1 Physical prelude

1a A physical question

To understand why rare events are important at all, one only has to think of a lottery to be convinced that rare events (such as hitting the jackpot) can have an enormous impact.

Amir Dembo and Ofer Zeitouni

Small probabilities, such as 10^{-6}, are important for lotteries, reliability etc., which cannot be said about much smaller probabilities, such as $10^{-1,000,000,000,000,000,000,000,000,000}$. However, these monsters do appear in statistical physics (as e^{-cn} where the number of particles like $n = 10^{23}$ is quite usual). They are far beyond the reach of the famous normal approximation (unlike 10^{-6}).

1b A naive solution

The numbers that arise in statistical mechanics can defeat your calculator. A googol is 10^{100} (one with a hundred zeros after it). A googolplex is $10^{10^{100}}$.

James P. Sethna

1c Failure of the naive solution

1d A physical approach

A system of n spin-1 particles is described by the configuration space $\{-1, 0, 1\}^n$. Each configuration $(s_1, \ldots, s_n) \in \{-1, 0, 1\}^n$ has its energy 3

$$H_n(s_1, \ldots, s_n) = nf\left(\frac{s_1 + \cdots + s_n}{n}\right),$$

1See page 1 in the book “Large deviations techniques and applications”, Jones and Bartlett Publ., 1993.

3All spins interact with the same magnetic field $g((s_1 + \cdots + s_n)/n)$ that depends on the mean field $(s_1 + \cdots + s_n)/n$ via a function g describing (generally, nonlinear) magnetic properties of the environment. Thus, $f(x) = xg(x)$. See also Sect. 9 in: R.S. Ellis, “The theory of large deviations and applications to statistical mechanics”, 2006, http://www.math.umass.edu/~rsellis/pdf-files/Dresden-lectures.pdf and Sect. 7.3.2 in: D. Yoshioka, “Statistical physics”, Springer, 2007.
where \(f : [-1, 1] \to \mathbb{R} \) is a given smooth function (not depending on \(n \)). If the system is in thermal equilibrium with a heat bath at temperature \(T \), then each configuration \((s_1, \ldots, s_n)\) appears with the probability

\[
\text{const}_n \cdot \exp \left(-\frac{1}{k_B T} H_n(s_1, \ldots, s_n) \right),
\]

where \(k_B (= 1.38 \cdot 10^{-23} J/K) \) is the so-called Boltzmann constant. For large \(n \), up to small fluctuations, the energy per particle \(f(\frac{s_1 + \cdots + s_n}{n}) \) is a function of the temperature. Find this function.

1b A naive solution

First, the number of configurations \((s_1, \ldots, s_n)\) such that \(\frac{s_1 + \cdots + s_n}{n} \approx x \) is roughly proportional (up to an \(n \)-dependent coefficient) to \(\exp(-\frac{3n}{4}x^2) \) for small \(x \) (only small \(x \) being relevant). Indeed, if all configurations are equiprobable then \(\frac{s_1 + \cdots + s_n}{n} \) is approximately normal, \(N(0, \frac{2}{3n}) \); the corresponding density is proportional to \(x \mapsto \exp(-\frac{3n}{4}x^2) \).

Second, the probability of this set of configurations is roughly proportional to

\[
\exp \left(-\frac{3n}{4} x^2 - \frac{1}{k_B T} n f(x) \right) = \exp \left(-n \left(\frac{3}{4} x^2 + \beta f(x) \right) \right),
\]

where \(\beta = \frac{1}{k_B T} \). Thus, the probability is roughly concentrated at the minimizer \(x_\beta \) of the function \(x \mapsto \frac{3}{4} x^2 + \beta f(x) \), and the energy per particle is roughly \(f(x_\beta) \).

1c Failure of the naive solution

Consider the simple case \(f(x) = 1 + x \) (an external magnetic field only). Here, \(x_\beta = -\frac{2}{3} \beta \); the energy per particle: \(f(x_\beta) = 1 - \frac{2}{3} \beta = 1 - \frac{2}{3} \cdot \frac{1}{k_B T} \).

For small \(\beta \) (that is, high temperature) it is believable. Otherwise it is not, since \(x_\beta \) is not small (recall, only small \(x \) should be relevant) and moreover, need not belong to \([-1, 1]\).

In fact, this simple case admits an exact solution. The probability\(^1\) \(\text{const} \cdot \exp(-\beta H_n(s_1, \ldots, s_n)) = \text{const} \cdot \exp(-\beta(s_1 + \cdots + s_n)) = \text{const} \cdot e^{-\beta s_1} \cdots e^{-\beta s_n} \).

\(^1\)Every ‘const’ is a new constant (depending on \(n \) and \(\beta \) but not \(s_1, \ldots, s_n \)).
factorizes; it means that s_1, \ldots, s_n are independent random variables,\footnote{In contrast to the general case (nonlinear f).} each distributed as follows:

$$
(1c1) \quad \begin{array}{l}
\text{prob.} \\
\frac{1}{e^{\beta} + 1 + e^{-\beta}} \quad \frac{1}{e^{\beta} + 1 + e^{-\beta}} \quad \frac{1}{e^{\beta} + 1 + e^{-\beta}}
\end{array}
$$

Therefore $\frac{s_1 + \cdots + s_n}{n}$ is concentrated near the expectation,

$$
X_{\beta} = -\frac{e^\beta - e^{-\beta}}{e^\beta + 1 + e^{-\beta}},
$$

which is different from $-\frac{2}{3}\beta$. (However, for small β it is $-\frac{2}{3}\beta$ in the linear approximation.) Note that $x_{\beta} \to -1$ as $\beta \to \infty$, and no wonder; at low temperature the energy is roughly minimal.

\textbf{1d A physical approach}

The spins s_1, \ldots, s_n are microscopic, but the frequencies

$$
p_s = \frac{1}{n}\#\{k: s_k = s\} \quad \text{for } s \in \{-1, 0, 1\}
$$

are macroscopic. The entropy per particle,

$$
S(p_{-1}, p_0, p_1) = -\sum_{s=-1,0,1} p_s \ln p_s,
$$

is roughly $(1/n)$ times the logarithm of the number of configurations (s_1, \ldots, s_n) conforming to (p_{-1}, p_0, p_1).

Given a macroscopic parameter $x = \frac{1}{n}(s_1 + \cdots + s_n) = p_1 - p_{-1}$, we maximize the entropy\footnote{Why maximize the entropy? See Sect. 2b ‘Contraction principle’.} over all (p_{-1}, p_0, p_1) satisfying $p_1 - p_{-1} = x$. It appears that the maximizer is of the form

$$
(p_{-1}, p_0, p_1) = \frac{1}{e^b + 1 + e^{-b}} \cdot (e^b, 1, e^{-b}),
$$

just the form of (1c1) but with some b instead of β. We get

$$
S(p_{-1}, p_0, p_1) = bx + \ln(e^b + 1 + e^{-b}),
$$

$$
x = \frac{e^{-b} - e^b}{e^b + 1 + e^{-b}}.
$$
which is a functional dependence (not explicit, unfortunately) between x and the entropy S. This is the correct substitute of the naive formula $S = -\frac{3}{4} x^2 + \ln 3$. Now we continue similarly to the ‘naive solution’; x_β is the minimizer of the function $x \mapsto -S(x) + \beta f(x)$, and the energy is $f(x_\beta)$.

By the way, for small b (and x),

$$x = -\frac{2}{3} b + o(b); \quad b = -\frac{3}{2} x + o(x);$$

$$S = bx + \ln(3 + b^2 + o(b^2)) = -\frac{3}{4} x^2 + \ln 3 + o(x^2),$$

which conforms to the naive approach.