Conventions, notation, terminology etc.

Unless stated otherwise (or even always):
\[\mathbb{R} \] the real line
All vector (in other words, linear) spaces are over \(\mathbb{R} \) and finite dimensional.
\[\mathbb{R}^n \] \(\{(x_1, \ldots, x_n) : x_1, \ldots, x_n \in \mathbb{R}\} \)
Thus, \(\mathbb{R}^{m+n} = \mathbb{R}^m \times \mathbb{R}^n \) up to canonical isomorphism.
\[A \subset B \] \(\forall x \ (x \in A \implies x \in B) \)
Thus, \((A \subset B) \land (B \subset A) \iff (A = B) \).
\((1, \ldots, n) \) or \((x_1, \ldots, x_n) \) finite sequence
\((1, 2, \ldots) \) or \((x_1, x_2, \ldots) \) infinite sequence
\[f : A \to B \] \(f \subset A \times B \) and \(\forall x \in A \exists ! y \in B \ (x, y) \in f \).
\[Tx \] the same as \(T(x) \) when a mapping \(T \) is linear.

[Sh:2.2] See also Sect. 2.2 of “Multivariable calculus” by J. Shurman.
[Sh:p.31], or [Sh:Ex.2.2.7] The same but page 31, or Exercise 2.2.7

Index of terminology and notation is available at the end of each section.

1. a rule of thumb: there is a canonical isomorphism between \(X \) and \(Y \) if and only if you would feel comfortable writing “\(X = Y \)” — Reid Barton, see Mathoverflow, What is the definition of “canonical”?

2. Why “\(\subset \)” and “\(\subseteq \)” rather than “\(\subseteq \)” and “\(\subset \)”? Since I need “\(\subset \)” several times a day, while “\(\subseteq \)” hardly once a month.

3. Here \(B \) is the codomain, generally not the image of \(f \).