8 Blocks, Markov chains, Ising model

8a Introductory remarks

The following three questions are related more closely than it may seem.

8a1 Question. 100 children stay in a ring, 40 boys and 60 girls. Among the 100 pairs of neighbors, 20 pairs are heterosexual (a girl and a boy); others are not. What about the number of all such configurations?

8a2 Question. A Markov chain with two states (0 and 1) is given via its 2×2-matrix of transition probabilities. What about the probability that the state 1 occurs 60 times among the first 100?

8a3 Question. (Ising model) A one-dimensional array of n spin-$1/2$ particles is described by the configuration space $\{-1,1\}^n$. Each configuration $(s_1,\ldots,s_n) \in \{-1,1\}^n$ has its energy

$$H_n(s_1,\ldots,s_n) = -\frac{1}{2}(s_1s_2 + \cdots + s_{n-1}s_n) - h(s_1 + \cdots + s_n);$$

here $h \in \mathbb{R}$ is a parameter. (It is the strength of an external magnetic field, while the strength of the nearest neighbor coupling is set to 1.) What about the dependence of the energy and the mean spin $(s_1 + \cdots + s_n)/n$ on h and the temperature?

Tossing a fair coin n times we get a random element (β_1,\ldots,β_n) of $\{0,1\}^n$, and may consider the $n-1$ pairs $(\beta_1,\beta_2), (\beta_2,\beta_3), \ldots, (\beta_{n-1},\beta_n)$. We introduce pair frequencies

$$K'_n = \left(\frac{K'_{00}}{n-1}, \frac{K'_{01}}{n-1}, \frac{K'_{10}}{n-1}, \frac{K'_{11}}{n-1} \right) \in P(\{0,1\}^2),$$

$$K'_{ab} = \#\{i = 1,\ldots,n-1: \beta_i = a, \beta_{i+1} = b\},$$
and their (joint) distribution

$$\int f \, d\mu'_n = \frac{1}{2^n} \sum_{\beta \in \{0,1\}^n} f \left(\frac{K'_{00}}{n-1}, \frac{K'_{01}}{n-1}, \frac{K'_{10}}{n-1}, \frac{K'_{11}}{n-1} \right).$$

Alternatively, we may consider n pairs $(\beta_1, \beta_2), (\beta_2, \beta_3), \ldots, (\beta_{n-1}, \beta_n), (\beta_n, \beta_1)$, the corresponding pair frequencies $K''_n = (K''_{00}, K''_{01}, K''_{10}, K''_{11})$ and their (joint) distribution μ''_n.

8a4 Exercise. LD-convergence of $(\mu'_n)_n$ is equivalent to LD-convergence of $(\mu''_n)_n$, and their rate functions (if exist) are equal. Prove it.
Hint: recall 5d.

You may say that what we call μ'_n should be called μ'_{n-1} instead; but it does not matter in the following sense.

8a5 Exercise. Let μ_n be probability measures on a compact metrizable space K. Then LD-convergence of $(\mu_n)_n$ is equivalent to LD-convergence of $(\mu_{n+1})_n$, and their rate functions (if exist) are equal. Prove it.
Hint: similar to 2a17.

8a6 Exercise. Explain, why LD-convergence of $(\mu'_n)_n$ cannot be derived from Theorem 5a9 (Mogulskii’s theorem) combined with Theorem 2b1 (the contraction principle).

8a7 Exercise. If the rate function I for $(\mu'_n)_n$, $(\mu''_n)_n$ exists then

$$\min \{ I(x_{00}, x_{01}, x_{10}, x_{11}) : x_{01} + x_{10} = z \} = I_{0.5}(z)$$

for all $z \in [0,1]$. (See (3a5) for $I_{0.5}$.) Prove it.
Hint: consider the measure preserving map $\{0,1\}^n \to \{0,1\}^{n-1}$, $(\beta_1, \ldots, \beta_n) \mapsto (\beta_1 \oplus \beta_3, \beta_2 \oplus \beta_3, \ldots, \beta_{n-1} \oplus \beta_n)$; here ‘$\oplus$’ stands for the sum mod 2 (called also XOR = ‘exclusive or’).

We turn to Markov chains. Let a 2×2-matrix

$$\begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix}$$
be given, \(p_{ab} \in [0,1] \), \(p_{00}+p_{01} = 1, p_{10}+p_{11} = 1. \) In addition, let \(p_0, p_1 \in [0,1] \) be given such that \(p_0 + p_1 = 1. \) We define the probability of a history \((s_0,\ldots,s_n) \in \{0,1\}^{n+1}\) by

\[
P_n(s_0,\ldots,s_n) = p_{s_0} p_{s_0,s_1} p_{s_1,s_2} \cdots p_{s_{n-1},s_n};
\]

clearly, we get a probability measure \(P_n \) on \(\{0,1\}^{n+1} \). The pair frequencies \(K/n \) get their distribution \(\nu_n \),

\[
\int f \, d\nu_n = \sum_{s \in \{0,1\}^{n+1}} f \left(\frac{K_{00}}{n}, \frac{K_{01}}{n}, \frac{K_{10}}{n}, \frac{K_{11}}{n} \right) P_n(s).
\]

8a8 Exercise. LD-convergence of \((\nu_n)_n\) does not depend on \(p_0, p_1 \) as long as \(p_0, p_1 \neq 0 \). Also the rate function (if exists) does not depend. Prove it.

Hint: use **8a9** below.

8a9 Exercise. Let \(\mu_n, \nu_n \) be probability measures on a compact metrizable space \(K \). Assume that there exists \(C \in (0,\infty) \) such that \(\mu_n \leq C \nu_n \) and \(\nu_n \leq C \mu_n \) for all \(n \). Then LD-convergence of \((\mu_n)_n\) is equivalent to LD-convergence of \((\nu_n)_n\), and their rate functions (if exist) are equal. Prove it.

Hint: \(C^{1/n} \to 1. \)

8a10 Exercise. Assuming that \(p_{00}, p_{01}, p_{10}, p_{11} \) do not vanish, remove the restriction \(p_0, p_1 \neq 0 \) in **8a8.**

Hint: similarly to **8a4**, the pair \((s_0, s_1)\) does not matter.

8a11 Exercise. LD-convergence of \((\nu_n)_n\) does not depend on \(p_{00}, p_{01}, p_{10}, p_{11} \) as long as they do not vanish. Prove it.

Hint: similarly to 3a, 3b use Theorem 2c1 (titled LDP).

The rate function (if exists) does not depend on the initial probabilities \(p_a \), but does depend on the transition probabilities \(p_{ab} \); namely, the rate function must contain (additively) the terms

\[-x_{00} \ln p_{00} - x_{01} \ln p_{01} - x_{10} \ln p_{10} - x_{11} \ln p_{11}.\]

It means that we may restrict ourselves to the simplest matrix

\[
\begin{pmatrix}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{pmatrix} = \begin{pmatrix}0.5 & 0.5 \\
0.5 & 0.5\end{pmatrix},
\]
thus reducing Sa2 to Sa1.

We turn to the array of spin-1/2 particles. The energy $H_n(s_1, \ldots, s_n)$ depends on the spin configuration $(s_1, \ldots, s_n) \in \{-1, 1\}^n$ only via pair frequencies,

$$H_n(s_1, \ldots, s_n) = (n - 1)\left(\frac{K'_{++}}{n - 1} + \frac{K'_{+-}}{n - 1} - \frac{K'_{+\pm}}{n - 1} - \frac{K'_{-\pm}}{n - 1}\right).$$

Similarly to 3d, we have the uniform distribution U_n and the Gibbs measure G_n on $\{-1, 1\}^n$; $dG_n/dU_n = \text{const}_n \cdot e^{-\beta H_n}$. The distribution of K'_{n-1} w.r.t. U_n is μ'_n; the distribution of K'_{n-1} w.r.t. G_n is ν_n.

$$\nu_n = \text{const}_n \cdot \exp\left(-\beta(n - 1)\left(\frac{K'_{++}}{n - 1} + \frac{K'_{+-}}{n - 1} - \frac{K'_{+\pm}}{n - 1} - \frac{K'_{-\pm}}{n - 1}\right)\right) : \mu'_n.$$

If $(\mu'_n)_n$ satisfies LDP with a rate function I, then $(\nu_n)_n$ satisfies LDP with the rate function J,

$$J\left(\frac{K'_{++}}{n - 1}, \frac{K'_{+-}}{n - 1}, \frac{K'_{+\pm}}{n - 1}, \frac{K'_{-\pm}}{n - 1}\right) = I\left(\frac{K'_{++}}{n - 1}, \frac{K'_{+-}}{n - 1}, \frac{K'_{+\pm}}{n - 1}, \frac{K'_{-\pm}}{n - 1}\right) + \beta \left(\frac{K'_{++}}{n - 1} + \frac{K'_{+-}}{n - 1} - \frac{K'_{+\pm}}{n - 1} - \frac{K'_{-\pm}}{n - 1}\right) + \text{const},$$

and we may proceed as in 3d, taking into account that

$$\frac{s_1 + \cdots + s_n}{n} = \frac{K''_{++}}{n} + \frac{K''_{+-}}{n} - \frac{K''_{+\pm}}{n} - \frac{K''_{-\pm}}{n} \approx \frac{K'_{++}}{n - 1} + \frac{K'_{+-}}{n - 1} - \frac{K'_{+\pm}}{n - 1} - \frac{K'_{-\pm}}{n - 1}.$$

8b Pair frequencies: combinatorial approach

We consider the cyclic pair frequencies\(^2\) K_n for $\beta \in \{0, 1\}^n$,

$$K_{ab}(\beta) = \#\{i = 1, \ldots, n : \beta_i = a, \beta_{i+1} = b\} \text{ for } a, b \in \{0, 1\},$$

where β_{n+1} is interpreted as β_1. Clearly, $K_{01}(\beta) = K_{10}(\beta)$ and $K_{00}(\beta) + K_{11}(\beta) = n$; thus, $K_{01}(\beta) = K_{10}(\beta) = \frac{1}{2}(n - K_{00}(\beta) - K_{11}(\beta))$.

Let us denote by $N(k_{00}, k_{11})$ the number of all $\beta \in \{0, 1\}^n$ such that $K_{00}(\beta) = k_{00}$ and $K_{11}(\beta) = k_{11}$.

\(^1\)This ν_n is not related to the Markov chain...

\(^2\)These K_n are K''_n of Sa3.
8b1 Lemma. Let $k_{00}, k_{11} \in \{0, 1, 2, \ldots \}$ satisfy $\frac{1}{2}(n-k_{00} - k_{11}) \in \{1, 2, \ldots \}$, then

$$1 \leq \frac{N(k_{00}, k_{11})}{\left(\frac{n+k_{00}-k_{11}-1}{k_{00}}\right)\left(\frac{n-k_{00}+k_{11}-1}{k_{11}}\right)} \leq n.$$

Proof. Define $k_{01} = k_{10} = \frac{1}{2}(n - k_{00} - k_{11})$. There exist exactly $\binom{k_{00}+k_{01}}{k_{01}-1} = \binom{k_{00}+k_{01}}{k_{01}-1}$ partitions of the number k_{00} into k_{01} nonnegative integral summands; and similarly, $\binom{k_{11}+k_{10}}{k_{10}-1} = \binom{k_{11}+k_{10}}{k_{10}-1}$ partitions of k_{11} into k_{10} summands. Having such partitions $k_{00} = i_1 + \cdots + i_{k_{01}}$, $k_{11} = j_1 + \cdots + j_{k_{10}}$, we construct $\beta \in \{0, 1\}^n$ by concatenation:

$$\beta = 0^{i_1+1}1^{j_1+1}0^{i_2+1}1^{j_2+1}\ldots0^{i_{k_{01}}+1}1^{j_{k_{10}}+1}.$$

Clearly, $K_{00}(\beta) = k_{00}$, $K_{11}(\beta) = k_{11}$, and $i_1, \ldots, i_{k_{01}}$, $j_1, \ldots, j_{k_{10}}$ are uniquely determined by β. We see that the product $\binom{k_{00}+k_{01}}{k_{01}} \cdot \binom{k_{11}+k_{10}}{k_{10}}$ is the number of all $\beta \in \{0, 1\}^n$ such that $K_{00}(\beta) = k_{00}$, $K_{11}(\beta) = k_{11}$, $\beta_1 = 0$ and $\beta_n = 1$. The lemma follows. \hfill \Box

The case $n - k_{00} - k_{11} = 0$ is special but harmless (think, why), we put it aside. Denote

$$x = \frac{k_{00}}{n}, \quad y = \frac{k_{11}}{n}, \quad z = 1 - x - y, \quad \left(= \frac{k_{01} + k_{10}}{n}\right)$$

$$u = x + \frac{z}{2} = \frac{1+x-y}{2}, \quad \text{(the frequency of zeros)}$$

$$v = y + \frac{z}{2} = \frac{1-x+y}{2} = 1-u.$$

Using 8b1

$$(N(k_{00}, k_{11}))^{1/n} \sim \left(\frac{nu-1}{nx}\right)^{1/n} \left(\frac{nv-1}{ny}\right)^{1/n} \sim$$

$$\sim \left(\frac{nu}{nx}\right)^{1/n} \left(\frac{nv}{ny}\right)^{1/n} = \left(\frac{(nu)!(nv)!}{(nx)!(ny)!(nz/2)!^2}\right)^{1/n}$$

as $n \to \infty$, uniformly in k_{00}, k_{11}. However, $(na)^{1/n} \sim (na/e)^a$ uniformly in $a \in [0, 1]$ (recall the hint to 3a3). Thus,

$$(N(k_{00}, k_{11}))^{1/n} \sim \frac{(nu/e)^u(nv/e)^v}{(nx/e)^x(ny/e)^y((nz/2e)^z)} = \frac{u^u v^v}{x^x y^y (z/2)^z}.$$

Let β be distributed uniformly on $\{0, 1\}^n$, then the pair frequencies are distributed μ_n^{β} (recall 8a).
8b2 Exercise. \((\mu''_n)_n\) satisfies LDP with the rate function
\[
I(x_{00}, x_{01}, x_{10}, x_{11}) = x \ln x + y \ln y + z \ln z - u \ln u - v \ln v + (1 - z) \ln 2,
\]
where
\[
x = x_{00}, \quad y = x_{11}, \quad z = 1 - x - y = x_{01} + x_{10}, \quad u = x + \frac{z}{2} = \frac{1 + x - y}{2}, \quad v = y + \frac{z}{2} = \frac{1 - x + y}{2} = 1 - u,
\]
and \(x_{00}, x_{01}, x_{10}, x_{11} \in [0,1]\) satisfy \(x_{00} + x_{01} + x_{10} + x_{11} = 1\) and \(x_{01} = x_{10}\).

Prove it.

Hint: similar to 3a4.

We may write just
\[
(8b3) \quad I(x, y) = x \ln x + y \ln y + (1 - x - y) \ln(1 - x - y) - \frac{1 + x - y}{2} \ln \frac{1 + x - y}{2} - \frac{1 - x + y}{2} \ln \frac{1 - x + y}{2} + (x + y) \ln 2.
\]

By 8a4 the same holds for \((\mu'_n)_n\).

By the weak law of large numbers (and a simple trick...), \(\mu'_n\) concentrate near the point \(x_{00} = x_{01} = x_{10} = x_{11} = 0.25\). At this point \(x = y = 0.25\) and \(z = u = v = 0.5\), thus \(I(0.25, 0.25) = \frac{4}{5} \ln \frac{4}{5} - \frac{1}{2} \ln \frac{1}{2} + \frac{1}{2} \ln 2 = 0\), as it should be.

8b4 Exercise. Check by elementary calculation the equality of 8a7
\[
\min_{x+y=1-z} I(x, y) = I_{0.5}(z) \quad \text{for} \quad z \in [0,1].
\]

Hint: \(\frac{\partial}{\partial x} I(x, y) = \ln x - \ln z - \frac{1}{2} \ln u + \frac{1}{2} \ln v + \ln 2\), \(\frac{\partial}{\partial y} I(x, y) = \ln y - \ln z + \frac{1}{2} \ln u - \frac{1}{2} \ln v + \ln 2\); take the difference; show that the minimum is reached when \(x = y\).

Think about the ‘proportion’
\[
\frac{X_{8b2}}{X_{3a4}} = \frac{5a9}{3a4};
\]
could you find \(X\) (formulate, or even prove)?

See also [4, Sect. II.2] for more than two states.
8c Markov chains

We return to the Markov chain, assuming that the transition probabilities \(p_{ab} \) do not vanish. The pair frequencies are distributed \(\nu_n \). Recall 8a–8a11.

8c1 Exercise. \((\nu_n)_n\) satisfies LDP with the rate function

\[
J(x_{00}, x_{01}, x_{10}, x_{11}) = I(x_{00}, x_{01}, x_{10}, x_{11}) - x_{00} \ln p_{00} - x_{01} \ln p_{01} - x_{10} \ln p_{10} - x_{11} \ln p_{11} - \ln 2,
\]

that is,

\[
J(x, y) = I(x, y) - x \ln p_{00} - y \ln p_{11} - \frac{1 - x - y}{2} \left(\ln(1 - p_{00}) + \ln(1 - p_{11}) \right) - \ln 2,
\]

where \(I \) is given by (8b3).

Prove it.

Hint: in 2c1, \(c_n = 2^n \) (since \(p_{00} + p_{01} = 1 \) and \(p_{10} + p_{11} = 1 \)).

8c2 Exercise. For all \(\phi, \psi \in (0, \pi/2) \),

\[
\min_{x,y \geq 0, x+y \leq 1} \left(I(x, y) + x \ln \frac{\sin \phi \sin \psi}{\cos^2 \phi} + y \ln \frac{\sin \phi \sin \psi}{\cos^2 \psi} \right) = \ln(2 \sin \phi \sin \psi).
\]

Prove it.

Hint: \(p_{00} = \cos^2 \phi, p_{11} = \cos^2 \psi \); use 2a19.

An elementary derivation of 8c2 is possible but more tedious. First, we find the minimizer.

Let the function \((x, y) \mapsto I(x, y) + x \ln \frac{\sin \phi \sin \psi}{\cos^2 \phi} + y \ln \frac{\sin \phi \sin \psi}{\cos^2 \psi} \) on the triangle \(x, y \geq 0, x+y \leq 1 \) have a local minimum at \((x, y)\). As before, \(z = 1-x-y, u = (1 + x - y)/2, v = (1 - x + y)/2 \).

8c3 Exercise. \((x, y)\) is an interior point (that is, \(x, y > 0, x + y < 1 \)), and

\[
2 \tan \phi \tan \psi \sqrt{xy} = z, \quad xv \cos^2 \psi = yu \cos^2 \phi.
\]

Prove it.

Hint: take the sum and the difference of \(\frac{\partial}{\partial x} I(x, y), \frac{\partial}{\partial y} I(x, y) \) (used in 8b4).

8c4 Exercise. Prove that

\[
x = \frac{u(u-v)\cos^2 \phi}{u \cos^2 \phi - v \cos^2 \psi}, \quad y = \frac{v(u-v)\cos^2 \psi}{u \cos^2 \phi - v \cos^2 \psi}.
\]

Hint: both \(x - y \) and \(x/y \) can be expressed in terms of \(u, v \).
8c5 Exercise. Prove that
\[2(u - v) \sin \varphi \sin \psi = \sqrt{1 - (u - v)^2} (\cos^2 \varphi - \cos^2 \psi). \]
Hint: substitute 8c4 into the first equation of 8c3 and note that 2u = 1 + (u - v), 2v = 1 - (u - v).

8c6 Exercise. Prove that
\[x = \frac{\cos^2 \varphi \sin^2 \psi}{\sin^2 \varphi + \sin^2 \psi}, \quad y = \frac{\sin^2 \varphi \cos^2 \psi}{\sin^2 \varphi + \sin^2 \psi}. \]
Hint: \(u - v = \frac{\cos^2 \varphi - \cos^2 \psi}{\sin^2 \varphi + \sin^2 \psi} = \frac{\sin^2 \psi - \sin^2 \varphi}{\sin^2 \varphi + \sin^2 \psi}. \)

The minimizer is found, and now we calculate the minimal value.

8c7 Exercise. Prove that
\[I(x, y) + x \ln \frac{\sin \varphi \sin \psi}{\cos^2 \varphi} + y \ln \frac{\sin \varphi \sin \psi}{\cos^2 \psi} = \ln(2 \sin \varphi \sin \psi). \]
Hint: the left-hand side is \(x \ln \frac{x}{\cos^2 \varphi} + y \ln \frac{y}{\cos^2 \psi} + z \ln \frac{z}{2 \sin \varphi \sin \psi} - u \ln u - v \ln v + \ln(2 \sin \varphi \sin \psi) \); also \(z = \frac{\sin^2 \psi - \sin^2 \varphi}{\sin^2 \varphi + \sin^2 \psi} \) and \(u = \frac{\sin^2 \varphi - \sin^2 \psi}{\sin^2 \varphi + \sin^2 \psi} \).

This was the elementary derivation of 8c2.

However, there exists a simple probabilistic way to the minimizer! The Markov chain has a unique stationary distribution \((p_0, p_1) \),
\[
\begin{align*}
 p_0 p_{00} + p_1 p_{10} &= p_0 ; \\
 p_0 p_{01} + p_1 p_{11} &= p_1 ; \\
 p_{11} p_{10} &= p_0 p_{10} ; \\
 p_0 &= \frac{p_{10}}{p_{01} + p_{10}} , \quad p_1 = \frac{p_{01}}{p_{01} + p_{10}} ,
\end{align*}
\]
and every initial distribution converges to the stationary distribution (exponentially fast, in fact). Thus, the measures \(\nu_n \) converge to (an atom at) the point
\[(x_{00}, x_{01}, x_{10}, x_{11}) = (p_0 p_{00}, p_0 p_{01}, p_{11} p_{10}, p_{11} p_{11}) . \]
Substituting \(p_{00} = \cos^2 \varphi, \ p_{11} = \cos^2 \psi \) we get
\[x_{00} = \frac{\cos^2 \varphi \sin^2 \psi}{\sin^2 \varphi + \sin^2 \psi}, \quad x_{11} = \frac{\sin^2 \varphi \cos^2 \psi}{\sin^2 \varphi + \sin^2 \psi} ; \]
just 8c6 . . .

The rate functions examined above are of the form \((x, y) \mapsto I(x, y) + Ax + By \) where \(I \) is given by (8b3) and \(A, B \in \mathbb{R} \). However, did we cover all pairs \((A, B) \in \mathbb{R}^2 \)? Yes, we did, as is shown below.
8c8 Exercise. For every pair \((a, b) \in (0, \infty)^2\) there exists one and only one pair \((\varphi, \psi) \in (0, \pi/2)^2\) such that
\[
\frac{\sin \varphi \sin \psi}{\cos^2 \varphi} = a, \quad \frac{\sin \varphi \sin \psi}{\cos^2 \psi} = b.
\]
Prove it.

Hint: consider the curve \(\cos \varphi \cos \psi = \sqrt{b/a}\) in the square \((0, \pi/2)^2\) and check that the equation \(\tan \varphi \tan \psi = \sqrt{ab}\) is satisfied exactly once on the curve.

8c9 Remark. Using the equality \((1 + \tan^2 \varphi) \cos^2 \varphi = 1\) (and the same for \(\psi\)) one can find \(\varphi, \psi\) explicitly. Namely, \(\cos^2 \varphi\) satisfies a quadratic equation

8d Ising model (one-dimensional)

As was noted in 8a, the Ising model\(^1\) is described by the Gibbs measure \(G_n\) on \(\{-1, 1\}^n\), \(dG_n/dU_n = \text{const} \cdot e^{-\beta H_n}\), and the corresponding distribution \(\nu_n\) of pair frequencies. Also, LDP for \((\mu'_n)_n\) implies LDP for \((\nu_n)_n\) with the rate function
\[
J(\mu'_n, \nu_n) = \int \left(I(x, y) + \beta H(x, y) \right) d\mu'_n d\nu_n + \text{const},
\]
where
\[
H(x, y) = -\frac{1}{2}(1 - 2z) - h(u - v),
\]
\[
u_n = \left(x_{++} + x_{+-} + x_{-+} + x_{--} \right).
\]
That is,
\[
J_{\beta,h}(x, y) = \int \left(I(x, y) + \beta H(x, y) \right) d\mu'_n d\nu_n + \text{const},
\]
\[
H(x, y) = -\frac{1}{2}(1 - 2z) - h(x - y);
\]
as before, \(z = 1 - x - y\), and \(I\) is given by (8b3).

Clearly, \(J_{\beta,h}\) is a rate function of the form \((x, y) \mapsto I(x, y) + Ax + By\) examined in 8c2–8c9. It has a single minimizer \((x_{\beta,h}, y_{\beta,h})\), and \(\nu_n\) converge to (the atom at) \((x_{\beta,h}, y_{\beta,h})\). The minimizer can be written out explicitly

\(^1\)Developed in 1926 by Ernst Ising (in his PhD dissertation); the young German-Jewish scientist was barred from teaching when Hitler came to power.
by solving a quadratic equation (recall \[8c9\]). Having the minimizer one can calculate the energy \(H(x_\beta, h, y_\beta, h)\) and the mean spin \(x_\beta - y_\beta, h\).

The dependence of \(x_\beta, h\) and \(y_\beta, h\) on \(\beta, h\) is (real-) analytic everywhere, which means absence of phase transitions.

See also \[5, \text{Sect. 7.4.3}\].

8e Pair frequencies: linear algebra approach

Consider again the cyclic pair frequencies \(K''/n = K''(\beta_1, \ldots, \beta_n)/n\) and their distribution \(\mu''_n\) (introduced in \[8a\]).

8e1 Exercise. For every matrix \(A = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix}\),

\[
\sum_{\beta_1, \ldots, \beta_n} a_{00}^{K_{00}} a_{01}^{K_{01}} a_{10}^{K_{10}} a_{11}^{K_{11}} = \text{trace}(A^n) .
\]

Prove it.

Hint: straight from definitions (of matrix multiplication and trace).

Denote by \(\lambda_1, \lambda_2\) the eigenvalues of \(A\), then \(\lambda_1 + \lambda_2 = \text{trace}(A)\), and \(\lambda_1^n, \lambda_2^n\) are the eigenvalues of \(A^n\), therefore

\[
\text{trace}(A^n) = \lambda_1^n + \lambda_2^n .
\]

Assume that \(a_{00} > 0, a_{01} > 0, a_{10} > 0, a_{11} > 0\), then \(\lambda_1 + \lambda_2 > 0\) and

\[
\left(\text{trace}(A^n)\right)^{1/n} \to \max(\lambda_1, \lambda_2) \quad \text{as } n \to \infty .
\]

8e2 Exercise. If \((\mu''_n)_n\) satisfies LDP with a rate function \(I\), then

\[
\min_x \left(I(x_{00}, x_{01}, x_{10}, x_{11}) - x_{00} \ln a_{00} - x_{01} \ln a_{01} - x_{10} \ln a_{10} - x_{11} \ln a_{11} \right) = -\ln \frac{\max(\lambda_1, \lambda_2)}{2} .
\]

Prove it (not using \[8b\]).

Hint: consider \(\int f^n d\mu''_n\) for \(f(x_{00}, x_{01}, x_{10}, x_{11}) = a_{00}^{x_{00}} a_{01}^{x_{01}} a_{10}^{x_{10}} a_{11}^{x_{11}}\).

Taking into account that \(K_{01} = K_{10}\) and \(K_{00} + K_{01} + K_{10} + K_{11} = n\) we may restrict ourselves to \(x_{01} = x_{10}\) and \(x_{00} + x_{01} + x_{10} + x_{11} = 1\). Thus we take \(x = x_{00}\), \(y = x_{11}\) and get \(x_{01} = x_{10} = z/2\) where \(z = 1 - x - y\). Using \(I(x, y)\) instead of \(I(x_{00}, x_{01}, x_{10}, x_{11})\) we get

\[
\min_{x, y \geq 0, x + y \leq 1} \left(I(x, y) - x \ln a_{00} - y \ln a_{11} - z \ln \sqrt{a_{01} a_{10}} \right) = -\ln \frac{\max(\lambda_1, \lambda_2)}{2} .
\]
Compare it with $8c2$ there, $\max(\lambda_1, \lambda_2) = 1$.

We may restrict ourselves to matrices A such that $a_{01} = a_{10}$ and moreover, $a_{01} = a_{10} = 1$. Let

$$A = \begin{pmatrix} e^u & 1 \\ 1 & e^v \end{pmatrix},$$

then

$$\lambda_{1,2} = \frac{e^u + e^v}{2} \pm \sqrt{\left(\frac{e^u + e^v}{2}\right)^2 - e^u e^v + 1} = \frac{e^u + e^v}{2} \pm \sqrt{\left(\frac{e^u - e^v}{2}\right)^2 + 1};$$

$$\max(\lambda_1, \lambda_2) = \frac{e^u + e^v}{2} + \sqrt{\left(\frac{e^u - e^v}{2}\right)^2 + 1}.$$

Therefore

$$\min_{x,y \geq 0, x+y \leq 1} (I(x, y) - ux - vy) = - \ln \left(\frac{e^u + e^v}{4} + \frac{1}{2} \sqrt{\left(\frac{e^u - e^v}{2}\right)^2 + 1} \right).$$

We get the so-called Legendre-Fenchel transform of the rate function. (See also \(3c4\).) Does it determine I uniquely? How to calculate I? Can we use the transform in order to prove LD-convergence (rather than assume it, as in $8c2$)? These questions will be answered later (in Sect. 10).

Now, what about $\{0, 1, 2\}^n$ (in place of $\{0, 1\}^n$)? This case is similar, but leads to matrices 3×3 and a cubic (rather than quadratic) equation for their eigenvalues. Any finite alphabet may be treated this way. Accordingly one can investigate finite Markov chains and nearest-neighbor chains of higher spins.

On the other hand, return to $\{0, 1\}^n$ but consider triples $(\beta_1, \beta_2, \beta_3), (\beta_2, \beta_3, \beta_4), \ldots$ (rather than pairs $(\beta_1, \beta_2), \ldots$). Identifying a triple $(\beta_1, \beta_2, \beta_3)$ with the pair of pairs $((\beta_1, \beta_2), (\beta_2, \beta_3))$ we get a (special) four-state Markov chain. Longer blocks may be treated similarly.

See also [2, Sect. 3.1], [3, Sect. I.5], [4, Sect. V].

8f Dimension two

We turn to two-dimensional arrays $s \in \{-1, 1\}^{n \times n}$, $s = (s_{i,j})_{i,j \in \{1, \ldots, n\}}$. Blocks of size 2×2 consist of 4 numbers,

$$\begin{pmatrix} s_{i,j} & s_{i,j+1} \\ s_{i+1,j} & s_{i+1,j+1} \end{pmatrix}.$$

Their frequencies belong to $P(\{-1, 1\}^{2 \times 2})$. The corresponding distributions on $P(\{-1, 1\}^{2 \times 2})$ are LD-convergent (I give no proof). Can we calculate

We may restrict ourselves to blocks of sizes 2×1 and 1×2,

$$
\begin{pmatrix}
 s_{i,j} & s_{i,j+1} \\
 s_{i+1,j} & s_{i,j}
\end{pmatrix}
$$

These are pairs of nearest neighbours, in other words, edges of the graph \mathbb{Z}^2. Treating them equally, we count the number K_{++} of pairs $(+1, +1)$ (both horizontal and vertical); the same for K_{+-}, K_{-+}, K_{--} (The boundary may be treated in two ways that are equivalent, similarly to 8a4). The frequencies are $x_{++} = \frac{K_{++}}{2n^2}, x_{+-} = \frac{K_{+-}}{2n^2}, x_{-+} = \frac{K_{-+}}{2n^2}, x_{--} = \frac{K_{--}}{2n^2}$. Still, it is too difficult, to write down the rate function.

Interestingly, the combination

$$
H(s) = -\frac{1}{2}(K_{++} + K_{--} - K_{+-} - K_{-+})
$$

is tractable. It is well-known as the energy of the two-dimensional Ising model\(^1\) (without external magnetic field). You see, neighbour spins tend to agree.

A very clever two-dimensional counterpart of the linear-algebraic approach (of 8c) was found in 1944 by Lars Onsager.\(^2\) I just formulate his result, with no proof. It gives us the Legendre-Fenchel transform of the rate function I of $x = x_{++} + x_{--} - x_{+-} - x_{-+}$, defined by $\|f\|_{L_{2n^2}(\mu_n)} \to \max(|f|e^{-f})$. Namely,

$$
\begin{align*}
\min_x \left(I(x) - \frac{1}{2} \beta x \right) &= -\lim_{n \to \infty} \frac{1}{2n^2} \ln \left(2^{-n^2} \sum_s e^{-\beta H(s)} \right) = \\
&= -\frac{1}{4\pi^2} \int_0^\pi \int_0^\pi \ln \left(\cosh^2 \beta - (\cos u + \cos v) \sinh \beta \right) \, du \, dv.
\end{align*}
$$

Introducing ε by $\sinh \beta = 1 + \varepsilon$ we have $\cosh \beta = 1 + (1 + \varepsilon)^2$. The integrand becomes

$$
\ln \left(\varepsilon^2 + 2(1 + \varepsilon)(\sin^2 \frac{\varepsilon}{2} + \sin^2 \frac{\varepsilon}{2}) \right);
$$

we observe a singularity at $\varepsilon = 0$, $u = 0$, $v = 0$. Still, the integral converges also for $\varepsilon = 0$, that is, at the critical point $\beta = \beta_c = \ln(1 + \sqrt{2})$. However,

\(^1\)Physicists multiply it by a constant J, but anyway, we will consider βH for an arbitrary β.

\(^2\)A Norwegian chemist, and later Nobel laureate.
the integral is not an analytic function of ε (or β). Namely, the function

\[\Lambda(\beta) = -\min_x \left(I(x) - \frac{1}{2} \beta x \right) \]

near the critical point \(\beta_c \) satisfies

\[\Lambda(\beta_c + \Delta \beta) - \Lambda(\beta_c) = \frac{\Delta \beta}{2\sqrt{2}} + \frac{1}{2\pi} (\Delta \beta)^2 |\ln |\Delta \beta|| + O((\Delta \beta)^2). \]

Accordingly, the (even) rate function \(I \) has critical points \(\pm x_c, x_c = 1/\sqrt{2} \), and near \(x_c \)

\[I(x_c + \Delta x) - I(x_c) = \frac{1}{2} \beta_c \Delta x + \frac{\pi}{2} (\Delta x)^2 \frac{1}{|\ln |\Delta x||} (1 + o(1)). \]

Physically, it means a phase transition. The heat capacity diverges,

\[\frac{d(\text{energy})}{d(\text{temperature})} + \infty \]

at the critical temperature.

See also \[5, \text{Sect. 9.3}\].

References

