23 Random real zeroes: no derivatives

23a Random element of $L_2[0,1]$
Continuing Sect. 22d, we consider a Gaussian process

$$\Xi : [0,1] \to G \subset L_2(\Omega,P), \quad \Xi(t) = f_1(t)g_1 + f_2(t)g_2 + \ldots,$$

where (g_1, g_2, \ldots) is an orthonormal basis of G, and $f_k(t) = \langle \Xi(t), g_k \rangle$ are measurable. Necessarily,

$$\forall t \in [0,1] \quad |f_1(t)|^2 + |f_2(t)|^2 + \cdots = \|\Xi(t)\|^2 < \infty.$$

We upgrade Ξ to the corresponding random element of $L_0[0,1]$ (as explained in Sect. 22d), denoted by $X : \Omega \to L_0[0,1]$. In general, $\int_0^1 \|\Xi(t)\|^2 \, dt = \sum_k \int |f_k(t)|^2 \, dt$ need not be finite. From now on we assume that it is:

$$\int_0^1 \|\Xi(t)\|^2 \, dt < \infty;$$

then, by Tonelli’s theorem,

$$\mathbb{E} \int_0^1 |X(t)|^2 \, dt = \int_0^1 (\mathbb{E} |X(t)|^2) \, dt = \int_0^1 \|\Xi(t)\|^2 \, dt < \infty,$$

which shows that X is in fact a random element of $L_2[0,1]$. We approximate X by another random element X_n of $L_2[0,1]$,

$$X_n(t) = g_1 f_1(t) + \cdots + g_n f_n(t).$$

We may also treat X and X_n as elements of $L_2([0,1] \times \Omega)$.

23a1 Exercise. $X_n \to X$ in $L_2([0,1] \times \Omega)$.
Prove it.

1This is also sufficient (think, why).
2In fact, almost surely the series converges in $L_2(0,1)$.

23a2 Exercise. For every \(f \in L_2[0,1] \) the random variables \(\langle f, X_n \rangle = \langle f_1, f \rangle g_1 + \cdots + \langle f_n, f \rangle g_n \) converge (as \(n \to \infty \)) in \(L_2(\Omega) \) to the random variable \(\langle f, X \rangle = \int_0^1 f(t)X(t) \, dt \).
Prove it.
Thus,
\[
\text{Var}(f, X) = \sum_k |\langle f, f_k \rangle|^2 \leq C \|f\|^2
\]
for some \(C \leq \sum_k \|f_k\|^2 = \int_0^1 \|\Xi(t)\|^2 \, dt < \infty \).

23a3 Proposition. Let \(C \) be such that for all \(f \in L_2[0,1] \)
\[
\text{Var}(f, X) \leq C \|f\|^2.
\]
Let \(\psi : L_2[0,1] \to \mathbb{R} \) be a Lip(1) function. Then the random variable \(\psi(X) \) belongs to GaussLip(\(\sqrt{C} \)).

First, we need the duality argument used already in 11c3.

23a4 Lemma. \(\|a_1f_1 + a_2f_2 + \ldots \|^2 \leq C(a_1^2 + a_2^2 + \ldots) \) for all \((a_1, a_2, \ldots) \in l_2 \).

Proof. We introduce a linear operator \(S : l_2 \to L_2[0,1] \) by \(Sa = \sum a_k f_k \); the series converges in \(L_2[0,1] \), since \(\sum \|a_kf_k\| = \sum |a_k| \cdot \|f_k\| \leq (\sum |a_k|^2)^{1/2}(\sum \|f_k\|^2)^{1/2} < \infty \). We have \(\forall a \in l_2 \, \forall f \in L_2[0,1] \, \langle f, Sa \rangle = \langle S^*f, a \rangle \), where \(S^* : L_2[0,1] \to l_2 \), \(S^*f = (\langle f, f_1 \rangle, \langle f, f_2 \rangle, \ldots) \).

We note that \(\text{Var}(f, X) = \|S^*f\|^2 \); thus, \(\|S^*f\|^2 \leq C\|f\|^2 \) for all \(f \).
Finally,
\[
\|Sa\| = \sup_{\|f\| \leq 1} \langle f, Sa \rangle = \sup_{\|f\| \leq 1} \langle S^*f, a \rangle \leq \sup_{\|f\| \leq 1} \|S^*f\|||a|| \leq \sqrt{C}||a||.
\]

\(\square \)

Proof of the proposition. Similarly to the proof of 22d5 we assume that \((\Omega, P) = (\mathbb{R}^\infty, \gamma^\infty) \), \(g_k \) are the coordinates, and will prove that \(\psi(X) \) is a Lip(\(\sqrt{C} \)) function on \((\mathbb{R}^\infty, \gamma^\infty) \).

We take \(n_1 < n_2 < \ldots \) such that \(\sum_{i=1}^{n_k} f_i g_i \to X \) (as \(k \to \infty \)) almost everywhere on \([0,1] \times \Omega \).

\(^1\)In fact, \(n_k = k \) fit.
Given $a \in l^2$, we introduce $h = a_1 f_1 + a_2 f_2 + \cdots \in L^2[0,1]$; $\|h\|^2 \leq C\|a\|^2$ by $(23a4)$. For almost all $(t, x) \in [0, 1] \times (\mathbb{R}^\infty, \gamma^\infty)$ we have

$$X(x + a, t) - X(x, t) = \lim_{n_k} \sum_{i=1}^{n_k} (x_i + a_i) f_i(t) - \lim_{n_k} \sum_{i=1}^{n_k} x_i f_i(t) = \lim_{n_k} \sum_{i=1}^{n_k} a_i f_i(t) = h(t).$$

Thus, $X(x + a) - X(x) = h$ for almost all $x \in (\mathbb{R}^\infty, \gamma^\infty)$. Finally,

$$|\psi(X(x + a)) - \psi(X(x))| \leq \|X(x + a) - X(x)\| = \|h\| \leq \sqrt{C}\|a\|.$$

Here is a useful formula for the variance:

$$(23a5) \quad \text{Var}(f, X) = \int_0^1 \int_0^1 f(s)f(t) \left(\mathbb{E} \Xi(s)\Xi(t) \right) \, ds \, dt$$

for every $f \in L^2[0,1]$. Proof:

$$\mathbb{E} \left(\int f(t)X(t) \, dt \right)^2 = \mathbb{E} \int f(s)X(s)f(t)X(t) \, ds \, dt = \int \int \left(\mathbb{E} f(s)X(s)f(t)X(t) \right) \, ds \, dt,$$

since

$$\mathbb{E} \int \left| f(s)X(s)f(t)X(t) \right| \, ds \, dt = \mathbb{E} \left(\int |f(t)X(t)| \, dt \right)^2 \leq \mathbb{E} \left(\int |f(t)|^2 \, dt \right) \left(\int |X(t)|^2 \, dt \right) = \|f\|^2 \int_0^1 \|\Xi(t)\|^2 \, dt < \infty.$$

23b Using assumption A_n

Let $\Xi : \mathbb{R} \to G \subset L^2(\Omega, P)$ be a mean-square continuous stationary Gaussian random process on \mathbb{R}, and μ its spectral measure:

$$\mathbb{E} \Xi(0)\Xi(t) = \int_{-\infty}^{+\infty} e^{i\lambda t} \mu(d\lambda) = \int_{-\infty}^{+\infty} \cos \lambda t \mu(d\lambda).$$

1In fact, the distribution $X[\gamma^\infty]$ of X is a Gaussian measure on $L^2[0,1]$, and h is its admissible shift.
Here is another useful formula for the variance, this time in terms of the spectral measure (recall 11c4):

\[(23b1) \quad \text{Var}(f, X) = \int \left| \int_0^1 f(t)e^{i\lambda t} \, dt \right|^2 \mu(d\lambda) \]

for every \(f \in L_2[0,1] \). Proof:

\[
\text{Var}(f, X) = \iint f(s)f(t) \left(\int e^{i\lambda(t-s)} \mu(d\lambda) \right) \, ds \, dt = \int \mu(d\lambda) \left(\int f(s)e^{i\lambda s} \, ds \right) \left(\int f(t)e^{i\lambda t} \, dt \right),
\]

since

\[
\int \mu(d\lambda) \left(\int |f(s)f(t)e^{i\lambda(t-s)}| \, ds \right) \, dt = \mu(\mathbb{R}) \left(\int |f(t)| \, dt \right)^2 < \infty .
\]

We generalize assumptions \(A \) and \(A_n \) of Sect. 2 as follows.

ASSUMPTION A:

\[\mu(\mathbb{R}) = 1 . \]

That is, \(X(0) \sim N(0,1) \). Otherwise we may rescale \(X \).

ASSUMPTION \(A_n \): assumption \(A \) holds, and in addition,\(^1\)

\[\forall \lambda \in [0,\infty) \quad \mu([\lambda, \lambda + 1]) \leq \frac{1}{n} . \]

The argument of Sect. 11c still applies, recall (11c5): for every \(f \in L_2[0,1] \),

\[\int |g|^2 \, d\mu \leq C \left(\int |g(\lambda)|^2 \, d\lambda \right) \sup_\lambda \mu([\lambda, \lambda + 1]) ; \]

as before, \(g(\lambda) = \int_0^1 e^{i\lambda t} f(t) \, dt \), \(\|g\|^2 = 2\pi \|f\|^2 \), and

\[\text{Var}(f, X) = \int |g|^2 \, d\mu . \]

Thus, assumption \(A_n \) implies (recall 11c3)

\[\text{Var}(f, X) \leq \frac{C}{n} \|f\|^2 , \]

\(^1\)Alternatively you may take \(\lambda \in \mathbb{R} \); it is the same up to a factor 2 absorbed by an absolute constant.
and, by 23b3,
\[\psi(X) \in \text{GaussLip}(C/\sqrt{n}) \]
whenever \(\psi : L_2[0, 1] \to \mathbb{R} \) is a Lip(1) function.

Now all arguments of 11d, 11e apply, and so, Theorems 2a2, 2a3 are generalized as follows.

Let \(X \) be a jointly measurable modification of a mean-square continuous stationary Gaussian random process on \(\mathbb{R} \), satisfying assumption \(A_n \).

23b2 Proposition. Let a function \(\varphi : \mathbb{R} \to \mathbb{R} \) be continuous almost everywhere, and
\[\sup_x \frac{|\varphi(x)|}{1 + |x|} < \infty. \]
Then the random variable
\[\xi = \int_0^1 \varphi(X(t)) \, dt \]
is integrable, \(E \xi = \int \varphi \, d\gamma^1 \), and for every \(\varepsilon > 0 \),
\[P \left(\left| \xi - E \xi \right| \geq \varepsilon \right) \leq 2e^{-c_{\varepsilon, \varphi}n} \]
for some \(c_{\varepsilon, \varphi} > 0 \) (dependent on \(\varepsilon \) and \(\varphi \) only, not on \(n \)).

23b3 Proposition.
\[P \left(T(X(\cdot)) \geq \varepsilon \right) \leq 2e^{-c_{\varepsilon}n} \]
for some \(c_{\varepsilon} > 0 \) dependent on \(\varepsilon \) only.

As before, for \(f \in L_1[0, 1] \),
\[T(f) = \inf_g \int_0^1 |f(t) - g(t)| \, dt \]
where the infimum is taken over all measurable \(g : (0, 1) \to \mathbb{R} \) that send Lebesgue measure to \(\gamma^1 \).

A trivial rescaling of \(t \) by arbitrary \(L > 0 \) turns assumption \(A_n \) and Proposition 23b2 into the following.

Assumption \(A_{n,L} \): assumption \(A \) holds, and in addition,
\[\forall \lambda \in [0, \infty) \quad \mu \left(\left[\lambda, \lambda + \frac{1}{L} \right] \right) \leq \frac{1}{n}. \]
23b4 Corollary. Let X satisfy $A_{n,L}$ and φ be as in 23b2. Then the random variable
\[
\xi = \frac{1}{L} \int_0^L \varphi(X(t)) \, dt
\]
is integrable, $E\xi = \int \varphi \, d\gamma^1$, and for every $\varepsilon > 0$,
\[
P\left(|\xi - E\xi| \geq \varepsilon\right) \leq 2e^{-c_{\varepsilon,\varphi,n}}
\]
for some $c_{\varepsilon,\varphi} > 0$.

Now, at last, we can deal with a single process, getting rid of assumption $A_{n,L}$.

23b5 Theorem. Let X be a jointly measurable1 modification of a mean-square continuous stationary Gaussian random process on \mathbb{R} whose spectral measure has a bounded density.2 Let a function $\varphi : \mathbb{R} \to \mathbb{R}$ be continuous almost everywhere, and
\[
\sup_x \frac{|\varphi(x)|}{1 + |x|} < \infty.
\]
Then random variables
\[
\xi_L = \frac{1}{L} \int_0^L \varphi(X(t)) \, dt \quad \text{for } L \in (0, \infty)
\]
are integrable, $E\xi_L = \int \varphi \, d\gamma^1$, and for every $\varepsilon > 0$,
\[
P\left(|\xi_L - E\xi_L| \geq \varepsilon\right) \leq 2e^{-c_{\varepsilon,\varphi,M}L}
\]
for some $c_{\varepsilon,\varphi,M} > 0$ (dependent only on ε, φ and the supremum M of the spectral density, not on L).

23b6 Exercise. Prove Theorem 23b5.

23b7 Exercise. Formulate and prove a single-process counterpart of 23b3.

23c Dimension two, and higher

A two-component (in other words, \mathbb{R}^2-valued) Gaussian random process on a set T may be defined as a pair (Ξ_1, Ξ_2) of Gaussian processes $\Xi_1, \Xi_2 : T \to G \subset L_2(\Omega, P)$. Or equivalently, as a Gaussian process $\Xi : T \times \{1, 2\} \to$ $\mu(\{1, 2\}) < \infty$.

1Sample continuity is of course sufficient (by 22d3).
2Equivalently, $\sup_{a<b} \frac{\mu([a,b])}{b-a} < \infty$.

Similarly, a two-component random function ξ on T is a pair (ξ_1, ξ_2) of random functions $\xi_1, \xi_2 : \Omega \to \mathbb{R}^T$, or a random function $\xi : \Omega \to \mathbb{R}^T \times \{1, 2\} = \mathbb{R}^T \times \{1, 2\}$. Clearly, (ξ_1, ξ_2) is a modification of (Ξ_1, Ξ_2) if and only if both ξ_1 is a modification of Ξ_1 and ξ_2 is a modification of Ξ_2. Continuity and measurability properties are defined evidently.

The covariance function of $\Xi : T \times \{1, 2\} \to G$ is $(s, k; t, l) \mapsto \mathbb{E}(\Xi(s, k)\Xi(t, l)) = \mathbb{E}\Xi_k(s)\Xi_l(t)$. Stationarity (assuming $T = \mathbb{R}$) is, by definition (recall 21e1),

$$\forall s, t \in \mathbb{R} \ \forall k, l \in \{1, 2\} \ \mathbb{E}\Xi_k(s)\Xi_l(t) = \mathbb{E}\Xi_k(0)\Xi_l(t - s).$$

For a stationarity $\Xi : \mathbb{R} \times \{1, 2\} \to G$ the covariance function $R : \mathbb{R} \times \{1, 2\} \times \{1, 2\} \to \mathbb{R}$ is, by definition,

$$R(t, k, l) = R_{k,l}(t) = \mathbb{E}\Xi_k(0)\Xi_l(t);$$

it determines the process up to isometry. Another function $r : \mathbb{R} \to \mathbb{R}$,

$$r(t) = \mathbb{E}\langle \Xi(0), \Xi(t) \rangle = \mathbb{E}(\Xi_1(0)\Xi_1(t) + \Xi_2(0)\Xi_2(t)) = R_{1,1}(t) + R_{2,2}(t),$$

containing only a partial information about R, will be called the traced covariance function. Normalizing the process to $r(0) = 1$ one may call r the correlation function. However, such normalization is sometimes inconvenient, since the case $\Xi(0) \sim \gamma^2$ leads to $r(0) = 2$.

Clearly, the function r is positive definite. Assuming mean square continuity of Ξ we apply Bochner’s theorem and get the traced spectral measure,\(^2\) — a symmetric measure μ on \mathbb{R} such that

$$\mathbb{E}\langle \Xi(0), \Xi(t) \rangle = r(t) = \int e^{i\lambda t} \mu(d\lambda).$$

In the finite-dimensional case treated in 11f, $r(t) = \sum_k |a_k|^2 \cos \lambda_k t$ (a_k being vectors), thus, $\mu = \sum_k |a_k|^2(\delta_{\lambda_k} + \delta_{-\lambda_k})/2$.

Similarly to 28(3) we upgrade a two-component process Ξ to the corresponding random element\(^3\) X of $L_2([0, 1] \to \mathbb{R}^2)$ and consider

$$\langle f, X \rangle = \langle f_1, X_1 \rangle + \langle f_2, X_2 \rangle$$

\(^1\)A coordinate-free definition of a E-valued Gaussian process on T, for a finite-dimensional linear space E, may be given as follows: it is a linear map from E^* to G^T.

\(^2\)The full (non-traced) spectral measure may be treated as a matrix-valued measure on \mathbb{R}, or equivalently, a 2×2 matrix whose elements are (signed) measures on \mathbb{R}. For an E-valued process one gets a “scalar product” on E^* whose values are (signed) measures on \mathbb{R}.

\(^3\)Just upgrade Ξ_1 to X_1, Ξ_2 to X_2, and take $X = (X_1, X_2)$.\)
for $f = (f_1, f_2) \in L_2([0, 1] \to \mathbb{R}^2)$. We cannot calculate $\text{Var}(f, X)$ in terms of the traced spectral measure μ (like (23b1)), but we can bound it:

$$\text{Var}(f, X) \leq 2 \int \left| \int_0^1 f(t)e^{i\lambda t} \, dt \right|^2 \mu(d\lambda) = 2 \int \left(\left| \int_0^1 f_1(t)e^{i\lambda t} \, dt \right|^2 + \left| \int_0^1 f_2(t)e^{i\lambda t} \, dt \right|^2 \right) \mu(d\lambda).$$

Proof:

$$\text{Var}(f, X) = \|\langle f, X \rangle\|^2 = \|\langle f_1, X_1 \rangle + \langle f_2, X_2 \rangle\|^2 \leq 2\|\langle f_1, X_1 \rangle\|^2 + 2\|\langle f_2, X_2 \rangle\|^2$$

$$= 2 \int \left| \int_0^1 f_1(t)e^{i\lambda t} \, dt \right|^2 \mu_{1,1}(d\lambda) + 2 \int \left| \int_0^1 f_2(t)e^{i\lambda t} \, dt \right|^2 \mu_{2,2}(d\lambda),$$

where $\mu_{1,1}$ is the spectral measure for X_1, and $\mu_{2,2}$ --- for X_2; it remains to note that $\mu = \mu_{1,1} + \mu_{2,2}$ (think, why).

Assumption A is replaced with

$$\Xi(0) \sim \gamma^2$$

(which implies $\mu(\mathbb{R}) = 2$); assumption A_n still adds

$$\forall \lambda \in [0, \infty) \quad \mu([\lambda, \lambda + 1]) \leq \frac{1}{n}$$

where μ is the traced spectral measure. As before we get

$$\forall f \in L_2([0, 1] \to \mathbb{R}^2) \quad \text{Var}(f, X) \leq \frac{C}{n}\|f\|^2;$$

$$\psi(X) \in \text{GaussLip}(C/\sqrt{n})$$

whenever $\psi : L_2([0, 1] \to \mathbb{R}^2) \to \mathbb{R}$ is a Lip(1) function. Similarly to 11f, Propositions 23b2 and 23b3 generalize to two-component processes satisfying assumption A_n. Also Theorem 23b5 generalizes to two-component processes whose traced spectral measures have bounded densities.

All said about \mathbb{R}^2 holds equally well for \mathbb{R}^d, $d = 3, 4, \ldots$

23d Hints to exercises

23b6: $L = Cn$.

1In fact, the coefficient “2” is superfluous (see 11f for the discrete case); however, the stronger inequality is harder to prove.