5 Moderate deviations in spaces of functions

5a Asymptotically quadratic generating functions

Let \(p, q, \mu, S_n, \Lambda_n, \Lambda_\infty \) and \(A_n \) be as in Sect. 4b, \(\int x^2 \mu(dx) = 1 \) (that is, \(\Lambda''_\mu(0) = 1 \)), and \(p \leq 2 \leq q \) (see 4b4).

5a1 Proposition. For every \(g \in L_q \),

\[
\frac{1}{n\varepsilon^2} \Lambda_n(\varepsilon g) \to \frac{1}{2} \|g\|_2^2 \quad \text{as} \quad \varepsilon \to 0, n \to \infty.
\]

This is a two-dimensional limit; that is,

\[
\forall \delta > 0 \ \exists \varepsilon_0 > 0 \ \exists n_0 \ \forall \varepsilon \leq \varepsilon_0 \ \forall n \geq n_0 \quad \left| \frac{1}{n\varepsilon^2} \Lambda_n(\varepsilon g) - \frac{1}{2} \|g\|_2^2 \right| \leq \delta.
\]

Not the same as \(\lim \varepsilon \lim n \) or \(\lim n \lim \varepsilon \).

First, we improve 4b1, 4b2 for small arguments.

5a2 Lemma. \(\Lambda'_\mu(t) \leq \text{const} \cdot \max(|t|, |t|^{q-1}) \) for all \(t \in \mathbb{R} \).

Proof. For large \(t \) we have \(\Lambda'_\mu(t) = \mathcal{O}(|t|^{q-1}) \) by 4b1; for small \(t \), \(\Lambda'_\mu(t) = \mathcal{O}(|t|) \).

5a3 Lemma. There exists \(C \) such that for all \(g_1, g_2 \in L_q \),

\[
\|\Lambda_\infty(g_1) - \Lambda_\infty(g_2)\| \leq C \|g_1 - g_2\|_q \left(\|g_1\|_q + \|g_1\|_q^{q-1} + \|g_2\|_q + \|g_2\|_q^{q-1} \right).
\]

Proof. Using 5a2 we take \(C \) such that

\[
\forall t_1, t_2 \quad |\Lambda_\mu(t_1) - \Lambda_\mu(t_2)| \leq C|t_1 - t_2| \max(|t_1|, |t_1|^{q-1}, |t_2|, |t_2|^{q-1}) ;
\]

then

\[
\left| \int_0^1 \Lambda_\mu(g_1(x)) \, dx - \int_0^1 \Lambda_\mu(g_2(x)) \, dx \right| \leq \int_0^1 |\Lambda_\mu(g_1(x)) - \Lambda_\mu(g_2(x))| \, dx \leq
\]

\[
\int_0^1 \left(\int |g_1(x) - g_2(x)| \, dx \right) \, dx \leq \int_0^1 \left(\int \max(|g_1(x)|, |g_1(x)|^{q-1}, |g_2(x)|, |g_2(x)|^{q-1}) \, dx \right) \, dx \leq \int_0^1 \left(\int \max(|g_1(x)|, |g_1(x)|^{q-1}, |g_2(x)|, |g_2(x)|^{q-1}) \, dx \right) \, dx
\]

\[
\leq C \int_0^1 \left(\int \max(|g_1(x)|, |g_1(x)|^{q-1}, |g_2(x)|, |g_2(x)|^{q-1}) \, dx \right) \, dx
\]

\[
= C \int_0^1 \left(\int \max(|g_1(x)|, |g_1(x)|^{q-1}, |g_2(x)|, |g_2(x)|^{q-1}) \, dx \right) \, dx
\]

\[
= C \int_0^1 \left(\int \max(|g_1(x)|, |g_1(x)|^{q-1}, |g_2(x)|, |g_2(x)|^{q-1}) \, dx \right) \, dx
\]

\[
= C \int_0^1 \left(\int \max(|g_1(x)|, |g_1(x)|^{q-1}, |g_2(x)|, |g_2(x)|^{q-1}) \, dx \right) \, dx
\]

\[
= C \int_0^1 \left(\int \max(|g_1(x)|, |g_1(x)|^{q-1}, |g_2(x)|, |g_2(x)|^{q-1}) \, dx \right) \, dx
\]

\[
= C \int_0^1 \left(\int \max(|g_1(x)|, |g_1(x)|^{q-1}, |g_2(x)|, |g_2(x)|^{q-1}) \, dx \right) \, dx
\]

\[
= C \int_0^1 \left(\int \max(|g_1(x)|, |g_1(x)|^{q-1}, |g_2(x)|, |g_2(x)|^{q-1}) \, dx \right) \, dx
\]

\[
= C \int_0^1 \left(\int \max(|g_1(x)|, |g_1(x)|^{q-1}, |g_2(x)|, |g_2(x)|^{q-1}) \, dx \right) \, dx
\]
\[\leq C(|g_1 - g_2|, \max(|g_1|, |g_1|^{-1}, |g_2|, |g_2|^{-1})) \leq \]
\[\leq C\|g_1 - g_2\|_q \max(|g_1|, |g_1|^{-1}, |g_2|, |g_2|^{-1})\|_p. \]

and

\[\| \max(\ldots) \|_p = \| \max(|g_1|^{p/q}, |g_1|, |g_2|^{p/q}, |g_2|) \|_q^{-1} \leq \]
\[\leq \| |g_1|^{p/q} + |g_1| + |g_2|^{p/q} + |g_2| \|_q^{-1} \leq \]
\[= (\| g_1 \|_{p/q} + \| g_1 \|_q + \| g_2 \|_{p/q} + \| g_2 \|_q) \]}
\[\leq (4 \max(\| g_1 \|_{p/q}, \| g_1 \|_q, \| g_2 \|_{p/q}, \| g_2 \|_q)) \]
\[= 4^{q^{-1}} \max(\| g_1 \|_p, \| g_1 \|_q^{-1}, \| g_2 \|_p, \| g_2 \|_q^{-1}) \]
\[\leq 4^{q^{-1}} \max(\| g_1 \|_q, \| g_1 \|_q^{-1}, \| g_2 \|_q, \| g_2 \|_q^{-1}) \]

\[\square\]

5a4 Lemma. For every \(g \in L_q \),

\[\frac{1}{\varepsilon^2} \Lambda_\infty(\varepsilon g) \rightarrow \frac{1}{2} \| g \|_2^2 \] as \(\varepsilon \rightarrow 0 \).

Proof. First, the bounded case: \(g \in L_\infty \); we have then

\[\frac{1}{\varepsilon^2} \Lambda_\infty(\varepsilon g) = \int_0^1 \frac{1}{\varepsilon^2} \Lambda_\mu(\varepsilon g(x)) \, dx \rightarrow \int_0^1 \frac{1}{2} g^2(x) \, dx, \]

since \(\frac{1}{\varepsilon^2} \Lambda_\mu(\cdot) \rightarrow \frac{1}{2} g^2(\cdot) \) uniformly.

Second, the general case; given \(\delta > 0 \), we take \(g_\delta \in L_\infty \) such that \(\| g_\delta - g \|_q \leq \delta \); by 5a3, \(|\Lambda_\infty(\varepsilon g) - \Lambda_\infty(\varepsilon g_\delta)| \leq \text{const} \cdot \varepsilon^2 \delta \) with a constant that depends on \(g \) but does not depend on \(\varepsilon, \delta \) (as long as \(|\varepsilon| \leq 1, \delta \leq 1 \)). We get

\[\left| \frac{1}{\varepsilon^2} \Lambda_\infty(\varepsilon g) - \frac{1}{2} \| g \|_2^2 \right| \leq \]
\[\leq \frac{1}{\varepsilon^2} |\Lambda_\infty(\varepsilon g) - \Lambda_\infty(\varepsilon g_\delta)| + \frac{1}{\varepsilon^2} \Lambda_\infty(\varepsilon g_\delta) - \frac{1}{2} \| g_\delta \|_2^2 + \frac{1}{2} \| g_\delta \|_2^2 - \frac{1}{2} \| g \|_2^2, \]

\[\leq \text{const} \cdot \delta \]

thus, \(\limsup_{\varepsilon \rightarrow 0} \left| \frac{1}{\varepsilon^2} \Lambda_\infty(\varepsilon g) - \frac{1}{2} \| g \|_2^2 \right| \leq \text{const} \cdot \delta \) for all \(\delta \).

\[\square\]

Proof of Prop. 5a4: \[\frac{1}{n} \Lambda_n(\varepsilon g) = \Lambda_\infty(A_n \varepsilon g); \] by 5a3, \[|\Lambda_\infty(\varepsilon A_n g) - \Lambda_\infty(\varepsilon g)| \leq \text{const} \cdot \varepsilon^2 \| A_n g - g \|_q \]

with a constant that depends on \(g \) but does not depend on \(\varepsilon, n \) (as long as \(|\varepsilon| \leq 1 \)). Thus, \[\left| \frac{1}{n \varepsilon^2} \Lambda_n(\varepsilon g) - \frac{1}{\varepsilon^2} \Lambda_\infty(\varepsilon g) \right| \rightarrow 0 \] as \(n \rightarrow \infty \), uniformly on \(|\varepsilon| \leq 1 \). It remains to use 5a4.

\[\square\]
For the (one-dimensional) distribution ν_n of (S_n, g), similarly to (4b7), we get

\[(5a5) \quad \frac{1}{n \varepsilon^2} \Lambda_{\nu_n}(\varepsilon t) \to \frac{1}{2} \|g\|^2 t^2 \quad \text{as} \quad \varepsilon \to 0, n \to \infty,
\]
since $\Lambda_{\nu_n}(\varepsilon t) = \ln \mathbb{E} \exp(\varepsilon t \langle S_n, g \rangle) = \Lambda_n(\varepsilon t g)$.

5b Gärtner-Ellis, again

Dimension 1

Let probability measures ν_1, ν_2, \ldots on \mathbb{R} be such that

\[(5b1) \quad \frac{1}{n \varepsilon^2} \Lambda_{\nu_n}(\varepsilon t) \to \frac{1}{2} t^2 \quad \text{as} \quad \varepsilon \to 0, n \to \infty
\]
for all $t \in \mathbb{R}$. (In particular, $\nu_n = \nu^{*n}$ satisfy it, provided that $\int x \nu(dx) = 0$ and $\int x^2 \nu(dx) = 1$, since $\frac{1}{n \varepsilon^2} \Lambda_{\nu_n}(\varepsilon t) = \frac{1}{\varepsilon} \Lambda_{\nu}(\varepsilon t) \to \frac{1}{2} t^2$.)

5b2 Example. It may seem that (4c1) with $\Lambda(t) \sim \frac{1}{2} t^2$ (for $t \to 0$) implies (5b1). But this is an illusion. Here is a counterexample.

Let $\frac{1}{\sqrt{n}} \ll a_n \ll 1$ (that is: $a_n \to 0$ and $\sqrt{n} a_n \to \infty$), and

\[\nu_n = \frac{1}{2} \mu^{*n} + \frac{1}{4} (\delta_{-na_n} + \delta_{na_n});\]

here $\mu = N(0, 1)$ is the standard normal distribution (thus, $\mu^{*n} = N(0, n)$), and δ_x is the unit atom at x. Then

\[\Lambda_{\nu_n}(t) = \ln \left(\frac{1}{2} \exp \frac{nt^2}{2} + \frac{1}{2} \cosh na_n t \right).
\]

On one hand,

\[\frac{1}{n} \Lambda_{\nu_n}(t) \to \frac{1}{2} t^2 \quad \text{as} \quad n \to \infty,
\]
since for $t = 0$ this holds trivially, otherwise $na_n t = o(nt^2)$ for large n.

On the other hand, taking ε_n such that $\frac{1}{\sqrt{n}} \ll \varepsilon_n \ll a_n$ we get

\[\frac{1}{n \varepsilon_n^2} \Lambda_{\nu_n}(\varepsilon_n t) \geq \frac{1}{n \varepsilon_n^2} \ln \left(\frac{1}{4} \exp n a_n \varepsilon_n t \right) = \frac{a_n t}{\varepsilon_n} + O\left(\frac{1}{n \varepsilon_n^2} \right) \to \infty \quad \text{as} \quad n \to \infty.
\]

By the way, these ν_n violate 5b3 below.

The Legendre transform of $\Lambda(t) = \frac{1}{2} t^2$ is $\Lambda^*(x) = \frac{1}{2} x^2$ (recall 2c6).
5b3 Exercise.

\[\nu_n\left(n \varepsilon x, \infty \right) \leq \exp\left(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2) \right) \quad \text{for } x \geq 0; \]

\[\nu_n\left(-\infty, n \varepsilon x \right) \leq \exp\left(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2) \right) \quad \text{for } x \leq 0. \]

Of course, these \(o(\ldots) \) are meant for \(\varepsilon \to 0, n \to \infty \).

Prove it.\(^1\)

It follows that \(\nu_n(n \varepsilon a, n \varepsilon b) \to 1 \) as \(\varepsilon \to 0, n \to \infty, n\varepsilon^2 \to \infty \), whenever \(a < 0 < b \).

For tilted measures \(\nu_{n,\varepsilon t} \), we have \(\Lambda_{\nu_{n,\varepsilon t}}(\varepsilon s) = \Lambda_{\nu_n}(\varepsilon t + \varepsilon s) - \Lambda_{\nu_n}(\varepsilon t) \), thus \(\frac{1}{n\varepsilon^2}\Lambda_{\nu_{n,\varepsilon t}}(\varepsilon s) \to \frac{1}{2}(t + s)^2 - \frac{1}{2}t^2 = ts + \frac{1}{2}s^2 \); the corresponding Legendre transform is \(\Lambda^*_t(x) = \frac{1}{2}(x - t)^2 \) (since generally \(\Lambda^*_t(x) = \Lambda^*(tx + \Lambda(t)) \), as noted after 4c2). Similarly to (4c3),

\[(5b4) \quad \nu_{n,\varepsilon t}(n \varepsilon a, n \varepsilon b) \to 1 \quad \text{as } \varepsilon \to 0, n \to \infty, n\varepsilon^2 \to \infty, \text{whenever } a < t < b.\]

Taking into account that

\[
\frac{d\nu_n}{d\nu_{n,\varepsilon t}}(\varepsilon x) = \exp\left(-\varepsilon t \varepsilon x + \Lambda_{\nu_n}(\varepsilon t) \right) \geq \exp\left(-n\varepsilon^2 \max(ta, tb) + \Lambda_{\nu_n}(\varepsilon t) \right)
\]

for \(x \in (na, nb) \), we get, similarly to (4e4),

\[(5b5) \quad \nu_n(n \varepsilon a, n \varepsilon b) \geq \exp\left(-n\varepsilon^2 \max(ta, tb) + n\varepsilon^2 \cdot \frac{1}{2}t^2 + o(n\varepsilon^2) \right) \]

whenever \(a < t < b \).

Similarly to 4c5 (but simpler), if \(x \geq 0 \) and \(\delta > 0 \) then

\[\nu_n(n \varepsilon x, n \varepsilon (x + \delta)) \geq \exp\left(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2) \right), \]

and similarly to 4c6,

\[\nu_n(n \varepsilon x, n \varepsilon (x + \delta)) = \exp\left(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2) \right). \]

DIMENSION \(d \)

All limits, as well as symbols \(o(\ldots) \), \(O(\ldots) \) are taken for \(\varepsilon \to 0, n \to \infty, n\varepsilon^2 \to \infty \) (unless stated otherwise).

Let probability measures \(\nu_1, \nu_2, \ldots \) on \(\mathbb{R}^d \) be such that

\[(5b6) \quad \frac{1}{n\varepsilon^2}\Lambda_{\nu_n}(\varepsilon t) \to \frac{1}{2}|t|^2 \quad \text{for all } t \in \mathbb{R}^d. \]

\(^1\)Hint: similar to 4c2.
5b7 Theorem. (a) For every nonempty closed set $F \subset \mathbb{R}^d$,
\[
\limsup_{n} \frac{1}{n^2} \ln \nu_n(n \in F) \leq -\min_{x \in F} \frac{1}{2} |x|^2.
\]
(b) For every open set $U \subset \mathbb{R}^d$,
\[
\liminf_{n} \frac{1}{n^2} \ln \nu_n(n \in U) \geq -\inf_{x \in U} \frac{1}{2} |x|^2.
\]

5b8 Exercise (upper bound for a half-space).
\[
\nu_n \left(\{ n \in x : \langle t, x \rangle - \frac{1}{2} |t|^2 \geq c \} \right) \leq \exp \left(-c n \varepsilon^2 + o(n \varepsilon^2) \right)
\]
for all $t \in \mathbb{R}^d$ and $c \geq 0$.
Prove it.

5b9 Exercise (half-space not containing the expectation). If $c > 0$, then
\[
\exists \delta > 0 \quad \nu_n \left(\{ n \in x : \langle t, x \rangle \geq c \} \right) = O(e^{-\delta n \varepsilon^2}).
\]
Prove it.

5b10 Exercise (lower bound). If $U \subset \mathbb{R}^d$ is open, then
\[
\ln \nu_n(n \in U) \geq -n \varepsilon^2 \inf_{x \in U} \frac{1}{2} |x|^2 + o(n \varepsilon^2).
\]
Prove it.

5b11 Exercise. Prove Theorem 5b7.

The simple rate function $\frac{1}{2} | \cdot |^2$ leads to a simple formula for half-spaces. Every closed half-space $H \subset \mathbb{R}^d$ not containing 0 is
\[
H = \{ x : \langle x, x_H \rangle \geq |x_H|^2 \}
\]
where x_H is the point of H closest to 0. Now, 5b8 with $t = x_H$ and $c = \frac{1}{2} |x_H|^2$ gives
\[
\nu_n(n \in H) \leq \exp \left(-\frac{1}{2} |x_H|^2 n \varepsilon^2 + o(n \varepsilon^2) \right);
\]
we see very clearly that every $x \neq 0$ belongs to (a) a closed half-space that satisfies the upper bound with rate $\frac{1}{2} |x|^2$, and (b) an open half-space that satisfies the upper bound with rate arbitrarily close to $\frac{1}{2} |x|^2$.

1Hint: recall the proof of 4c10(a).
5c Exponential tightness

What about a weakly compact set $K \subset L_p$ such that $\mathbb{P}(S_n \notin n\varepsilon K) \leq \exp(-Cn\varepsilon^2 + o(n\varepsilon^2))$ (for a given C)? No, this cannot happen. Indeed, on one hand, K must be bounded, that is, $K \subset \{f : \|f\|_p \leq R\}$ for some R; on the other hand, $\|S_n\|_1 = |X_1| + \cdots + |X_n|$; $\mathbb{E}\|S_n\|_1 = n\mathbb{E}|X_1|$; $\mathbb{P}(S_n \in n\varepsilon K) \leq \mathbb{P}(\|S_n\|_p \leq n\varepsilon R) \leq \mathbb{P}(\|S_n\|_1 \leq n\varepsilon R)$ is close to 0 (rather than 1) when $n\varepsilon R \ll \mathbb{E}\|S_n\|_1$, that is, $\varepsilon \ll \mathbb{E}|X_1|/R$.

The joint compactification introduced in Sect. 4b and used successfully for large deviations, fails for moderate deviations. We need another joint compactification. The L_p-norm feels only absolute values of X_1, \ldots, X_n. But we have $\mathbb{E}X_1 = 0$, and cancellation of positive and negative summands should not be ignored.

We sacrifice invariance under permutations of the random variables X_1, \ldots, X_n (thus, by the way, complicating generalization to, say, two-dimensional arrays of random variables) and take indefinite integrals of the functions S_n (and others). We move to the space $C_0[0,1]$ of all continuous functions on $[0,1]$ vanishing at 0, and redefine the random function S_n as such piecewise-linear function of $C_0[0,1]$:

$$S_n(x) = \int_0^x (nX_1 \mathbb{I}_{(0,\frac{1}{n})} + \cdots + nX_n \mathbb{I}_{(\frac{x-1}{n},1)}) .$$

Note that indefinite integrals of functions of L_p (or L_1) are absolutely continuous; they are dense in the space $C_0[0,1]$, but far not the whole space. In this sense, we really move to a larger space.

We also need Hölder spaces $C_{0,\alpha}$ and Hölder norms $\| \cdot \|_{\alpha}$ for $\alpha \in (0,1)$,

$$\|f\|_{\alpha} = \sup_{0 < r < y < 1} \frac{|f(y) - f(x)|}{(y-x)^{\alpha}} \in [0, \infty]$ for $f \in C_0[0,1],$

$$C_{0,\alpha} = \{ f \in C_0[0,1] : \|f\|_\alpha < \infty \} .$$

For $0 < \alpha \leq \beta < 1$ we have $\| \cdot \|_\alpha \leq \| \cdot \|_\beta$ and $C_{0,\alpha} \supset C_{0,\beta}$.

The unit ball $B_\alpha = \{ f : \|f\|_\alpha \leq 1 \}$ is separable, but not compact (in $C_{0,\alpha}$).\footnote{Try $f_n(x) = \min(x^n,1/n)$.} However, B_β is compact in $C_0[0,1]$.\footnote{Hint: in this situation, convergence on a dense countable set implies uniform convergence. In fact, moreover, B_β is compact in $C_{0,\alpha}$ whenever $0 < \alpha < \beta < 1$; hint: if $f, g \in B_\beta$ satisfy $|f(x) - g(x)| \leq \frac{1}{n}$ for $x = \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}$, then $\|f - g\|_\alpha \leq 4/n^{3-\alpha}$.} Note that Hölder functions need not be absolutely continuous.

We also redefine operators A_n; now A_nf is the function linear on $[0, \frac{1}{n}]$, $[\frac{1}{n}, \frac{2}{n}]$, \ldots, $[\frac{n-1}{n},1]$ and equal to f at $0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n},1$.

\[\begin{align*}
\int_0^x (nX_1 \mathbb{I}_{(0,\frac{1}{n})} + \cdots + nX_n \mathbb{I}_{(\frac{x-1}{n},1)}) .
\end{align*}\]
For a piecewise-linear function \(f = A_n f \) we have
\[
\|f\|_\alpha = \max_{0 \leq k < l \leq n} \frac{1}{(l/k)n^\alpha}\left| f\left(\frac{l}{n}\right) - f\left(\frac{k}{n}\right) \right|;
\]
Indeed, \(\frac{|f(y) - f(x)|}{(y-x)^\alpha} \) cannot be maximal between the nodes \(0, \frac{1}{n}, \ldots, \frac{n}{n} \) due to concavity of the function \(x \mapsto x^\alpha \). For such \(f \),
\[
\|f\|_\alpha = \max_{0 \leq k < l \leq n} |\langle f', g_{k,l} \rangle| \quad \text{where} \quad g_{k,l} = \frac{n^\alpha}{(l-k)^\alpha} \mathbb{I}_{(\frac{k}{n}, \frac{l}{n})}.
\]
We note that \(\|g_{k,l}\|_q = \left(\frac{l-k}{n}\right)^{1-\alpha} \leq 1 \) for \(\alpha \leq 1/q \). We use \(5b3 \)
\[
P\left(\|S_n\|_\alpha \geq n\varepsilon x \right) \leq \sum_{k,l} P\left(|\langle S'_n, g_{k,l} \rangle| \geq n\varepsilon x \right) \leq 2\left(n+1\right) \exp\left(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2)\right),
\]
and get
\[
P\left(\|S_n\|_\alpha \geq n\varepsilon x \right) \leq \exp\left(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2) + O(\ln n)\right)
\]
for \(\alpha \leq 1/q \).

From now on, all limits, as well as symbols \(o(\ldots) \), \(O(\ldots) \) are taken for \(\varepsilon \to 0, n \to \infty, \frac{n^2}{\ln n} \to \infty \) (unless stated otherwise). Note the logarithmic gap between moderate deviations and central limit theorem.

Now, for \(\alpha \leq 1/q \) we have
\[
5(\alpha) \quad P\left(\|S_n\|_\alpha \geq n\varepsilon x \right) \leq \exp\left(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2)\right),
\]
which is exponential tightness; \(K_C \) is the ball \(xB_\alpha \) (with \(x \) such that \(x^2/2 = C \)) endowed with the compact topology from \(C_0[0,1] \).

5d Mogulskii’s theorem, again

We interpret \(\|f'\|_2 \) as \(+\infty \) if \(f \) is not the indefinite integral of a function of \(L_2[0,1] \). As before, all limits, as well as symbols \(o(\ldots) \), \(O(\ldots) \) are taken for \(\varepsilon \to 0, n \to \infty, \frac{n^2}{\ln n} \to \infty \) (unless stated otherwise). Also, \(1 < p \leq 2 \leq q < \infty ; \frac{1}{p} + \frac{1}{q} = 1 \), and \(\alpha \leq 1/q \).

5d1 Theorem. (a) For every nonempty closed set \(F \subset C_0[0,1] \),
\[
\limsup_{n} \frac{1}{n\varepsilon^2} \ln P\left(\frac{1}{n\varepsilon}S_n \in F \right) \leq -\min_{f \in F} \frac{1}{2} \|f'\|_2^2.
\]
(b) For every open set \(U \subset C_0[0,1] \),
\[
\liminf_{n} \frac{1}{n\varepsilon^2} \ln P\left(\frac{1}{n\varepsilon}S_n \in U \right) \geq -\inf_{f \in U} \frac{1}{2} \|f'\|_2^2.
\]
5d2 Remark. Weaker conditions on F and U are sufficient for the theorem (and the proof): for all $R > 0$,

$$F \cap RB_\alpha \text{ is closed},$$

$$U \cap RB_\alpha \text{ is relatively open in } RB_\alpha;$$

here $RB_\alpha = \{ Rf : f \in B_\alpha \} = \{ f : \| f \|_\alpha \leq R \}$.

We choose a dense sequence $x_1, x_2, \ldots \in [0, 1]$ and denote $g_k = \mathbb{I}_{(0,x_k]}$. If $f \in C_0[0, 1]$ is the indefinite integral of a function of $L_2[0, 1]$,

$$f(x) = \int_0^x f'(u) \, du,$$

then clearly $f(x_k) = \langle f', g_k \rangle$. It is convenient to denote $\langle f', g_k \rangle = f(x_k)$ for arbitrary $f \in C_0[0, 1]$ (even though f' is ill-defined). We note that

$$(f_n \to f \text{ in } C_0[0, 1]) \iff \forall k \langle f_n', g_k \rangle \xrightarrow{n \to \infty} \langle f', g_k \rangle$$

for all $f, f_1, f_2, \ldots \in B_\alpha$.

We fix d for a while, and enumerate x_1, \ldots, x_d in ascending order:

$$\{x_1, \ldots, x_d\} = \{y_1, \ldots, y_d\}, \quad 0 < y_1 < \cdots < y_d < 1.$$

Here is an orthonormal basis in the d-dimensional space spanned by g_1, \ldots, g_d: \[h_1 = \frac{1}{\sqrt{y_1}} \mathbb{I}_{(0,y_1]}, \quad h_2 = \frac{1}{\sqrt{y_2 - y_1}} \mathbb{I}_{(y_1,y_2]}, \ldots, \quad h_d = \frac{1}{\sqrt{y_d - y_{d-1}}} \mathbb{I}_{(y_{d-1},y_d]} \ldots. \]

Naturally, we let $\langle f', h_i \rangle = \frac{1}{\sqrt{y_i - y_{i-1}}} (f(y_i) - f(y_{i-1}))$ (where $y_0 = 0$). We introduce linear operators $T_d : C_0[0, 1] \to \mathbb{R}^d$ by \[T_d f = (\langle f', h_1 \rangle, \ldots, \langle f', h_d \rangle); \]

they are continuous.

Similarly to A_n, we define operator $\tilde{A}_d : C_0[0, 1] \to C_0[0, 1]$; $\tilde{A}_d f$ is the function linear on $[0, y_1], [y_1, y_2], \ldots, [y_{d-1}, y_d]$, equal to f at $0, y_1, \ldots, y_d$, and constant on $[y_{d-1}, 1]$. Thus, $(\tilde{A}_d f)' = \langle f', h_1 \rangle h_1 + \cdots + \langle f', h_d \rangle h_d$ and $\langle f', (\tilde{A}_d g)' \rangle = \langle (\tilde{A}_d f)', g' \rangle$ (like the orthogonal projection, but f', g' are ill-defined). Note that $\| (\tilde{A}_d f)' \|_2 = \| T_d f \|_2$ and $\langle (\tilde{A}_d f)', (\tilde{A}_d g)' \rangle = \langle T_d f, T_d g \rangle$.

Now we have three “incarnations” of the d-dimensional Euclidean vector space:
* \(\mathbb{R}^d \);
* subspace of \(L_2[0,1] \) spanned by \(g_1, \ldots, g_d \) or, equivalently, by \(h_1, \ldots, h_d \), with the norm \(\| \cdot \|_2 \) (step functions);
* subspace \(\{ f : \tilde{A}_d f = f \} \) of \(C_0[0,1] \), with the norm \(f \mapsto \| f' \|_2 \) (polygonal functions).

They are intertwined by a commutative diagram of linear isometries:

\[
\begin{array}{ccc}
\text{polygonal} & \xleftarrow{\text{projection of}} & \text{step} \\
\xleftarrow{\mathbb{R}^d} & & \xrightarrow{T_d f} \\
& & \xrightarrow{\text{step}} \xleftarrow{\int} \\
& & f \xrightarrow{T_d f} f'
\end{array}
\]

We turn to \(d \to \infty \). Clearly,

\[
f_n \to f \text{ in } C_0[0,1] \iff \forall d \ T_d f_n \xrightarrow{n \to \infty} T_d f
\]

for all \(f, f_1, f_2, \ldots \in B_\alpha \).

If \(d_1 \leq d_2 \), then \(\tilde{A}_{d_1} \tilde{A}_{d_2} = \tilde{A}_{d_1} \tilde{A}_{d_2} \tilde{A}_{d_1} \), and \((\tilde{A}_{d_1} f)' \) is the orthogonal projection of \((\tilde{A}_{d_2} f)' \). Thus, \(\|(\tilde{A}_{d} f)'\|_2 \) is increasing (in \(d \)).

5d3 Lemma. \(\|(\tilde{A}_{d} f)'\|_2 \uparrow \| f' \|_2 \) (be it finite or infinite) as \(d \to \infty \).

Proof. On one hand, if \(f' \in L_2 \), then \((\tilde{A}_{d} f)' \) is the orthogonal projection of \(f' \) to the subspace spanned by \(g_1, \ldots, g_d \); the union of these subspaces is dense in \(L_2 \), thus, \(\|(\tilde{A}_{d} f)'\|_2 \uparrow \| f' \|_2 \).

On the other hand, assume that \(\lim_d \|(\tilde{A}_{d} f)'\|_2 < \infty \); we have to prove that \(f' \in L_2 \). The series

\[
(\tilde{A}_1 f)' + (\tilde{A}_2 f - \tilde{A}_1 f)' + (\tilde{A}_3 f - \tilde{A}_2 f)' + \ldots
\]

consists of orthogonal summands, and its partial sums are bounded. It follows easily that these partial sums are a Cauchy sequence. Thus, the series converges:

\[
(\tilde{A}_d f)' \to \varphi \text{ for some } \varphi \in L_2.
\]

We note that \(\langle (\tilde{A}_d f)', g_d \rangle = \langle f', g_d \rangle \) when \(k \geq d \); thus, it equals \(\langle \varphi, g_d \rangle \); that is, \(\int_0^x \varphi(u) \, du = f(x_d) \) for all \(d \); this shows that \(\varphi = f' \).

Denote by \(\nu_{d,n} \) the distribution of \(T_d S_n \). By 5a1,

\[
\frac{1}{n \varepsilon^2} \Lambda_{\nu_{d,n}}(\varepsilon t_1, \ldots, \varepsilon t_d) \to \frac{1}{2}(t_1^2 + \cdots + t_d^2) \text{ as } n \to \infty
\]

for all \((t_1, \ldots, t_d) \in \mathbb{R}^d \), since \(\Lambda_{\nu_{d,n}}(t_1, \ldots, t_d) = \ln \mathbb{E} \exp(\varepsilon t_1 \langle S_n, h_1 \rangle + \cdots + \varepsilon t_d \langle S_n, h_d \rangle) = \ln \mathbb{E} \exp(S_n \varepsilon t_1 h_1 + \cdots + \varepsilon t_d h_d) = \Lambda_n(\varepsilon t_1 h_1 + \cdots + \varepsilon t_d h_d). \)
Thus, Theorem 5b7 (as well as 5b8–5b12) applies to \(\nu_{d,n} \) for given \(d \). That theorem is formulated for \(\mathbb{R}^d \), but may be transferred readily to the “step” or “polygonal” space. In all cases, the rate function is \(\frac{1}{2} \| \cdot \|^2 \).

5d4 Exercise. Let \(g \in C_0[0,1] \) satisfy \(g = \tilde{A}_d g \) (for a given \(d \)), and \(H = \{ f \in C_0[0,1] : \langle f', g' \rangle \geq \| g' \|_2^2 \} \) (even though \(f' \) is ill-defined...). Then

(a) \(H = \{ f \in C_0[0,1] : \langle T_d f, T_d g \rangle \geq |T_d g|^2 \} \);
(b) \(\mathbb{P}\{ S_n \in n \varepsilon H \} \leq \exp\left(-\frac{1}{2} \| g' \|_2^2 n \varepsilon^2 + o(n \varepsilon^2) \right) \).

Prove it.

Our space \(C_0[0,1] \) is not a finite-dimensional Euclidean space, nor a Hilbert space, and still, every \(f \neq 0 \) belongs to an open half-space that satisfies the upper bound with rate arbitrarily close to \(\Lambda^*_e(f) \). Indeed, if \(c < \Lambda^*_e(f) \) (being the latter finite or infinite), then \(\frac{1}{2}\| (A_d f)' \|_2^2 > c \) for \(d \) large enough; we take such \(d \), and introduce \(g = (1 - \delta) \tilde{A}_d (f) \) with \(\delta > 0 \) small enough, then \(\frac{1}{2}\| g' \|_2^2 \geq c \) and \(g = \tilde{A}_d g \); the half-space \(H = \{ f_1 \in C_0[0,1] : \langle f_1', g' \rangle > \| g' \|_2^2 \} \) is open in \(C_0[0,1] \) (think, why), \(f \in H \) (think, why), and \(\mathbb{P}\{ S_n \in n \varepsilon H \} \leq \exp\left(-cn \varepsilon^2 + o(n \varepsilon^2) \right) \) by 5d4(b).

5d5 Exercise. Prove Theorem 5d1(a).

5d6 Exercise. Let \(U \subset C_0[0,1] \) be open, and \(f_0 \in U \cap B_\alpha \). Then there exist \(d \) and \(\delta > 0 \) such that

\[
\forall f \in B_\alpha \left(\| T_d f - T_d f_0 \| \leq \delta \implies f \in U \right).
\]

Prove it.\(^1\)

5d7 Exercise. \(\| f \|_{1/2} \leq \| f' \|_2 \) for all \(f \in C_0[0,1] \) (be the norms finite or infinite). (Here \(\| \cdot \|_{1/2} \) is the Hölder norm for \(\alpha = 1/2 \), while \(\| \cdot \|_2 \) is the \(L_2 \) norm.)

Prove it.

Also, \(\alpha \leq \frac{1}{q} \) and \(p \leq 2 \leq q \), thus, \(\| f \|_\alpha \leq \| f \|_{1/2} \leq \| f' \|_2 \).

\textbf{Proof of Theorem 5d1(b).}\(^2\) Let \(f_0 \in U \); we’ll prove that \(\liminf \frac{1}{n \varepsilon^2} \ln \mathbb{P}\{ S_n \in n \varepsilon U \} \geq -\frac{1}{2} \| f_0' \|_2^2 \), assuming \(\| f_0' \|_2 < \infty \) (otherwise the claim is void). We take \(R > \| f_0' \|_2 \), then \(f_0 \in RB_\alpha \) by 5d7, and \(\limsup \frac{1}{n \varepsilon^2} \ln \mathbb{P}\{ \| S_n \|_\alpha \geq Rn \varepsilon \} < -\frac{1}{2} \| f_0' \|_2^2 \) by 5c1. Exercise 5d6 gives \(d \) and \(\delta > 0 \) such that \(\forall f \in RB_\alpha \left(\| T_d f - T_d f_0 \| \leq \delta \implies f \in U \right) \). It is sufficient to prove that

\[
\liminf \frac{1}{n \varepsilon^2} \ln \mathbb{P}\left(\| T_d \frac{S_n}{n \varepsilon} - T_d f_0 \| < \delta \right) \geq -\inf_{x: \| x - T_d f_0 \| < \delta} \frac{1}{2} |x|^2,
\]

\(^1\)Hint: similar to 4e7.

\(^2\)Quite similar to the proof of Theorem 4e1(b).
since \(\inf_{x:|x-Td_{f_0}|<\delta} \frac{1}{2}|x|^2 \leq \frac{1}{2}|Td_{f_0}|^2 = \frac{1}{2}\|\hat{A}_{d_0}f_0\|^2 \leq \frac{1}{2}\|f_0\|^2 \). Theorem 5b7(b) gives the needed inequality, since \(\nu_{d,n}(\{n\in\mathbb{N} : |x-Td_{f_0}| < \delta\}) = P(12d_{n}\xi-Td_{f_0} < \delta). \)

5d8 Exercise. A fair coin is tossed \(n \) times, giving \((\beta_1, \ldots, \beta_n) \in \{0, 1\}^n \). Given a continuous \(\varphi: [0, 1] \to (0, \infty) \), consider

\[
p_n = P\left(\forall k=1, \ldots, n \quad \frac{2(\beta_1 + \cdots + \beta_k) - k}{n^{2/3}} \leq \varphi\left(\frac{k}{n} \right) \right).
\]

(a) Prove that

\[
p_n = 1 - \exp\left(-an^{1/3}(1+o(1))\right)
\]

for some \(a > 0 \);

(b) find \(a \) when \(\varphi(x) = 1 + vx \) for a given \(v > 0 \);

(c) find \(a \) when \(\varphi(x) = \max(1 + vx, y) \) for given \(v > 0 \) and \(y > 1 \);

(d) find \(a \) when \(\varphi(x) = 1 + cx^2 \) for a given \(c > 0 \);

(e) find \(a \) when \(\varphi(x) = 1 + c\sqrt{x} \) for a given \(c > 0 \).

Index

limit in \(n \) and \(\varepsilon \)	\[50 \] \[53 \] \[56 \]	
\(A_n \)	\[50 \] \[55 \]	\[50 \]
\(\tilde{A}_{d} \)	\[50 \]	\[57 \]
\(\alpha \)	\[50 \]	\[50 \]
\(B_{\alpha} \)	\[55 \]	\[55 \]
\(C_{0,1} \)	\[55 \]	\[55 \]
\(C_{0,\alpha} \)	\[55 \]	\[55 \]
\(\varepsilon \)	\[50 \]	\[50 \]
\(\langle f', g \rangle \)	\[50 \]	\[56 \]
\(g_k \)	\[50 \]	\[57 \]
\(\Lambda_\infty \)	\[50 \]	\[50 \]
\(\Lambda_n \)	\[50 \]	\[50 \]

<table>
<thead>
<tr>
<th>(\mu)</th>
<th>[50]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu_n)</td>
<td>[52]</td>
</tr>
<tr>
<td>(\nu_{d,n})</td>
<td>[50]</td>
</tr>
<tr>
<td>(\nu_{n,\varepsilon})</td>
<td>[50]</td>
</tr>
<tr>
<td>(|f'|_2)</td>
<td>[50]</td>
</tr>
<tr>
<td>(|\cdot|_\alpha)</td>
<td>[50]</td>
</tr>
<tr>
<td>(p)</td>
<td>[50]</td>
</tr>
<tr>
<td>(q)</td>
<td>[50]</td>
</tr>
<tr>
<td>(RB_{\alpha})</td>
<td>[50]</td>
</tr>
<tr>
<td>(S_n)</td>
<td>[50]</td>
</tr>
<tr>
<td>(T_{d})</td>
<td>[50]</td>
</tr>
<tr>
<td>(x_k)</td>
<td>[50]</td>
</tr>
</tbody>
</table>