5 Moderate deviations in spaces of functions

5a Asymptotically quadratic generating functions

Let \(p, q, \mu, S_n, \Lambda_n, \Lambda_\infty \) and \(A_n \) be as in Sect. 4b, \(\int x^2 \mu(dx) = 1 \) (that is, \(\Lambda_\mu''(0) = 1 \)), and \(p \leq 2 \leq q \) (see 4b4).

5a1 Proposition. For every \(g \in L_q \),

\[
\frac{1}{n\varepsilon^2} \Lambda_n(\varepsilon g) \rightarrow \frac{1}{2} \|g\|^2_2 \quad \text{as} \quad \varepsilon \rightarrow 0, \; n \rightarrow \infty .
\]

This is a two-dimensional limit; that is,

\[
\forall \delta > 0 \; \exists \varepsilon_0 > 0 \; \exists n_0 \; \forall \varepsilon \leq \varepsilon_0 \; \forall n \geq n_0 \; \left| \frac{1}{n\varepsilon^2} \Lambda_n(\varepsilon g) - \frac{1}{2} \|g\|^2_2 \right| \leq \delta .
\]

Not the same as \(\lim n \lim \varepsilon \) or \(\lim \varepsilon \lim n \).

First, we improve 4b1, 4b2 for small arguments.

5a2 Lemma. \(\Lambda'_\mu(t) \leq \text{const} \cdot \max(|t|, |t|^{q-1}) \) for all \(t \in \mathbb{R} \).

Proof. For large \(t \) we have \(\Lambda'_\mu(t) = \mathcal{O}(|t|^{q-1}) \) by 4b1; for small \(t \), \(\Lambda'_\mu(t) = \mathcal{O}(|t|) \).

5a3 Lemma. There exists \(C \) such that for all \(g_1, g_2 \in L_q \),

\[
\|\Lambda_\infty(g_1) - \Lambda_\infty(g_2)\| \leq C \|g_1 - g_2\|_q (\|g_1\|_q + \|g_1\|_q^{q-1} + \|g_2\|_q + \|g_2\|_q^{q-1}) .
\]

Proof. Using 5a2 we take \(C \) such that

\[
\forall t_1, t_2 \; |\Lambda_\mu(t_1) - \Lambda_\mu(t_2)| \leq C|t_1 - t_2| \max(|t_1|, |t_1|^{q-1}, |t_2|, |t_2|^{q-1}) ;
\]

then

\[
\left| \int_0^1 \Lambda_\mu(g_1(x)) \, dx - \int_0^1 \Lambda_\mu(g_2(x)) \, dx \right| \leq \int_0^1 |\Lambda_\mu(g_1(x)) - \Lambda_\mu(g_2(x))| \, dx \leq
\]

\[
\left| \int_0^1 \Lambda_\mu(g_1(x)) \, dx - \int_0^1 \Lambda_\mu(g_2(x)) \, dx \right| \leq \int_0^1 |\Lambda_\mu(g_1(x)) - \Lambda_\mu(g_2(x))| \, dx \leq
\]
\[\leq C(|g_1 - g_2|, \max(|g_1|, |g_1|^{q-1}, |g_2|, |g_2|^{q-1})) \leq C\|g_1 - g_2\|_q \max(|g_1|, |g_1|^{q-1}, |g_2|, |g_2|^{q-1})_p, \]

and
\[
\| \max(\ldots) \|_p = \| \max(|g_1|^{p/q}, |g_1|, |g_2|^{p/q}, |g_2|) \|_q^{q-1} \leq \| |g_1|^{p/q} + |g_1| + |g_2|^{p/q} + |g_2| \|_q \leq (\| |g_1|^{p/q} \|_q + |g_1| + \| |g_2|^{p/q} \|_q + |g_2| \|_q)^{q-1} = \\
= \left(\max(\| |g_1|^{p/q} \|_q, |g_1|, |g_2|^{p/q}, |g_2|\|_q) \right)^{q-1} = \\
= 4^{q-1} \max(\| g_1 \|_p, \| g_1 \|_q, \| g_2 \|_p, \| g_2 \|_q)^{q-1} \leq \\
\leq 4^{q-1} \max(\| g_1 \|_q, \| g_1 \|_q^{q-1}, \| g_2 \|_q, \| g_2 \|_q^{q-1}).
\]

5a4 Lemma. For every \(g \in L_q \),
\[
\frac{1}{\varepsilon^2} \Lambda_\infty(\varepsilon g) \rightarrow \frac{1}{2} \|g\|_2^2 \quad \text{as} \quad \varepsilon \rightarrow 0.
\]

Proof. First, the bounded case: \(g \in L_\infty \); we have then
\[
\frac{1}{\varepsilon^2} \Lambda_\infty(\varepsilon g) = \int_0^1 \frac{1}{\varepsilon^2} \Lambda_\mu(\varepsilon g(x)) \, dx \rightarrow \int_0^1 \frac{1}{2} g^2(x) \, dx,
\]

since \(\frac{1}{\varepsilon^2} \Lambda_\mu(\varepsilon g(\cdot)) \rightarrow \frac{1}{2} g^2(\cdot) \) uniformly.

Second, the general case; given \(\delta > 0 \), we take \(g_\delta \in L_\infty \) such that \(\| g_\delta - g \|_q \leq \delta \); by 5a3, \(|\Lambda_\infty(\varepsilon g) - \Lambda_\infty(\varepsilon g_\delta)| \leq \text{const} \cdot \varepsilon^2 \delta \) with a constant that depends on \(g \) but does not depend on \(\varepsilon, \delta \) (as long as \(|\varepsilon| \leq 1, \delta \leq 1 \)). We get
\[
\left| \frac{1}{\varepsilon^2} \Lambda_\infty(\varepsilon g) - \frac{1}{2} \|g\|_2^2 \right| \leq \\
\leq \left| \frac{1}{\varepsilon^2} \Lambda_\infty(\varepsilon g) - \Lambda_\infty(\varepsilon g_\delta) \right| + \left| \frac{1}{\varepsilon^2} \Lambda_\infty(\varepsilon g_\delta) - \frac{1}{2} \|g_\delta\|_2^2 \right| + \left| \frac{1}{2} \|g_\delta\|_2^2 - \frac{1}{2} \|g\|_2^2 \right|, \leq \text{const} \cdot \delta
\]

thus, \(\limsup_{\varepsilon \rightarrow 0} \left| \frac{1}{\varepsilon^2} \Lambda_\infty(\varepsilon g) - \frac{1}{2} \|g\|_2^2 \right| \leq \text{const} \cdot \delta \) for all \(\delta \). \(\square \)

Proof of Prop. 5a4. \(\frac{1}{n} \Lambda_n(\varepsilon g) = \Lambda_\infty(A_n \varepsilon g) \); by 5a3, \(|\Lambda_\infty(\varepsilon A_n g) - \Lambda_\infty(\varepsilon g)| \leq \text{const} \cdot \varepsilon^2 \|A_n g - g\|_q \) with a constant that depends on \(g \) but does not depend on \(\varepsilon, n \) (as long as \(|\varepsilon| \leq 1 \)). Thus, \(\left| \frac{1}{n \varepsilon^2} \Lambda_n(\varepsilon g) - \frac{1}{\varepsilon^2} \Lambda_\infty(\varepsilon g) \right| \rightarrow 0 \) as \(n \rightarrow \infty \), uniformly on \(|\varepsilon| \leq 1 \). It remains to use 5a4. \(\square \)
For the (one-dimensional) distribution ν_n of $\langle S_n, g \rangle$, similarly to (4b7), we get

\[(5a5) \frac{1}{n\epsilon^2} \Lambda_{\nu_n}(\epsilon t) \to \frac{1}{2} \|g\|^2 t^2 \quad \text{as} \quad \epsilon \to 0, n \to \infty, \]

since $\Lambda_{\nu_n}(\epsilon t) = \ln \mathbb{E} \exp(\epsilon t \langle S_n, g \rangle) = \Lambda_n(\epsilon t g)$.

5b G"artner-Ellis, again

Dimension 1

Let probability measures ν_1, ν_2, \ldots on \mathbb{R} be such that

\[(5b1) \frac{1}{n\epsilon^2} \Lambda_{\nu_n}(\epsilon t) \to \frac{1}{2} t^2 \quad \text{as} \quad \epsilon \to 0, n \to \infty \]

for all $t \in \mathbb{R}$. (In particular, $\nu_n = \nu^*n$ satisfy it, provided that $\int x \nu(dx) = 0$ and $\int x^2 \nu(dx) = 1$, since $\frac{1}{n\epsilon^2} \Lambda_{\nu_n}(\epsilon t) = \frac{1}{\epsilon t} \Lambda_{\nu}(\epsilon t) \to \frac{1}{2} t^2$.)

5b2 Example. It may seem that (4c1) with $\Lambda(t) \sim \frac{1}{2} t^2$ (for $t \to 0$) implies (5b1). But this is an illusion. Here is a counterexample.

Let $\frac{1}{\sqrt{n}} \ll a_n \ll 1$ (that is: $a_n \to 0$ and $\sqrt{na_n} \to \infty$), and

$$
\nu_n = \frac{1}{2} \mu^*n + \frac{1}{4}(\delta_{-na_n} + \delta_{na_n});
$$

here $\mu = N(0,1)$ is the standard normal distribution (thus, $\mu^*n = N(0, n)$), and δ_x is the unit atom at x. Then

$$
\Lambda_{\nu_n}(t) = \ln \left(\frac{1}{2} \exp \frac{nt^2}{2} + \frac{1}{2} \cosh na_n t \right).
$$

On one hand,

$$
\frac{1}{n} \Lambda_{\nu_n}(t) \to \frac{1}{2} t^2 \quad \text{as} \quad n \to \infty,
$$

since for $t = 0$ this holds trivially, otherwise $na_n t = o(nt^2)$ for large n.

On the other hand, taking ϵ_n such that $\frac{1}{\sqrt{n}} \ll \epsilon_n \ll a_n$ we get

\[
\frac{1}{n\epsilon_n^2} \Lambda_{\nu_n}(\epsilon_n t) \geq \frac{1}{n\epsilon_n^2} \ln \left(\frac{1}{4} \exp na_n \epsilon_n t \right) = \frac{a_n}{\epsilon_n} t + O\left(\frac{1}{n\epsilon_n^2} \right) \to \infty \quad \text{as} \quad n \to \infty.
\]

By the way, these ν_n violate 5b3 below.

The Legendre transform of $\Lambda(t) = \frac{1}{2} t^2$ is $\Lambda^*(x) = \frac{1}{2} x^2$ (recall 2c6).
5b3 Exercise.

\[\nu_n(n \varepsilon x, \infty) \leq \exp\left(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2)\right) \quad \text{for } x \geq 0; \]
\[\nu_n(-\infty, n \varepsilon x) \leq \exp\left(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2)\right) \quad \text{for } x \leq 0. \]

Of course, these \(o(\ldots) \) are meant for \(\varepsilon \to 0, n \to \infty \).

Prove it.\(^1\)

It follows that \(\nu_n(n \varepsilon a, n \varepsilon b) \to 1 \) as \(\varepsilon \to 0, n \to \infty, n \varepsilon^2 \to \infty \), whenever \(a < 0 < b \).

For tilted measures \(\nu_{n,\varepsilon t} \) we have \(\Lambda_{n,\varepsilon t}(\varepsilon s) = \Lambda_{n}(\varepsilon t + \varepsilon s) - \Lambda_{n}(\varepsilon t) \), thus \(\frac{1}{n \varepsilon^2} \Lambda_{n,\varepsilon t}(\varepsilon s) \to \frac{1}{2}(t + s)^2 - \frac{1}{2}t^2 = ts + \frac{1}{2}s^2 \); the corresponding Legendre transform is \(\Lambda^*_t(x) = \frac{1}{2}(x - t)^2 \) (since generally \(\Lambda^*_t(x) = \Lambda^*(x) - tx + \Lambda(t) \), as noted after 4c2). Similarly to (4c3),

\[\nu_{n,\varepsilon t}(n \varepsilon a, n \varepsilon b) \to 1 \quad \text{as } \varepsilon \to 0, n \to \infty, n \varepsilon^2 \to \infty, \text{ whenever } a < t < b . \]

Taking into account that

\[\frac{d\nu_n}{d\nu_{n,\varepsilon t}}(\varepsilon x) = \exp\left(-\varepsilon t\varepsilon x + \Lambda_{n}(\varepsilon t)\right) \geq \exp\left(-n\varepsilon^2 \max(ta, tb) + \Lambda_{n}(\varepsilon t)\right) \]

for \(x \in (na, nb) \), we get, similarly to (4e4),

\[\nu_n(n \varepsilon a, n \varepsilon b) \geq \exp(-n\varepsilon^2 \max(ta, tb) + n\varepsilon^2 \cdot \frac{1}{2}t^2 + o(n\varepsilon^2)) \]

whenever \(a < t < b \).

Similarly to 4c5 (but simpler), if \(x \geq 0 \) and \(\delta > 0 \) then

\[\nu_n(n \varepsilon x, n \varepsilon (x + \delta)) \geq \exp\left(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2)\right), \]

and similarly to 4c6,

\[\nu_n(n \varepsilon x, n \varepsilon (x + \delta)) = \exp\left(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2)\right). \]

DIMENSION \(d \)

All limits, as well as symbols \(o(\ldots) \), \(O(\ldots) \) are taken for \(\varepsilon \to 0, n \to \infty, n \varepsilon^2 \to \infty \) (unless stated otherwise).

Let probability measures \(\nu_1, \nu_2, \ldots \) on \(\mathbb{R}^d \) be such that

\[\frac{1}{n \varepsilon^2} \Lambda_{n}(\varepsilon t) \to \frac{1}{2}|t|^2 \quad \text{for all } t \in \mathbb{R}^d . \]

\(^1\)Hint: similar to 4c2.
5b7 Theorem. (a) For every nonempty closed set $F \subset \mathbb{R}^d$,
\[
\limsup \frac{1}{n \varepsilon^2} \ln \nu_n(n \varepsilon F) \leq -\min_{x \in F} \frac{1}{2} |x|^2.
\]
(b) For every open set $U \subset \mathbb{R}^d$,
\[
\liminf \frac{1}{n \varepsilon^2} \ln \nu_n(n \varepsilon U) \geq -\inf_{x \in U} \frac{1}{2} |x|^2.
\]

5b8 Exercise (upper bound for a half-space).
\[
\nu_n \{ \{n \varepsilon x : \langle t, x \rangle - \frac{1}{2}|t|^2 \geq c\} \} \leq \exp(-cn \varepsilon^2 + o(n \varepsilon^2))
\]
for all $t \in \mathbb{R}^d$ and $c \geq 0$.
Prove it.

5b9 Exercise (half-space not containing the expectation). If $c > 0$, then
\[
\exists \delta > 0 \quad \nu_n(\{n \varepsilon x : \langle t, x \rangle \geq c\} = O(e^{-\delta n \varepsilon^2}).
\]
Prove it.

5b10 Exercise (lower bound). If $U \subset \mathbb{R}^d$ is open, then
\[
\ln \nu_n(n \varepsilon U) \geq -n \varepsilon^2 \inf_{x \in U} \frac{1}{2} |x|^2 + o(n \varepsilon^2).
\]
Prove it.

5b11 Exercise. Prove Theorem 5b7\(^1\)

The simple rate function $\frac{1}{2} |\cdot|^2$ leads to a simple formula for half-spaces. Every closed half-space $H \subset \mathbb{R}^d$ not containing 0 is
\[
H = \{ x : \langle x, x_H \rangle \geq |x_H|^2 \}
\]
where x_H is the point of H closest to 0. Now, 5b8 with $t = x_H$ and $c = \frac{1}{2}|x_H|^2$ gives
\[
(5b12) \quad \nu_n(n \varepsilon H) \leq \exp\left(-\frac{1}{2}|x_H|^2 n \varepsilon^2 + o(n \varepsilon^2)\right);
\]
we see very clearly that every $x \neq 0$ belongs to (a) a closed half-space that satisfies the upper bound with rate $\frac{1}{2}|x|^2$, and (b) an open half-space that satisfies the upper bound with rate arbitrarily close to $\frac{1}{2}|x|^2$.

\(^1\)Hint: recall the proof of 4c10(a).
5c Exponential tightness

What about a weakly compact set \(K \subset L_p \) such that \(\mathbb{P}(S_n \notin n\varepsilon K) \leq \exp(-Cn\varepsilon^2 + o(n\varepsilon^2)) \) (for a given \(C \))? No, this cannot happen. Indeed, on one hand, \(K \) must be bounded, that is, \(K \subset \{ f : \|f\|_p \leq R \} \) for some \(R \); on the other hand, \(\|S_n\|_1 = |X_1| + \cdots + |X_n|; \mathbb{E}\|S_n\|_1 = n\mathbb{E}|X_1|; \mathbb{P}(S_n \in n\varepsilon K) \leq \mathbb{P}(\|S_n\|_p \leq n\varepsilon R) \leq \mathbb{P}(\|S_n\|_1 \leq n\varepsilon R) \) is close to 0 (rather than 1) when \(n\varepsilon R \ll \mathbb{E}\|S_n\|_1 \), that is, \(\varepsilon \ll \mathbb{E}|X_1|/R \).

The joint compactification introduced in Sect. 4b and used successfully for large deviations, fails for moderate deviations. We need another joint compactification. The \(L_p \)-norm feels only absolute values of \(X_1, \ldots, X_n \). But we have \(\mathbb{E}X_1 = 0 \), and cancellation of positive and negative summands should not be ignored.

We sacrifice invariance under permutations of the random variables \(X_1, \ldots, X_n \) (thus, by the way, complicating generalization to, say, two-dimensional arrays of random variables) and take indefinite integrals of the functions \(S_n \) vanishing at 0, and redefine the random function \(S_n \) as such piecewise-linear function of \(C_0[0, 1] \):

\[
S_n(x) = \int_0^x \left(nX_1 1_{[0, \frac{1}{n}]} + \cdots + nX_n 1_{[\frac{n-1}{n}, 1]} \right).
\]

Note that indefinite integrals of functions of \(L_p \) (or \(L_1 \)) are absolutely continuous; they are dense in the space \(C_0[0, 1] \), but far not the whole space. In this sense, we really move to a larger space.

We also need Hölder spaces \(C_{0, \alpha} \) and Hölder norms \(\| \cdot \|_\alpha \) for \(\alpha \in (0, 1) \),

\[
\|f\|_\alpha = \sup_{0 < x < y < 1} \frac{|f(y) - f(x)|}{(y - x)^\alpha} \in [0, \infty] \quad \text{for } f \in C_0[0, 1],
\]

\[
C_{0, \alpha} = \{ f \in C_0[0, 1] : \|f\|_\alpha < \infty \}.
\]

For \(0 < \alpha \leq \beta < 1 \) we have \(\| \cdot \|_\alpha \leq \| \cdot \|_\beta \) and \(C_{0, \alpha} \supset C_{0, \beta} \).

The unit ball \(B_\alpha = \{ f : \|f\|_\alpha \leq 1 \} \) is separable, but not compact (in \(C_{0, \alpha} \)).\(^1\) However, \(B_\alpha \) is compact in \(C_0[0, 1] \).\(^2\) Note that Hölder functions need not be absolutely continuous.

We also redefine operators \(A_n \); now \(A_nf \) is the function linear on \([0, \frac{1}{n}], \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1\] and equal to \(f \) at \(0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1 \).

\(^1\)Try \(f_n(x) = \min(x^n, 1/n) \).

\(^2\)Hint: in this situation, convergence on a dense countable set implies uniform convergence. In fact, moreover, \(B_\beta \) is compact in \(C_{0, \alpha} \) whenever \(0 < \alpha < \beta < 1 \); hint: if \(f, g \in B_\beta \) satisfy \(|f(x) - g(x)| \leq \frac{1}{n} \) for \(x = \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1 \), then \(\|f - g\|_\alpha \leq 4/n^{3-\alpha} \).
For a piecewise-linear function $f = A_n f$ we have

$$\|f\|_\alpha = \max_{0 \leq k < l \leq n} \frac{1}{(\frac{l}{n} - \frac{k}{n})^\alpha} |f(\frac{l}{n}) - f(\frac{k}{n})|;$$

indeed, $\frac{|f(y) - f(x)|}{(y-x)^\alpha}$ cannot be maximal between the nodes $\frac{0}{n}, \frac{1}{n}, \ldots, \frac{n}{n}$ due to concavity of the function $x \mapsto x^\alpha$. For such f,

$$\|f\|_\alpha = \max_{0 \leq k < l \leq n} |\langle f', g_{k,l} \rangle|$$

where $g_{k,l} = \frac{n^\alpha}{(l-k)^\alpha} \mathbb{I}_{(\frac{k}{n}, \frac{l}{n})}$. We note that $\|g_{k,l}\|_q = (\frac{l-k}{n})^{\frac{1}{q} - \alpha} \leq 1$ for $\alpha \leq 1/q$. We use [5b3]

$$\mathbb{P}\left(\|S_n\|_\alpha \geq n\varepsilon x\right) \leq \sum_{k,l} \mathbb{P}\left(|\langle S_n', g_{k,l} \rangle| \geq n\varepsilon x\right) \leq 2\left(n + 1\right) \exp\left(-\frac{1}{2} x^2 n\varepsilon^2 + o(n\varepsilon^2)\right),$$

and get

$$\mathbb{P}\left(\|S_n\|_\alpha \geq n\varepsilon x\right) \leq \exp\left(-\frac{1}{2} x^2 n\varepsilon^2 + o(n\varepsilon^2) + \mathcal{O}(\ln n)\right)$$

for $\alpha \leq 1/q$.

From now on, all limits, as well as symbols $o(\ldots)$, $\mathcal{O}(\ldots)$ are taken for $\varepsilon \to 0$, $n \to \infty$, $\frac{n^2}{\ln n} \to \infty$ (unless stated otherwise). Note the logarithmic gap between moderate deviations and central limit theorem.

Now, for $\alpha \leq 1/q$ we have

(5c1) \hspace{1cm} \mathbb{P}\left(\|S_n\|_\alpha \geq n\varepsilon x\right) \leq \exp\left(-\frac{1}{2} x^2 n\varepsilon^2 + o(n\varepsilon^2)\right),

which is exponential tightness; K_C is the ball $x B_\alpha$ (with x such that $x^2/2 = C$) endowed with the compact topology from $C_0[0,1]$.

5d Mogulskii’s theorem, again

We interpret $\|f'\|_2$ as $+\infty$ if f is not the indefinite integral of a function of $L_2[0,1]$. As before, all limits, as well as symbols $o(\ldots)$, $\mathcal{O}(\ldots)$ are taken for $\varepsilon \to 0$, $n \to \infty$, $\frac{n^2}{\ln n} \to \infty$ (unless stated otherwise). Also, $1 < p \leq 2 \leq q < \infty$: $\frac{1}{p} + \frac{1}{q} = 1$, and $\alpha \leq 1/q$.

5d1 Theorem. (a) For every nonempty closed set $F \subset C_0[0,1]$,

$$\limsup \frac{1}{n^2} \ln \mathbb{P}\left(\frac{1}{n\varepsilon} S_n \in F\right) \leq -\min_{f \in F} \frac{1}{2} \|f'\|_2^2.$$

(b) For every open set $U \subset C_0[0,1]$,

$$\liminf \frac{1}{n^2} \ln \mathbb{P}\left(\frac{1}{n\varepsilon} S_n \in U\right) \geq -\inf_{f \in U} \frac{1}{2} \|f'\|_2^2.$$
5d2 Remark. Weaker conditions on F and U are sufficient for the theorem (and the proof): for all $R > 0$,

$$F \cap RB_\alpha \text{ is closed,}$$

$$U \cap RB_\alpha \text{ is relatively open in } RB_\alpha;$$

here $RB_\alpha = \{RF : f \in B_\alpha\} = \{f : \|f\|_\alpha \leq R\}$.

We choose a dense sequence $x_1, x_2, \cdots \in [0, 1]$ and denote $g_k = \mathbb{1}_{(0,x_k)}$. If $f \in C_0[0,1]$ is the indefinite integral of a function of $L_2[0,1]$,

$$f(x) = \int_0^x f'(u) \, du,$$

then clearly $f(x_k) = \langle f', g_k \rangle$. It is convenient to denote $\langle f', g_k \rangle = f(x_k)$ for arbitrary $f \in C_0[0,1]$ (even though f' is ill-defined). We note that

$$(f_n \to f \text{ in } C_0[0,1]) \iff \forall k \langle f'_n, g_k \rangle \to \langle f', g_k \rangle$$

for all $f, f_1, f_2, \cdots \in B_\alpha$.

We fix d for a while, and enumerate x_1, \ldots, x_d in ascending order:

$$\{x_1, \ldots, x_d\} = \{y_1, \ldots, y_d\}, \quad 0 < y_1 < \cdots < y_d < 1.$$

Here is an orthonormal basis in the d-dimensional space spanned by g_1, \ldots, g_d:

$$h_1 = \frac{1}{\sqrt{y_1}} \mathbb{1}_{(0,y_1)}, \quad h_2 = \frac{1}{\sqrt{y_2 - y_1}} \mathbb{1}_{(y_1,y_2)}, \ldots, \quad h_d = \frac{1}{\sqrt{y_d - y_{d-1}}} \mathbb{1}_{(y_{d-1},y_d)}.$$

Naturally, we let $\langle f', h_i \rangle = \frac{1}{\sqrt{y_i - y_{i-1}}} (f(y_i) - f(y_{i-1}))$ (where $y_0 = 0$). We introduce linear operators $T_d : C_0[0,1] \to \mathbb{R}^d$ by

$$T_d f = (\langle f', h_1 \rangle, \ldots, \langle f', h_d \rangle);$$

they are continuous.

Similarly to A_n, we define operator $\tilde{A}_d : C_0[0,1] \to C_0[0,1]$; $\tilde{A}_d f$ is the function linear on $[0, y_1], [y_1, y_2], \ldots, [y_{d-1}, y_d]$, equal to f at $0, y_1, \ldots, y_d$, and constant on $[y_{d-1}, 1]$. Thus, $(\tilde{A}_d f)' = \langle f', h_1 \rangle h_1 + \cdots + \langle f', h_d \rangle h_d$ and $(\tilde{A}_d f)' = \langle (\tilde{A}_d f)', g' \rangle$ (like the orthogonal projection, but f', g' are ill-defined). Note that $\|(\tilde{A}_d f)\|_2 = \|T_d f\|_2$ and $(\langle \tilde{A}_d f)', (\tilde{A}_d g) \rangle = (T_d f, T_d g)$.

Now we have three “incarnations” of the d-dimensional Euclidean vector space:
* \mathbb{R}^d;
* subspace of $L_2[0, 1]$ spanned by g_1, \ldots, g_d or, equivalently, by h_1, \ldots, h_d;
 with the norm $\| \cdot \|_2$ (step functions);
* subspace $\{ f : \tilde{A}_d f = f \}$ of $C_0[0, 1]$, with the norm $f \mapsto \| f' \|_2$ (polygonal functions).

They are intertwined by a commutative diagram of linear isometries:

\[
\begin{array}{ccc}
\text{polygonal} & \xleftarrow{\varepsilon t} \text{step} & f \\
\mathbb{R}^d & \quad & f' \\
& \text{projection of } \tilde{A}_d & \text{to the subspace spanned by } x_1, \ldots, x_d \\
& \xleftarrow{\tilde{A}_d} \text{subspace of } \{ \langle \cdot, h \rangle : h \in \mathcal{H} \} & \text{with the norm } \parallel \cdot \parallel_{\mathcal{H}} \\
& \xleftarrow{\text{with the norm } \parallel \cdot \parallel_{C_0[0, 1]}} \text{subspace of } \{ \langle \cdot, h \rangle : h \in \mathcal{H} \} & \text{with the norm } \parallel \cdot \parallel_{C_0[0, 1]} \\
& \xleftarrow{\tilde{A}_d^* \text{ or } \tilde{A}_d^*} \text{subspace of } \{ \langle \cdot, h \rangle : h \in \mathcal{H} \} & \text{with the norm } \parallel \cdot \parallel_{C_0[0, 1]} \end{array}
\]

We turn to $d \to \infty$. Clearly,

\[f_n \to f \text{ in } C_0[0, 1] \iff \forall d \quad T_d f_n \underset{n \to \infty}{\longrightarrow} T_d f \]

for all $f, f_1, f_2, \ldots \in B_\alpha$.

If $d_1 \leq d_2$, then $\tilde{A}_{d_1} \tilde{A}_{d_2} = \tilde{A}_{d_2} = \tilde{A}_{d_2} \tilde{A}_{d_1}$, and $(\tilde{A}_{d_2} f)'$ is the orthogonal projection of $(\tilde{A}_{d_2} f)'$. Thus, $\|(\tilde{A}_{d_2} f)'\|_2$ is increasing (in d).

5d3 Lemma. $\|(\tilde{A}_d f)'\|_2 \leq \|f'\|_2$ (be it finite or infinite) as $d \to \infty$.

Proof. On one hand, if $f' \in L_2$, then $(\tilde{A}_d f)'$ is the orthogonal projection of f' to the subspace spanned by g_1, \ldots, g_d; the union of these subspaces is dense in L_2, thus, $\|(\tilde{A}_d f)'\|_2 \leq \|f'\|_2$.

On the other hand, assume that $\lim_d \|(\tilde{A}_d f)'\|_2 < \infty$; we have to prove that $f' \in L_2$. The series

\[(\tilde{A}_1 f)' + (\tilde{A}_2 f - \tilde{A}_1 f)' + (\tilde{A}_3 f - \tilde{A}_2 f)' + \ldots\]

consists of orthogonal summands, and its partial sums are bounded. It follows easily that these partial sums are a Cauchy sequence. Thus, the series converges:

\[(\tilde{A}_d f)' \to \varphi \quad \text{for some } \varphi \in L_2.\]

We note that $\langle (\tilde{A}_d f)', g_d \rangle = \langle f', g_d \rangle$ when $k \geq d$; thus, it equals $\langle \varphi, g_d \rangle$; that is, $\int_0^{x_d} \varphi(u) \, du = f(x_d)$ for all d; this shows that $\varphi = f'$.

Denote by $\nu_{d,n}$ the distribution of $T_d S_n$. By **5a1**

\[
\frac{1}{n \varepsilon^2} \Lambda_{\nu_{d,n}}(\varepsilon t_1, \ldots, \varepsilon t_d) \to \frac{1}{2} (t_1^2 + \cdots + t_d^2) \quad \text{as } n \to \infty
\]

for all $(t_1, \ldots, t_d) \in \mathbb{R}^d$, since $\Lambda_{\nu_{d,n}}(t_1, \ldots, t_d) = \ln \mathbb{E} \exp(\varepsilon t_1 \langle S_n, h_1 \rangle + \cdots + \varepsilon t_d \langle S_n, h_d \rangle) = \ln \mathbb{E} \exp(S_n \varepsilon t_1 h_1 + \cdots + \varepsilon t_d h_d) = \Lambda_n(\varepsilon t_1 h_1 + \cdots + \varepsilon t_d h_d)$.
Thus, Theorem 5b7 (as well as 5b8 (5b12)) applies to \(\nu_{d,n} \) for given \(d \). That theorem is formulated for \(\mathbb{R}^d \), but may be transferred readily to the “step” or “polygonal” space. In all cases, the rate function is \(\frac{1}{2} \| \cdot \|^2 \).

5d4 Exercise. Let \(g \in C_0[0,1] \) satisfy \(g = \tilde{A}_dg \) (for a given \(d \)), and \(H = \{ f \in C_0[0,1] : \mathcal{L}_H f, \mathcal{L}_H g \geq \| g' \|^2_2 \} \) (even though \(f' \) is ill-defined...). Then

(a) \(H = \{ f \in C_0[0,1] : \mathcal{L}_H f, \mathcal{L}_H g \geq | \mathcal{T}_d g |^2 \} \);
(b) \(\mathbb{P} \{ S_n \in n \epsilon H \} \leq \exp \left(-\frac{1}{2} \| g' \|^2_2 n \epsilon^2 + o(n \epsilon^2) \right) \).

Prove it.

Our space \(C_0[0,1] \) is not a finite-dimensional Euclidean space, nor a Hilbert space, and still, every \(f \neq 0 \) belongs to an open half-space that satisfies the upper bound with rate arbitrarily close to \(\Lambda_*^\infty(f) \). Indeed, if \(c < \Lambda_*^\infty(f) \) (being the latter finite or infinite), then \(\frac{1}{2} \| (\Lambda_d f)^* \|^2_2 > c \) for \(d \) large enough; we take such \(d \), and introduce \(g = (1 - \delta) \tilde{A}_d f \) with \(\delta > 0 \) small enough, then \(\frac{1}{2} \| g' \|^2_2 \geq c \) and \(g = \tilde{A}_d g \); the half-space \(H = \{ f_1 \in C_0[0,1] : (f_1, g') > \| g' \|^2_2 \} \) is open in \(C_0[0,1] \) (think, why), \(f \in H \) (think, why), and \(\mathbb{P} \{ S_n \in n \epsilon H \} \leq \exp \left(-cn \epsilon^2 + o(n \epsilon^2) \right) \) by 5d4 (b).

5d5 Exercise. Prove Theorem 5d11(a).

5d6 Exercise. Let \(U \subset C_0[0,1] \) be open, and \(f_0 \in U \cap B_{\alpha} \). Then there exist \(d \) and \(\delta > 0 \) such that

\[
\forall f \in B_{\alpha} \left(| T_d f - T_d f_0 | \leq \delta \implies f \in U \right).
\]

Prove it.\(^1\)

5d7 Exercise. \(\| f \|_{1/2} \leq \| f' \|_2 \) for all \(f \in C_0[0,1] \) (be the norms finite or infinite). (Here \(\| \cdot \|_{1/2} \) is the Hölder norm for \(\alpha = 1/2 \), while \(\| \cdot \|_2 \) is the \(L_2 \) norm.)

Prove it.

Also, \(\alpha \leq \frac{1}{q} \) and \(p \leq 2 \leq q \), thus, \(\| f \|_{\alpha} \leq \| f \|_{1/2} \leq \| f' \|_2 \).

Proof of Theorem 5d11(b).\(^2\) Let \(f_0 \in U \); we’ll prove that \(\liminf \frac{1}{n \epsilon^2} \ln \mathbb{P} \left(S_n \in n \epsilon U \right) \geq -\frac{1}{2} \| f'_0 \|_2^2 \), assuming \(\| f'_0 \|_2 < \infty \) (otherwise the claim is void). We take \(R > \| f'_0 \|_2 \), then \(f_0 \in RB_{\alpha} \) by 5d7, and \(\limsup \frac{1}{n \epsilon^2} \ln \mathbb{P} \left(\| S_n \|_{\alpha} \geq R n \epsilon \right) < -\frac{1}{2} \| f'_0 \|_2^2 \) by 5c1. Exercise 5d6 gives \(d \) and \(\delta > 0 \) such that \(\forall f \in RB_{\alpha} \left(| T_d f - T_d f_0 | \leq \delta \implies f \in U \right) \). It is sufficient to prove that

\[
\liminf \frac{1}{n \epsilon^2} \ln \mathbb{P} \left(\left| T_d \frac{S_n}{n \epsilon} - T_d f_0 \right| < \delta \right) \geq -\inf_{x : \| x - T_d f_0 \| < \delta} \frac{1}{2} | x |^2.
\]

\(^1\)Hint: similar to 4e7.

\(^2\)Quite similar to the proof of Theorem 4e1(b).
since \(\inf_{x:|x-Td_0|<\delta}\frac{1}{2}|x|^2 \leq \frac{1}{2}|Td_0|^2 = \frac{1}{2}\|\hat{A}_d f_0\|^2 \leq \frac{1}{2}\|f_0\|^2\). Theorem 5b gives the needed inequality, since \(\nu_{d,n}(\{n\in\mathbb{N}: |x-Td_0|<\delta\}) = P(\|T_d a_n - T_d f_0\|<\delta)\).

5d8 Exercise. A fair coin is tossed \(n\) times, giving \((\beta_1, \ldots, \beta_n) \in \{0, 1\}^n\). Given a continuous \(\varphi: [0, 1] \to (0, \infty)\), consider

\[
p_n = P(\forall k = 1, \ldots, n \frac{2(\beta_1 + \cdots + \beta_k) - k}{n^{2/3}} \leq \varphi(\frac{k}{n})).
\]

(a) Prove that

\[
p_n = 1 - \exp\left(-an^{1/3}(1 + o(1))\right)
\]

for some \(a > 0\);

(b) find \(a\) when \(\varphi(x) = 1 + vx\) for a given \(v > 0\);

(c) find \(a\) when \(\varphi(x) = \max(1 + vx, y)\) for given \(v > 0\) and \(y > 1\);

(d) find \(a\) when \(\varphi(x) = 1 + cx^2\) for a given \(c > 0\);

(e) find \(a\) when \(\varphi(x) = 1 + c\sqrt{x}\) for a given \(c > 0\).

Index

\begin{tabular}{llll}
limit in \(n\) and \(\varepsilon\) & 50 & 53 & 56
\end{tabular}

\begin{tabular}{llll}
\(A_n\) & 50 & 55
\(\tilde{A}_d\) & 57
\(\alpha\) & 50
\(B_n\) & 56
\(C_0[0, 1]\) & 55
\(C_{0,\alpha}\) & 55
\(\varepsilon\) & 50
\(\langle f', g \rangle\) & 57
\(g_k\) & 57
\(A_\infty\) & 50
\(\Lambda_n\) & 50
\end{tabular}

\begin{tabular}{llll}
\(\mu\) & 50
\(\nu_n\) & 52 & 53
\(\nu_{d,n}\) & 58
\(\nu_{n,ct}\) & 54
\(\|f'\|_2\) & 56
\(\|\cdot\|_\alpha\) & 55
\(p\) & 50
\(q\) & 50
\(RB_{n,\alpha}\) & 57
\(S_n\) & 50
\(T_d\) & 57
\(x_k\) & 57
\end{tabular}