{\partial y}$. Also,

$$1 + |\nabla g_c(x)|^2 = 1 + \left(\frac{1}{(\frac{\partial \varphi}{\partial y}(x,y))} \right)^2 \left(\frac{\partial \varphi}{\partial x}(x,y) \right)^2 = \left| \frac{\nabla \varphi(x,y)}{\det(Dh)(x,y)} \right|^2$$

whenever $y = g_c(x)$. Finally, we apply change of variables:

$$\int_W dc \int_{M_c} f = \int_{U \times W} f(x, h^{-1}(x,c)) \left| \frac{\nabla \varphi(h^{-1}(x,c))}{\det(D(h^{-1})(x,c))} \right| \, dx \, dc =$$

$$= \int_{U \times W} f(x, h^{-1}(x,c)) \left| \frac{\nabla \varphi(h^{-1}(x,c))}{\det(D(h^{-1})(x,c))} \right| \, dx \, dc =$$

$$= \int_{U \times W} f(x, h^{-1}(x,c)) \left| \frac{\nabla \varphi(h^{-1}(x,c))}{\det(D(h^{-1})(x,c))} \right| \, dx \, dy.$$

\hfill \Box

16b Many-chart integration

Recall that $\int_{(M,\mathcal{O})} \omega$ is defined by (15c2) whenever (M,\mathcal{O}) is an oriented n-manifold and ω a single-chart n-form on M. The linearity,

$$(16b1) \quad \int_{(M,\mathcal{O})} (c_1 \omega_1 + c_2 \omega_2) = c_1 \int_{(M,\mathcal{O})} \omega_1 + c_2 \int_{(M,\mathcal{O})} \omega_2,$$

\footnote{Hint: in order to avoid working hard on a determinant, use the rotation invariance.}
is ensured by (15c2) provided that both forms ω_1, ω_2 have compact supports within the same chart.

The idea of a “partition of unity” was used in Sect. 8h (when proving Th. 8a5) in a rudimentary form: partition into integrable functions. Now we need a bit more: partition into continuous functions.\footnote{Still more will be needed in the proof of Th. 16b15: partition into C^1 functions. (Ultimately, partitions into C^∞ functions exist, but we do not need them.)}

16b2 Lemma. Let $M \subset \mathbb{R}^N$ be an n-manifold and $K \subset M$ a compact set. Then there exist single-chart continuous functions $f_1, \ldots, f_k : M \to [0, 1]$ such that $f_1 + \cdots + f_k = 1$ on K.

Proof. For every $x \in K$ a function $g_x : y \mapsto (\varepsilon_x - |y - x|)^+$ is single-chart if ε_x is small enough, continuous, and positive in the open ε_x-neighborhood of x. These neighborhoods are an open covering of K; we choose a finite subcovering and get single-chart functions $g_1, \ldots, g_k : M \to [0, \infty)$ whose sum $g = g_1 + \cdots + g_k$ is (strictly) positive on K. We take $\varepsilon > 0$ such that $g(x) \geq \varepsilon$ on K and note that functions $f_1, \ldots, f_k : M \to [0, \infty)$ defined by

$$f_i(x) = \frac{g_i(x)}{\max(g(x), \varepsilon)}$$

have the required properties. \qed

It follows that every compactly supported n-form on M is the sum of single-chart n-forms,

$$\omega = \omega_1 + \cdots + \omega_k, \quad \omega_i = f_i \omega.$$

It is tempting to define (assuming that \mathcal{O} is an orientation of M)

$$(16b3) \quad \int_{(M, \mathcal{O})} \omega = \int_{(M, \mathcal{O})} \omega_1 + \cdots + \int_{(M, \mathcal{O})} \omega_k;$$

however, does this sum depend on the choice of $\omega_1, \ldots, \omega_k$? If $\omega_1 + \cdots + \omega_k = \omega = \tilde{\omega}_1 + \cdots + \tilde{\omega}_k$ then $\omega_1 + \cdots + \omega_k + (-\tilde{\omega}_1) + \cdots + (-\tilde{\omega}_k) = 0$; the question is, whether the corresponding sum of integrals must vanish, or not.

16b4 Lemma. Let $\omega_1, \ldots, \omega_\ell$ be single-chart n-forms on an n-manifold M, and \mathcal{O} an orientation of M;

$$\text{if} \quad \omega_1 + \cdots + \omega_\ell = 0 \quad \text{then} \quad \int_{(M, \mathcal{O})} \omega_1 + \cdots + \int_{(M, \mathcal{O})} \omega_\ell = 0.$$
Proof. Lemma 16b2 gives single-chart continuous functions f_1, \ldots, f_k such that $f_1 + \cdots + f_k = 1$ on a compact set that supports $\omega_1, \ldots, \omega_\ell$. By (16b1), on one hand,
\[
\sum_{j=1}^{\ell} \int_{(M,\mathcal{O})} f_i \omega_j = \int_{(M,\mathcal{O})} \sum_{j=1}^{\ell} f_i \omega_j = 0 ,
\]
since f_i is single-chart; and on the other hand,
\[
\sum_{i=1}^{k} \int_{(M,\mathcal{O})} f_i \omega_j = \int_{(M,\mathcal{O})} \sum_{i=1}^{k} f_i \omega_j = \int_{(M,\mathcal{O})} \omega_j ,
\]
since ω_j is single-chart. Therefore
\[
\sum_{j=1}^{\ell} \int_{(M,\mathcal{O})} \omega_j = \sum_{j=1}^{\ell} \sum_{i=1}^{k} \int_{(M,\mathcal{O})} f_i \omega_j = \sum_{i=1}^{k} \sum_{j=1}^{\ell} \int_{(M,\mathcal{O})} f_i \omega_j = \sum_{i=1}^{k} 0 = 0 .
\]

We see that (16b3) is indeed a correct definition of $\int_{(M,\mathcal{O})} \omega$ whenever ω is a compactly supported n-form on M.

Now we can define the n-dimensional volume of a compact oriented n-manifold (M, \mathcal{O}) by
\[
V_n(M, \mathcal{O}) = \int_{(M,\mathcal{O})} \mu_{(M,\mathcal{O})} \in (0, \infty)
\]
where $\mu_{(M,\mathcal{O})}$ is the volume form on (M, \mathcal{O}). However, the Möbius strip should have an area, too!

We want to define
\[
(16b5) \quad \int_M f = \int_{(G,\psi)} f \mu_{(G,\psi)}
\]
for a single-chart $f \in C(M)$; here (G, ψ) is a chart such that f is compactly supported within $\psi(G)$, and $\mu_{(G,\psi)}$ is the volume form on the n-manifold $\psi(G)$ (oriented, even if M is non-orientable). To this end we need a counterpart of Lemma 15c3:
\[
\int_{(G_1,\psi_1)} f \mu_{(G_1,\psi_1)} = \int_{(G_2,\psi_2)} f \mu_{(G_2,\psi_2)}
\]
whenever $(G_1,\psi_1), (G_2,\psi_2)$ are charts such that $K \subset \psi_1(G_1) \cap \psi_2(G_2)$ for some compact K that supports f. We do it similarly to the proof of 15c3, but
this time we split the relatively open set \(\tilde{G} = \psi_1(G_1) \cap \psi_2(G_2) \) in two relatively open sets \(\tilde{G}_-, \tilde{G}_+ \) according to the sign of \(\det D\varphi \) (having \(\psi_2^{-1} = \varphi \circ \psi_1^{-1} \) on \(G \)). It remains to take into account that \(\mu(G_1, \psi_1) = \mu(G_2, \psi_2) \) on \(\tilde{G}_+ \) but \(\mu(G_1, \psi_1) = -\mu(G_2, \psi_2) \) on \(\tilde{G}_- \).

We see that (16b5) is indeed a correct definition of \(\int_M f \) for a single-chart \(f \in C(M) \). Now, similarly to (16b2), we define

\[
(16b6) \quad \int_M f = \int_M f_1 + \cdots + \int_M f_k
\]

whenever \(f = f_1 + \cdots + f_k \) with single-chart \(f_i \in C(M) \).

16b7 Exercise. (a) Prove that (16b6) is a correct definition of \(\int_M f \) for all compactly supported \(f \in C(M) \);\(^1\)

(b) formulate and prove linearity and monotonicity of the integral.

Now it is easy to define lower and upper integrals for discontinuous compactly supported functions \(M \to \mathbb{R} \) (recall 6i2), and then, Riemann integrability and Jordan measure on an \(n \)-manifold in \(\mathbb{R}^N \). For functions with no compact support, improper integral may be used. In particular, for a non-compact manifold \(M \),

\[
V_n(M) = \sup_{f \leq 1} \int_M f = \sup_{E} V_n(E)
\]

where \(f \) runs over compactly supported continuous (or just integrable) functions, and \(E \) runs over sets Jordan measurable in \(M \). Monotone convergence of volumes (similar to 9c1) holds.

16b8 Exercise. Find the area of the (non-compact) Möbius strip 15b7.

Here is a harder exercise: find the area of the compact non-orientable 2-manifold in \(\mathbb{R}^6 \) introduced in 15b9.

Curvilinear iterated integral revisited

16b9 Theorem. Let \(G \subset \mathbb{R}^n \) be an open set, \(n > 1 \), \(\varphi \in C^1(G) \), \(\forall x \in G \ \nabla \varphi(x) \neq 0 \), and \(f \in C(G) \) compactly supported. Then for every \(c \in \varphi(G) \) the set \(M_c = \{ x \in G : \varphi(x) = c \} \) is an \((n-1) \)-manifold in \(\mathbb{R}^n \), a function \(c \mapsto \int_{M_c} f \) on \(\varphi(G) \) is continuous and compactly supported, and

\[
\int_{\varphi(G)} dc \int_{M_c} f = \int_{G} f |\nabla \varphi|.
\]

\(^1\)Hint: use partitions of unity.
16b10 Remark. A function $c \mapsto V_{n-1}(M_c)$ need not be continuous on $\varphi(G)$. For a counterexample try $G = \{(x, y) : y < g(x)\} \subset \mathbb{R}^2$ and $\varphi(x, y) = y$.

16b12 Exercise. For $f \in C(\mathbb{R}^n \setminus \{0\})$ prove that

$$\int_{(0, \infty)} dr \int_{\{|x| = r\}} f = \int_{\mathbb{R}^n \setminus \{0\}} f,$$

where $\int_{(0, \infty)}$ and $\int_{\mathbb{R}^n \setminus \{0\}}$ are improper; that is, each side of the equality may be a number, $-\infty$, $+\infty$ or $\infty - \infty$.

In particular,

$$\int_{\mathbb{R}^n \setminus \{0\}} f(|x|) dx = \int_{(0, \infty)} V_{n-1}(S_r) f(r) dr,$$

where $S_r = \{x : |x| = r\}$ is the sphere. It is easy to see that $V_{n-1}(S_r) = r^{n-1}V_{n-1}(S_1)$; thus,

$$\int_{\mathbb{R}^n \setminus \{0\}} f(|x|) dx = V_{n-1}(S_1) \int_{(0, \infty)} r^{n-1} f(r) dr.$$

Now we may take $f(r) = e^{-r^2}$ and get

$$\int_{\mathbb{R}^n} e^{-|x|^2} dx = \left(\int_{\mathbb{R}} e^{-t^2} dt\right)^n = (\sqrt{\pi})^n = \pi^{n/2}$$

(recall 9e); thus,

$$\pi^{n/2} = V_{n-1}(S_1) \int_{0}^{\infty} r^{n-1} e^{-r^2} dr.$$

Taking into account that

$$\int_{0}^{\infty} r^{n-1} e^{-r^2} dr = \int_{0}^{\infty} t^{(n-1)/2} e^{-t} \frac{dt}{2\sqrt{t}} = \frac{1}{2} \Gamma\left(\frac{n}{2}\right)$$

(recall 9j1), we get

$$(16b13) \quad V_{n-1}(S_1) = \frac{2\pi^{n/2}}{\Gamma(n/2)}.$$

1Hint: use 16a2 and a partition of unity.

2Hint: start with $f \geq 0$, approximate f from below, apply 16b9.

3See also Sjamaar, Exer. 9.6.
Alternatively we may use the volume of the ball $B_1 = \{x : |x| < 1\}$,

$$V_n(B_1) = \frac{2\pi^{n/2}}{n\Gamma(n/2)},$$
calculated in Sect. 9j.

Divergence theorem revisited

An open set $G \subset \mathbb{R}^n$ is called *regular*, if $(G)^\circ = G$; that is, the interior of the closure of G is equal to G. (Generally it cannot be less than G, but can be more than G; a simple example: $G = \mathbb{R} \setminus \{0\}$.) Equivalently, G is regular if (and only if) $\partial G = \partial(\mathbb{R}^n \setminus G)$; that is, the boundary of the exterior of G is equal to the boundary of G.

Let $G \subset \mathbb{R}^n$ be a bounded regular open set, $M \subset \mathbb{R}^n$ a (necessarily compact) $(n-1)$-manifold, and $\partial G = M$ (the topological boundary, nothing “singular”...). We want to prove that the flux of a vector field through M is equal to the integral of its divergence over G. In the language of differential forms (recall 14c8, 14c9) it means a “nonsingular” Stokes’ theorem for $k = n - 1$: $\int_G d\omega = \int_M \omega$ for every $(n-1)$-form ω on \mathbb{R}^n. However, this makes no sense without orienting G and M.

Recall 14c: the hyperface $\{1\} \times [-1,1]^{n-1}$ is a part of the boundary of the cube $(-1,1)^n$; the tangent space to the hyperface is spanned by vectors e_2, \ldots, e_n; and its orientation conforms to the basis (e_2, \ldots, e_n) (in this order), while the orientation of the cube conforms to (e_1, \ldots, e_n), of course. And the vector e_1 is the outward unit normal to the hyperface, according to the sign of the inequality $x_1 < 1$ on $(-1,1)^n$.

16b14 Definition. (a) A non-tangent vector $h \in \mathbb{R}^n \setminus T_xM$ is directed outwards, if $x - \varepsilon h$ belongs to G and $x + \varepsilon h$ does not belong to G for all ε small enough;

(b) an orientation $\hat{\mathcal{O}}$ of M conforms at $x \in M$ to an orientation \mathcal{O} of G if (h_2, \ldots, h_n) conforms to $\hat{\mathcal{O}}_x$ whenever h_1 is directed outwards and (h_1, h_2, \ldots, h_n) conforms to \mathcal{O}_x. (Here $h_2, \ldots, h_n \in T_xM$, $h_1 \notin T_xM$.)

For a non-regular G it may happen that $x - \varepsilon h$ and $x + \varepsilon h$ both belong to G (for all ε small enough); but for a regular G either h or $(-h)$ must be directed outwards (and then the other is said to be directed inwards).

16b15 Theorem. Let $G \subset \mathbb{R}^n$ be a bounded regular open set, $M \subset \mathbb{R}^n$ an $(n - 1)$-manifold, $\partial G = M$, and orientations \mathcal{O} of G and $\hat{\mathcal{O}}$ of M conform (at every point of M). Then

$$\int_{(G,\mathcal{O})} d\omega = \int_{(M,\hat{\mathcal{O}})} \omega$$
for every \((n-1)\)-form \(\omega\) of class \(C^1\) on \(\mathbb{R}^n\).

The divergence theorem follows.

16b16 Theorem. Let \(G \subset \mathbb{R}^n\) be a bounded regular open set, \(M \subset \mathbb{R}^n\) an \((n-1)\)-manifold, \(\partial G = M\). Then

\[
\int_G \text{div} \, H = \int_M \langle H, \bar{n} \rangle
\]

for every vector field \(H\) of class \(C^1\) on \(\mathbb{R}^n\); here \(\bar{n} : M \to \mathbb{R}^n\), \(\bar{n}(x)\) is the outward unit normal vector at \(x \in M\).

It remains to prove 16b15. Sometimes it is easy to construct an \(n\)-chain \(C\) such that \(C \sim (G, O)\) and \(\partial C \sim (M, \tilde{O})\) in the sense that \(\int_C \omega = \int_{(G, O)} \omega\) and \(\int_{\partial C} \omega = \int_{(M, \tilde{O})} \omega\); but in general this is problematic. Instead, one turns to a single-chart \(\omega\) via a partition of unity; and locally \(M\) is just the graph of a function.

We restrict ourselves to \(n = 2\); the general case is quite similar.

We define a *good box* (for given \(G\) and \(M\)) as an open box \(B \subset \mathbb{R}^2\) such that \(M \cap B\) is either the empty set or the graph of a function, either \(y = f(x)\) or \(x = g(y)\). More exactly, “\(y = f(x)\)” means here the following:

\[
B = U \times V \text{ for some open intervals } U, V \subset \mathbb{R}; f \in C^1(U), f(U) \subset V; \text{ and } M \cap B = \{(x, f(x)) : x \in U\}.
\]

(The case “\(x = g(y)\)” is interpreted similarly.)

The closure \(G \cup M\) of \(G\) is compact, and all good boxes are its open covering. We choose a finite covering: \(G \cup M \subset B_1 \cup \cdots \cup B_k\), and construct a corresponding partition of unity of class \(C^1\):

\[
f_1, \ldots, f_k : \mathbb{R}^n \to [0, 1] \quad \text{are continuously differentiable,}\n\]

\[
f_i(\cdot) = 0 \quad \text{outside } B_i,
\]

\[
f_1 + \cdots + f_k = 1 \quad \text{on } G \cup M.
\]

To this end, similarly to the proof of 16b2, we let \(g = g_1 + \cdots + g_k\), take \(\varepsilon\) such that \(g(\cdot) \geq \varepsilon\) on \(K\), and put

\[
f_i(x) = \frac{g_i(x)}{g(x) + \frac{\varepsilon}{2}(1 - \frac{g(x)}{\varepsilon})^2};
\]

but this time we need \(g_i \in C^1\). We obtain \(g_i\) by a linear transformation (of arguments) from (say)

\[
g(x, y) = h(x)h(y),
\]

\[
h(t) = \begin{cases}
(1 - t^2)^2 & \text{for } -1 < t < 1, \\
0 & \text{otherwise};
\end{cases}
\]
then f_1, \ldots, f_k have the required properties.

Given an $(n-1)$-form ω of class C^1 on \mathbb{R}^n, we have
\[
\omega = \omega_1 + \cdots + \omega_k \quad \text{on } G \cup M,
\]
where each $\omega_i = f_i \omega$ is an $(n-1)$-form of class C^1, and $\omega_i = 0$ outside B_i.

In order to prove the equality $\int_{(G,\mathcal{O})} d\omega = \int_{(M,\mathcal{O})} \omega$ it is sufficient (due to linearity) to prove the same equality for each ω_i.

The case $M \cap B_i = \emptyset$ is simple: $\int_{(M,\mathcal{O})} \omega_i = 0$ (since $\omega_i = 0$ on M), and $\int_{(G,\mathcal{O})} d\omega = \pm \int_{B_i} d\omega = \pm \int_{\partial B_i} \omega = 0$ (since $\omega_i = 0$ on ∂B_i).

It remains to consider the case “$x = g(y)$” (since the case “$y = f(x)$” is similar). That is, $B_i = V \times U$, $g : U \to V$ is continuously differentiable, and $M \cap B_i = \{(g(y), y) : y \in U\}$. We do not know which orientation of B conforms to the given orientation \mathcal{O} of G, but it does not matter, since the other orientation changes the signs of both sides of the equality.

The set $(V \times U) \setminus M$ has exactly two connected components (think, why), one of them being $G \cap (V \times U)$ (think, why). We may assume that $G \cap (V \times U) = \{(x, y) \in V \times U : x < g(y)\}$; in the other case, “$x > g(y)$”, we flip the sign of x.

Consider a mapping $\psi_1 : U \to \mathbb{R}^2$, $\psi_1(y) = (g(y), y)$; (U, ψ_1) is a chart of the 1-manifold $M \cap (V \times U)$.

The set $G \cap (V \times U)$ may be treated as a 2-manifold (in \mathbb{R}^2); a mapping $\psi_2 : V \times U \to \mathbb{R}^2$,
\[
\psi_2(x, y) = \left(a + \frac{x - a}{b - a} (g(y) - a), y \right),
\]
where $(a, b) = V$, is a diffeomorphism $V \times U \to G \cap (V \times U)$; and $(V \times U, \psi_2)$ is a chart of $G \cap (V \times U)$.

These charts, (U, ψ_1) and $(V \times U, \psi_2)$, lead to orientations, \mathcal{O}_1 on $M \cap (V \times U)$ and \mathcal{O}_2 on $G \cap (V \times U)$, and these two orientations conform (according to (16b14)) at every $(g(y), y) \in M \cap (V \times U)$; here is why. The vector $(g'(y), 1) \in T_{(g(y), y)} M$ conforms to \mathcal{O}_1; the vector $(1, 0)$ is directed

\[1\] Why prefer “$x = g(y)$” to “$y = f(x)$”? Since our preferred hyperface $\{1\} \times [-1, 1]^{n-1}$ of $[-1, 1]^n$ for $n = 2$ is “$x = 1$”, not “$y = \ldots$”.\]
outwards; and the basis \(\{(1, 0), (g'(y), 1)\} \) conforms to \(\mathcal{O}_2 \), since \(\left| \frac{1}{g'(y)} \right| > 0 \), and \(\det D\psi_2 > 0 \) as well.

We apply Stokes’ theorem to the singular box \(\Gamma : V \times U \to \mathbb{R}^2 \), \(\Gamma(x, y) = (a + \frac{x-a}{b-a}(g(y) - a), y) \), getting \(\int_{\Gamma} d\omega = \int_{\partial\Gamma} \omega \). It remains to note that

\[
\int_{\Gamma} d\omega = \int_{(G \cap (V \times U), \mathcal{O}_2)} d\omega, \quad \int_{\partial\Gamma} \omega = \int_{(M \cap (V \times U), \mathcal{O}_1)} \omega.
\]

Index

- conforms, 257
- outwards, 257
- partition of unity, 253
- regular, 257
- sphere, 256
- volume, 254 255
- \(\partial G \), 257
- \(\int_M f \), 254 255
- \(\int_{(M, \mathcal{O})} \omega \), 253
- \(V_n(M) \), 255
- \(V_n(M, \mathcal{O}) \), 254