
Introduction to stochastic processes — 2007, TAU 1

Exam of 26.07.2007 — Solutions

1

The function h(i) = Pi(V10 < V
−1) satisfies

h(i) =
1

2
h(i − 1) +

1

2
h(i + 1) for i = 1, . . . , 9 ;(*)

h(0) =
1

11
h(−1) +

10

11
h(1) ;(**)

h(−1) = 0 , h(10) = 1 .(***)

By (*), h is linear on {0, . . . , 10} (since h(i) − h(i − 1) = h(i + 1) − h(i) for i = 1, . . . , 9);
therefore 10

(

h(1)−h(0)
)

= h(10)−h(0). By (**), h(0)−h(−1) = 10
(

h(1)−h(0)
)

. Therefore
h(0) − h(−1) = h(10) − h(0) and h(0) = 1

2
h(−1) + 1

2
h(10) = 1

2
. This is the answer.

2

Let Mn be the total strength of all A-monsters after n fights (or after the last fight, if n
exceeds the total number of fights). We have M0 = a1 + · · · + a10 and

M1 − M0 =

{

b1 with probability a1

a1+b1
,

−a1 with probability b1
a1+b1

,

therefore E (M1 − M0) = 0. After n fights (if the game is not over yet), given the past, a
fight between an A-monster of some strength a and a B-monster of some strength b (these
a, b depending on the past) leads to

Mn+1 − Mn =

{

b with (conditiional) probability a
a+b

,

−a with (conditiional) probability b
a+b

,

therefore E
(

Mn+1 −Mn

∣

∣ the past
)

= 0, which means that the process Mn is a martingale.
For n large enough (in fact, for n ≥ 19) we have either Mn = 0 or Mn = a1 + · · ·+ a10 +

b1 + · · ·+ b10 (since the game is over). Then

a1 + · · ·+ a10 = E M0 = E Mn = (a1 + · · ·+ a10 + b1 + · · ·+ b10) · P
(

Mn 6= 0
)

,

therefore

P
(

Mn = 0
)

=
b1 + · · ·+ b10

a1 + · · ·+ a10 + b1 + · · · + b10

.

The probability does not depend on the order of the A-monsters.
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3a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Random variables X1 and X2 − X1 are independent and identically distributed, therefore
P

(

X1 < X2 −X1

)

= P
(

X1 > X2 −X1

)

. Taking into account that P
(

X1 = X2 −X1

)

= 0
(since the distribution is nonatomic) we get P

(

X1 < X2 − X1

)

= 0.5. Thus, P
(

X1 <
1

2
X2

)

= 0.5.
Alternatively (if you prefer), P

(

X1 < X2 − X1

)

= λ
λ+λ

= 0.5 by the ‘Exponential race’
formula (see the textbook, (1.8) on page 128).

3b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

According to the ‘Poisson race’ approach (see the textbook, Example 3.4 on page 141) we
treat X1, X2, . . . as ‘red arrivals’ with a rate λ, and 2Y1, 2Y2, . . . as ‘green arrivals’ with the
rate µ = λ/2. Now, P

(

Y1 < 1

2
X2

)

is the probability that we will get the first green arrival
before the second red arrival. That is, at least one green arrival in the first two. Each of
these two arrivals is red with probability λ

λ+µ
= 2

3
. Thus,

P
(

Y1 <
1

2
X2

)

= 1 − P
(

both are red
)

= 1 −
2

3
·
2

3
=

5

9
.

4

We have two independent M/M/1 queues (see the textbook, Example 4.1 on page 176) with
µ = 2λ. The stationary distribution is

π(n) =
1

2
·
(1

2

)n

for n = 0, 1, 2, . . .

(for each queue). Therefore

P
(

X = 2
)

= π(0)π(2) + π(1)π(1) + π(2)π(0) =
1

2
·
1

8
+

1

4
·
1

4
+

1

8
·
1

2
=

3

16
.

5

We have an M/M/s queue (see the textbook, Example 4.3 on page 179) with s = 2, input
rate 2λ, and µ = 2λ. Detailed balance:

π(0) = π(1), π(1) = 2π(2), π(2) = 2π(3), . . .

The stationary distribution is

π(0) =
1

3
, π(1) =

1

3
, π(2) =

1

6
, . . .

Therefore

P
(

X = 2
)

= π(2) =
1

6
.


