5 Moderate deviations in spaces of functions

5a Asymptotically quadratic generating functions. 50
5b Gärtner-Ellis, again 52
5c Exponential tightness 55
5d Mogulskii's theorem, again 56

5a Asymptotically quadratic generating functions

Let $p, q, \mu, S_{n}, \Lambda_{n}, \Lambda_{\infty}$ and A_{n} be as in Sect. $4 \mathrm{~b}, \int x^{2} \mu(\mathrm{~d} x)=1$ (that is, $\left.\Lambda_{\mu}^{\prime \prime}(0)=1\right)$, and $p \leq 2 \leq q$ (see 4b4).

5a1 Proposition. For every $g \in L_{q}$,

$$
\frac{1}{n \varepsilon^{2}} \Lambda_{n}(\varepsilon g) \rightarrow \frac{1}{2}\|g\|_{2}^{2} \quad \text { as } \varepsilon \rightarrow 0, n \rightarrow \infty
$$

This is a two-dimensional limit; that is,

$$
\forall \delta>0 \exists \varepsilon_{0}>0 \exists n_{0} \quad \forall \varepsilon \leq \varepsilon_{0} \forall n \geq n_{0} \quad\left|\frac{1}{n \varepsilon^{2}} \Lambda_{n}(\varepsilon g)-\frac{1}{2}\|g\|_{2}^{2}\right| \leq \delta
$$

Not the same as $\lim _{\varepsilon} \lim _{n}$ or $\lim _{n} \lim _{\varepsilon}$.
First, we improve $4 \mathrm{~b} 1,4 \mathrm{~b} 2$ for small arguments.
5a2 Lemma. $\Lambda_{\mu}^{\prime}(t) \leq$ const $\cdot \max \left(|t|,|t|^{q-1}\right)$ for all $t \in \mathbb{R}$.
Proof. For large t we have $\Lambda_{\mu}^{\prime}(t)=\mathcal{O}\left(|t|^{q-1}\right)$ by 4 b 1 ; for small $t, \Lambda_{\mu}^{\prime}(t)=$ $\mathcal{O}(|t|)$.

5a3 Lemma. There exists C such that for all $g_{1}, g_{2} \in L_{q}$,

$$
\left\|\Lambda_{\infty}\left(g_{1}\right)-\Lambda_{\infty}\left(g_{2}\right)\right\| \leq C\left\|g_{1}-g_{2}\right\|_{q}\left(\left\|g_{1}\right\|_{q}+\left\|g_{1}\right\|_{q}^{q-1}+\left\|g_{2}\right\|_{q}+\left\|g_{2}\right\|_{q}^{q-1}\right)
$$

Proof. Using 5a2, we take C such that

$$
\forall t_{1}, t_{2}\left|\Lambda_{\mu}\left(t_{1}\right)-\Lambda_{\mu}\left(t_{2}\right)\right| \leq C\left|t_{1}-t_{2}\right| \max \left(\left|t_{1}\right|,\left|t_{1}\right|^{q-1},\left|t_{2}\right|,\left|t_{2}\right|^{q-1}\right)
$$

then

$$
\left|\int_{0}^{1} \Lambda_{\mu}\left(g_{1}(x)\right) \mathrm{d} x-\int_{0}^{1} \Lambda_{\mu}\left(g_{2}(x)\right) \mathrm{d} x\right| \leq \int_{0}^{1}\left|\Lambda_{\mu}\left(g_{1}(x)\right)-\Lambda_{\mu}\left(g_{2}(x)\right)\right| \mathrm{d} x \leq
$$

$$
\begin{aligned}
& \leq C\langle | g_{1}-g_{2}\left|, \max \left(\left|g_{1}\right|,\left|g_{1}\right|^{q-1},\left|g_{2}\right|,\left|g_{2}\right|^{q-1}\right)\right\rangle \leq \\
& \quad \leq C\left\|g_{1}-g_{2}\right\|_{q}\left\|\max \left(\left|g_{1}\right|,\left|g_{1}\right|^{q-1},\left|g_{2}\right|,\left|g_{2}\right|^{q-1}\right)\right\|_{p}
\end{aligned}
$$

and

$$
\begin{aligned}
& \|\max (\ldots)\|_{p}=\left\|\max \left(\left|g_{1}\right|^{p / q},\left|g_{1}\right|,\left|g_{2}\right|^{p / q},\left|g_{2}\right|\right)\right\|_{q}^{q-1} \leq \\
& \leq\left\|\left|g_{1}\right|^{p / q}+\left|g_{1}\right|+\left|g_{2}\right|^{p / q}+\left|g_{2}\right|\right\|_{q}^{q-1} \leq\left(\left\|\left|g_{1}\right|^{p / q}\right\|_{q}+\left\|g_{1}\right\|_{q}+\left\|\left|g_{2}\right|^{p / q}\right\|_{q}+\left\|g_{2}\right\|_{q}\right)^{q-1}= \\
& \quad=\left(\left\|g_{1}\right\|_{p}^{p / q}+\left\|g_{1}\right\|_{q}+\left\|g_{2}\right\|_{p}^{p / q}+\left\|g_{2}\right\|_{q}\right)^{q-1} \leq \\
& \leq\left(4 \max \left(\left\|g_{1}\right\|_{p}^{p / q},\left\|g_{1}\right\|_{q},\left\|g_{2}\right\|_{p}^{p / q},\left\|g_{2}\right\|_{q}\right)\right)^{q-1}= \\
& =4^{q-1} \max \left(\left\|g_{1}\right\|_{p},\left\|g_{1}\right\|_{q}^{q-1},\left\|g_{2}\right\|_{p},\left\|g_{2}\right\|_{q}^{q-1}\right) \leq \\
& \quad \leq 4^{q-1} \max \left(\left\|g_{1}\right\|_{q},\left\|g_{1}\right\|_{q}^{q-1},\left\|g_{2}\right\|_{q},\left\|g_{2}\right\|_{q}^{q-1} .\right)
\end{aligned}
$$

5a4 Lemma. For every $g \in L_{q}$,

$$
\frac{1}{\varepsilon^{2}} \Lambda_{\infty}(\varepsilon g) \rightarrow \frac{1}{2}\|g\|_{2}^{2} \quad \text { as } \varepsilon \rightarrow 0
$$

Proof. First, the bounded case: $g \in L_{\infty}$; we have then

$$
\frac{1}{\varepsilon^{2}} \Lambda_{\infty}(\varepsilon g)=\int_{0}^{1} \frac{1}{\varepsilon^{2}} \Lambda_{\mu}(\varepsilon g(x)) \mathrm{d} x \rightarrow \int_{0}^{1} \frac{1}{2} g^{2}(x) \mathrm{d} x
$$

since $\frac{1}{\varepsilon^{2}} \Lambda_{\mu}(\varepsilon g(\cdot)) \rightarrow \frac{1}{2} g^{2}(\cdot)$ uniformly.
Second, the general case; given $\delta>0$, we take $g_{\delta} \in L_{\infty}$ such that $\| g_{\delta}-$ $g \|_{q} \leq \delta$; by 5a3, $\left|\Lambda_{\infty}(\varepsilon g)-\Lambda_{\infty}\left(\varepsilon g_{\delta}\right)\right| \leq$ const $\cdot \varepsilon^{2} \delta$ with a constant that depends on g but does not depend on ε, δ (as long as $|\varepsilon| \leq 1, \delta \leq 1$). We get

$$
\begin{aligned}
& \left|\frac{1}{\varepsilon^{2}} \Lambda_{\infty}(\varepsilon g)-\frac{1}{2}\|g\|_{2}^{2}\right| \leq \\
& \quad \leq \underbrace{\frac{1}{\varepsilon^{2}}\left|\Lambda_{\infty}(\varepsilon g)-\Lambda_{\infty}\left(\varepsilon g_{\delta}\right)\right|}_{\leq \text {const } \cdot \delta}+\underbrace{\left|\frac{1}{\varepsilon^{2}} \Lambda_{\infty}\left(\varepsilon g_{\delta}\right)-\frac{1}{2}\|g\|_{2}^{2}\right|}_{\rightarrow 0 \text { as } \varepsilon \rightarrow 0}+\underbrace{\left|\frac{1}{2}\left\|g_{\delta}\right\|_{2}^{2}-\frac{1}{2}\|g\|_{2}^{2}\right|}_{\leq \text {const } \cdot \delta},
\end{aligned}
$$

thus, $\lim \sup _{\varepsilon \rightarrow 0}\left|\frac{1}{\varepsilon^{2}} \Lambda_{\infty}(\varepsilon g)-\frac{1}{2}\|g\|_{2}^{2}\right| \leq$ const $\cdot \delta$ for all δ.
Proof of Prop. 5a1. $\frac{1}{n} \Lambda_{n}(\varepsilon g)=\Lambda_{\infty}\left(A_{n} \varepsilon g\right)$; by 5a3, $\left|\Lambda_{\infty}\left(\varepsilon A_{n} g\right)-\Lambda_{\infty}(\varepsilon g)\right| \leq$ const $\cdot \varepsilon^{2}\left\|A_{n} g-g\right\|_{q}$ with a constant that depends on g but does not depend on ε, n (as long as $|\varepsilon| \leq 1$). Thus, $\left|\frac{1}{n \varepsilon^{2}} \Lambda_{n}(\varepsilon g)-\frac{1}{\varepsilon^{2}} \Lambda_{\infty}(\varepsilon g)\right| \rightarrow 0$ as $n \rightarrow \infty$, uniformly on $|\varepsilon| \leq 1$. It remains to use 5 a 4 .

For the (one-dimensional) distribution ν_{n} of $\left\langle S_{n}, g\right\rangle$, similarly to (4b7), we get

$$
\begin{equation*}
\frac{1}{n \varepsilon^{2}} \Lambda_{\nu_{n}}(\varepsilon t) \rightarrow \frac{1}{2}\|g\|_{2}^{2} t^{2} \quad \text { as } \varepsilon \rightarrow 0, n \rightarrow \infty \tag{5a5}
\end{equation*}
$$

since $\Lambda_{\nu_{n}}(\varepsilon t)=\ln \mathbb{E} \exp \left(\varepsilon t\left\langle S_{n}, g\right\rangle\right)=\Lambda_{n}(\varepsilon t g)$.

5b Gärtner-Ellis, again

Dimension 1

Let probability measures ν_{1}, ν_{2}, \ldots on \mathbb{R} be such that

$$
\begin{equation*}
\frac{1}{n \varepsilon^{2}} \Lambda_{\nu_{n}}(\varepsilon t) \rightarrow \frac{1}{2} t^{2} \quad \text { as } \varepsilon \rightarrow 0, n \rightarrow \infty \tag{5b1}
\end{equation*}
$$

for all $t \in \mathbb{R}$. (In particular, $\nu_{n}=\nu^{* n}$ satisfy it, provided that $\int x \nu(\mathrm{~d} x)=0$ and $\int x^{2} \nu(\mathrm{~d} x)=1$, since $\frac{1}{n \varepsilon^{2}} \Lambda_{\nu_{n}}(\varepsilon t)=\frac{1}{\varepsilon^{2}} \Lambda_{\nu}(\varepsilon t) \rightarrow \frac{1}{2} t^{2}$.)

5b2 Example. It may seem that (4 c 1) with $\Lambda(t) \sim \frac{1}{2} t^{2}$ (for $t \rightarrow 0$) implies (5b1). But this is an illusion. Here is a counterexample.

Let $\frac{1}{\sqrt{n}} \ll a_{n} \ll 1$ (that is: $a_{n} \rightarrow 0$ and $\sqrt{n} a_{n} \rightarrow \infty$), and

$$
\nu_{n}=\frac{1}{2} \mu^{* n}+\frac{1}{4}\left(\delta_{-n a_{n}}+\delta_{n a_{n}}\right) ;
$$

here $\mu=N(0,1)$ is the standard normal distribution (thus, $\mu^{* n}=N(0, n)$), and δ_{x} is the unit atom at x. Then

$$
\Lambda_{\nu_{n}}(t)=\ln \left(\frac{1}{2} \exp \frac{n t^{2}}{2}+\frac{1}{2} \cosh n a_{n} t\right) .
$$

On one hand,

$$
\frac{1}{n} \Lambda_{\nu_{n}}(t) \rightarrow \frac{1}{2} t^{2} \quad \text { as } n \rightarrow \infty,
$$

since for $t=0$ this holds trivially, otherwise $n a_{n} t=o\left(n t^{2}\right)$ for large n.
On the other hand, taking ε_{n} such that $\frac{1}{\sqrt{n}} \ll \varepsilon_{n} \ll a_{n}$ we get

$$
\frac{1}{n \varepsilon_{n}^{2}} \Lambda_{\nu_{n}}\left(\varepsilon_{n} t\right) \geq \frac{1}{n \varepsilon_{n}^{2}} \ln \left(\frac{1}{4} \exp n a_{n} \varepsilon_{n} t\right)=\frac{a_{n}}{\varepsilon_{n}} t+\mathcal{O}\left(\frac{1}{n \varepsilon_{n}^{2}}\right) \rightarrow \infty \quad \text { as } n \rightarrow \infty .
$$

By the way, these ν_{n} violate 5b3 below.
The Legendre transform of $\Lambda(t)=\frac{1}{2} t^{2}$ is $\Lambda^{*}(x)=\frac{1}{2} x^{2}$ (recall 2c6).

5b3 Exercise.

$$
\begin{aligned}
\nu_{n}[n \varepsilon x, \infty) \leq \exp \left(-\frac{1}{2} x^{2} n \varepsilon^{2}+o\left(n \varepsilon^{2}\right)\right) & \text { for } x \geq 0 ; \\
\nu_{n}(-\infty, n \varepsilon x] \leq \exp \left(-\frac{1}{2} x^{2} n \varepsilon^{2}+o\left(n \varepsilon^{2}\right)\right) & \text { for } x \leq 0 .
\end{aligned}
$$

Of course, these $o(\ldots)$ are meant for $\varepsilon \rightarrow 0, n \rightarrow \infty$.
Prove it. ${ }^{1}$
It follows that $\nu_{n}(n \varepsilon a, n \varepsilon b) \rightarrow 1$ as $\varepsilon \rightarrow 0, n \rightarrow \infty, n \varepsilon^{2} \rightarrow \infty$, whenever $a<0<b$.

For tilted measures $\nu_{n, \varepsilon t}$ we have $\Lambda_{\nu_{n, \varepsilon t}}(\varepsilon s)=\Lambda_{\nu_{n}}(\varepsilon t+\varepsilon s)-\Lambda_{\nu_{n}}(\varepsilon t)$, thus $\frac{1}{n \varepsilon^{2}} \Lambda_{\nu_{n, s t}}(\varepsilon s) \rightarrow \frac{1}{2}(t+s)^{2}-\frac{1}{2} t^{2}=t s+\frac{1}{2} s^{2}$; the corresponding Legendre transform is $\Lambda_{t}^{*}(x)=\frac{1}{2}(x-t)^{2}$ (since generally $\Lambda_{t}^{*}(x)=\Lambda^{*}(x)-t x+\Lambda(t)$, as noted after 4 c 2). Similarly to (4c3),

$$
\begin{equation*}
\nu_{n, \varepsilon t}(n \varepsilon a, n \varepsilon b) \rightarrow 1 \quad \text { as } \varepsilon \rightarrow 0, n \rightarrow \infty, n \varepsilon^{2} \rightarrow \infty, \text { whenever } a<t<b . \tag{5b4}
\end{equation*}
$$

Taking into account that

$$
\frac{\mathrm{d} \nu_{n}}{\mathrm{~d} \nu_{n, \varepsilon t}}(\varepsilon x)=\exp \left(-\varepsilon t \varepsilon x+\Lambda_{\nu_{n}}(\varepsilon t)\right) \geq \exp \left(-n \varepsilon^{2} \max (t a, t b)+\Lambda_{\nu_{n}}(\varepsilon t)\right)
$$

for $x \in(n a, n b)$, we get, similarly to (4e4),

$$
\begin{equation*}
\nu_{n}(n \varepsilon a, n \varepsilon b) \geq \exp \left(-n \varepsilon^{2} \max (t a, t b)+n \varepsilon^{2} \cdot \frac{1}{2} t^{2}+o\left(n \varepsilon^{2}\right)\right) \tag{5b5}
\end{equation*}
$$

whenever $a<t<b$.
Similarly to 4 c 5 (but simpler), if $x \geq 0$ and $\delta>0$ then

$$
\nu_{n}(n \varepsilon x, n \varepsilon(x+\delta)) \geq \exp \left(-\frac{1}{2} x^{2} n \varepsilon^{2}+o\left(n \varepsilon^{2}\right)\right)
$$

and similarly to 4 c 6 ,

$$
\nu_{n}(n \varepsilon x, n \varepsilon(x+\delta))=\exp \left(-\frac{1}{2} x^{2} n \varepsilon^{2}+o\left(n \varepsilon^{2}\right)\right) .
$$

Dimension d

All limits, as well as symbols $o(\ldots), \mathcal{O}(\ldots)$ are taken for $\varepsilon \rightarrow 0, n \rightarrow$ $\infty, n \varepsilon^{2} \rightarrow \infty$ (unless stated otherwise).

Let probability measures ν_{1}, ν_{2}, \ldots on \mathbb{R}^{d} be such that

$$
\begin{equation*}
\frac{1}{n \varepsilon^{2}} \Lambda_{\nu_{n}}(\varepsilon t) \rightarrow \frac{1}{2}|t|^{2} \quad \text { for all } t \in \mathbb{R}^{d} \tag{5b6}
\end{equation*}
$$

[^0]5b7 Theorem. (a) For every nonempty closed set $F \subset \mathbb{R}^{d}$,

$$
\lim \sup \frac{1}{n \varepsilon^{2}} \ln \nu_{n}(n \varepsilon F) \leq-\min _{x \in F} \frac{1}{2}|x|^{2} .
$$

(b) For every open set $U \subset \mathbb{R}^{d}$,

$$
\liminf \frac{1}{n \varepsilon^{2}} \ln \nu_{n}(n \varepsilon U) \geq-\inf _{x \in U} \frac{1}{2}|x|^{2}
$$

5b8 Exercise (upper bound for a half-space).

$$
\nu_{n}\left(\left\{n \varepsilon x:\langle t, x\rangle-\frac{1}{2}|t|^{2} \geq c\right\}\right) \leq \exp \left(-c n \varepsilon^{2}+o\left(n \varepsilon^{2}\right)\right)
$$

for all $t \in \mathbb{R}^{d}$ and $c \geq 0$.
Prove it.
5b9 Exercise (half-space not containing the expectation). If $c>0$, then

$$
\exists \delta>0 \nu_{n}(\{n \varepsilon x:\langle t, x\rangle \geq c\})=\mathcal{O}\left(\mathrm{e}^{-\delta n \varepsilon^{2}}\right)
$$

Prove it.
5 b10 Exercise (lower bound). If $U \subset \mathbb{R}^{d}$ is open, then

$$
\ln \nu_{n}(n \varepsilon U) \geq-n \varepsilon^{2} \inf _{x \in U} \frac{1}{2}|x|^{2}+o\left(n \varepsilon^{2}\right) .
$$

Prove it.
5b11 Exercise. Prove Theorem 5b7, ${ }^{1}$
The simple rate function $\frac{1}{2}|\cdot|^{2}$ leads to a simple formula for half-spaces. Every closed half-space $H \subset \mathbb{R}^{d}$ not containing 0 is

$$
H=\left\{x:\left\langle x, x_{H}\right\rangle \geq\left|x_{H}\right|^{2}\right\}
$$

where x_{H} is the point of H closest to 0 . Now, 5b8 with $t=x_{H}$ and $c=\frac{1}{2}\left|x_{H}\right|^{2}$ gives

$$
\begin{equation*}
\nu_{n}(n \varepsilon H) \leq \exp \left(-\frac{1}{2}\left|x_{H}\right|^{2} n \varepsilon^{2}+o\left(n \varepsilon^{2}\right)\right) \tag{5b12}
\end{equation*}
$$

we see very clearly that every $x \neq 0$ belongs to (a) a closed half-space that satisfies the upper bound with rate $\frac{1}{2}|x|^{2}$, and (b) an open half-space that satisfies the upper bound with rate arbitrarily close to $\frac{1}{2}|x|^{2}$.

[^1]
5c Exponential tightness

What about a weakly compact set $K \subset L_{p}$ such that $\mathbb{P}\left(S_{n} \notin n \varepsilon K\right) \leq$ $\exp \left(-C n \varepsilon^{2}+o\left(n \varepsilon^{2}\right)\right)$ (for a given $\left.C\right)$? No, this cannot happen. Indeed, on one hand, K must be bounded, that is, $K \subset\left\{f:\|f\|_{p} \leq R\right\}$ for some R; on the other hand, $\left\|S_{n}\right\|_{1}=\left|X_{1}\right|+\cdots+\left|X_{n}\right| ; \mathbb{E}\left\|S_{n}\right\|_{1}=n \mathbb{E}\left|X_{1}\right| ; \mathbb{P}\left(S_{n} \in\right.$ $n \varepsilon K) \leq \mathbb{P}\left(\left\|S_{n}\right\|_{p} \leq n \varepsilon R\right) \leq \mathbb{P}\left(\left\|S_{n}\right\|_{1} \leq n \varepsilon R\right)$ is close to 0 (rather than 1) when $n \varepsilon R \ll \mathbb{E}\left\|S_{n}\right\|_{1}$, that is, $\varepsilon \ll \mathbb{E}\left|X_{1}\right| / R$.

The joint compactification introduced in Sect. 4b and used successfully for large deviations, fails for moderate deviations. We need another joint compactification. The L_{p}-norm feels only absolute values of X_{1}, \ldots, X_{n}. But we have $\mathbb{E} X_{1}=0$, and cancellation of positive and negative summands should not be ignored.

We sacrifice invariance under permutations of the random variables X_{1}, \ldots, X_{n} (thus, by the way, complicating generalization to, say, two-dimensional arrays of random variables) and take indefinite integrals of the functions S_{n} (and others). We move to the space $C_{0}[0,1]$ of all continuous functions on $[0,1]$ vanishing at 0 , and redefine the random function S_{n} as such piecewise-linear function of $C_{0}[0,1]$:

$$
S_{n}(x)=\int_{0}^{x}\left(n X_{1} \mathbb{1}_{\left(0, \frac{1}{n}\right)}+\cdots+n X_{n} \mathbb{1}_{\left(\frac{n-1}{n}, 1\right)}\right) .
$$

Note that indefinite integrals of functions of L_{p} (or L_{1}) are absolutely continuous; they are dense in the space $C_{0}[0,1]$, but far not the whole space. In this sense, we really move to a larger space.

We also need Hölder spaces $C_{0, \alpha}$ and Hölder norms $\|\cdot\|_{\alpha}$ for $\alpha \in(0,1)$,

$$
\begin{gathered}
\|f\|_{\alpha}=\sup _{0<x<y<1} \frac{|f(y)-f(x)|}{(y-x)^{\alpha}} \in[0, \infty] \quad \text { for } f \in C_{0}[0,1], \\
C_{0, \alpha}=\left\{f \in C_{0}[0,1]:\|f\|_{\alpha}<\infty\right\} .
\end{gathered}
$$

For $0<\alpha \leq \beta<1$ we have $\|\cdot\|_{\alpha} \leq\|\cdot\|_{\beta}$ and $C_{0, \alpha} \supset C_{0, \beta}$.
The unit ball $B_{\alpha}=\left\{f:\|f\|_{\alpha} \leq 1\right\}$ is separable, but not compact (in $\left.C_{0, \alpha}\right) .{ }^{1}$ However, B_{α} is compact in $C_{0}[0,1] .{ }^{2}$ Note that Hölder functions need not be absolutely continuous.

We also redefine operators A_{n}; now $A_{n} f$ is the function linear on $\left[0, \frac{1}{n}\right]$, $\left[\frac{1}{n}, \frac{2}{n}\right], \ldots,\left[\frac{n-1}{n}, 1\right]$ and equal to f at $0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1$.

[^2]For a piecewise-linear function $f=A_{n} f$ we have

$$
\|f\|_{\alpha}=\max _{0 \leq k<l \leq n} \frac{1}{\left(\frac{l}{n}-\frac{k}{n}\right)^{\alpha}}\left|f\left(\frac{l}{n}\right)-f\left(\frac{k}{n}\right)\right| ;
$$

indeed, $\frac{|f(y)-f(x)|}{(y-x)^{\alpha}}$ cannot be maximal between the nodes $\frac{0}{n}, \frac{1}{n}, \ldots, \frac{n}{n}$ due to concavity of the function $x \mapsto x^{\alpha}$. For such f,

$$
\|f\|_{\alpha}=\max _{0 \leq k<l \leq n}\left|\left\langle f^{\prime}, g_{k, l}\right\rangle\right| \quad \text { where } g_{k, l}=\frac{n^{\alpha}}{(l-k)^{\alpha}} \mathbb{1}_{\left(\frac{k}{n}, \frac{l}{n}\right)}
$$

We note that $\left\|g_{k, l}\right\|_{q}=\left(\frac{l-k}{n}\right)^{\frac{1}{q}-\alpha} \leq 1$ for $\alpha \leq 1 / q$. We use 5b3,

$$
\begin{aligned}
& \mathbb{P}\left(\left\|S_{n}\right\|_{\alpha} \geq n \varepsilon x\right) \leq \\
& \quad \leq \sum_{k, l} \mathbb{P}\left(\left|\left\langle S_{n}^{\prime}, g_{k, l}\right\rangle\right| \geq n \varepsilon x\right) \leq 2\binom{n+1}{2} \exp \left(-\frac{1}{2} x^{2} n \varepsilon^{2}+o\left(n \varepsilon^{2}\right)\right)
\end{aligned}
$$

and get

$$
\mathbb{P}\left(\left\|S_{n}\right\|_{\alpha} \geq n \varepsilon x\right) \leq \exp \left(-\frac{1}{2} x^{2} n \varepsilon^{2}+o\left(n \varepsilon^{2}\right)+\mathcal{O}(\ln n)\right)
$$

for $\alpha \leq 1 / q$.
From now on, all limits, as well as symbols $o(\ldots), \mathcal{O}(\ldots)$ are taken for $\varepsilon \rightarrow 0, n \rightarrow \infty, \frac{n \varepsilon^{2}}{\ln n} \rightarrow \infty$ (unless stated otherwise). Note the logarithmic gap between moderate deviations and central limit theorem.

Now, for $\alpha \leq 1 / q$ we have

$$
\begin{equation*}
\mathbb{P}\left(\left\|S_{n}\right\|_{\alpha} \geq n \varepsilon x\right) \leq \exp \left(-\frac{1}{2} x^{2} n \varepsilon^{2}+o\left(n \varepsilon^{2}\right)\right) \tag{5c1}
\end{equation*}
$$

which is exponential tightness; K_{C} is the ball $x B_{\alpha}$ (with x such that $x^{2} / 2=$ $C)$ endowed with the compact topology from $C_{0}[0,1]$.

5d Mogulskii's theorem, again

We interpret $\left\|f^{\prime}\right\|_{2}$ as $+\infty$ if f is not the indefinite integral of a function of $L_{2}[0,1]$. As before, all limits, as well as symbols $o(\ldots), \mathcal{O}(\ldots)$ are taken for $\varepsilon \rightarrow 0, n \rightarrow \infty, \frac{n \varepsilon^{2}}{\ln n} \rightarrow \infty$ (unless stated otherwise). Also, $1<p \leq 2 \leq q<$ $\infty, \frac{1}{p}+\frac{1}{q}=1$, and $\alpha \leq 1 / q$.
5d1 Theorem. (a) For every nonempty closed set $F \subset C_{0}[0,1]$,

$$
\lim \sup \frac{1}{n \varepsilon^{2}} \ln \mathbb{P}\left(\frac{1}{n \varepsilon} S_{n} \in F\right) \leq-\min _{f \in F} \frac{1}{2}\left\|f^{\prime}\right\|_{2}^{2}
$$

(b) For every open set $U \subset C_{0}[0,1]$,

$$
\lim \inf \frac{1}{n \varepsilon^{2}} \ln \mathbb{P}\left(\frac{1}{n \varepsilon} S_{n} \in U\right) \geq-\inf _{f \in U} \frac{1}{2}\left\|f^{\prime}\right\|_{2}^{2}
$$

5d2 Remark. Weaker conditions on F and U are sufficient for the theorem (and the proof): for all $R>0$,

$$
\begin{aligned}
& F \cap R B_{\alpha} \text { is closed, } \\
& U \cap R B_{\alpha} \text { is relatively open in } R B_{\alpha}
\end{aligned}
$$

here $R B_{\alpha}=\left\{R f: f \in B_{\alpha}\right\}=\left\{f:\|f\|_{\alpha} \leq R\right\}$.
We choose a dense sequence $x_{1}, x_{2}, \cdots \in[0,1]$ and denote $g_{k}=\mathbb{1}_{\left(0, x_{k}\right)}$. If $f \in C_{0}[0,1]$ is the indefinite integral of a function of $L_{2}[0,1]$,

$$
f(x)=\int_{0}^{x} f^{\prime}(u) \mathrm{d} u
$$

then clearly $f\left(x_{k}\right)=\left\langle f^{\prime}, g_{k}\right\rangle$. It is convenient to denote $\left\langle f^{\prime}, g_{k}\right\rangle=f\left(x_{k}\right)$ for arbitrary $f \in C_{0}[0,1]$ (even though f^{\prime} is ill-defined). We note that

$$
\left(f_{n} \rightarrow f \text { in } C_{0}[0,1]\right) \Longleftrightarrow \forall k\left\langle f_{n}^{\prime}, g_{k}\right\rangle \underset{n \rightarrow \infty}{\longrightarrow}\left\langle f^{\prime}, g_{k}\right\rangle
$$

for all $f, f_{1}, f_{2}, \cdots \in B_{\alpha}$.
We fix d for a while, and enumerate x_{1}, \ldots, x_{d} in ascending order:

$$
\left\{x_{1}, \ldots, x_{d}\right\}=\left\{y_{1}, \ldots, y_{d}\right\}, \quad 0<y_{1}<\cdots<y_{d}<1
$$

Here is an orthonormal basis in the d-dimensional space spanned by g_{1}, \ldots, g_{d} :

$$
h_{1}=\frac{1}{\sqrt{y_{1}}} \mathbb{1}_{\left(0, y_{1}\right)}, h_{2}=\frac{1}{\sqrt{y_{2}-y_{1}}} \mathbb{1}_{\left(y_{1}, y_{2}\right)}, \ldots, h_{d}=\frac{1}{\sqrt{y_{d}-y_{d-1}}} \mathbb{1}_{\left(y_{d-1}, y_{d}\right)} .
$$

Naturally, we let $\left\langle f^{\prime}, h_{i}\right\rangle=\frac{1}{\sqrt{y_{i}-y_{i-1}}}\left(f\left(y_{i}\right)-f\left(y_{i-1}\right)\right)$ (where $y_{0}=0$). We introduce linear operators $T_{d}: C_{0}[0,1] \rightarrow \mathbb{R}^{d}$ by

$$
T_{d} f=\left(\left\langle f^{\prime}, h_{1}\right\rangle, \ldots,\left\langle f^{\prime}, h_{d}\right\rangle\right) ;
$$

they are continuous.
Similarly to A_{n}, we define operator $\tilde{A}_{d}: C_{0}[0,1] \rightarrow C_{0}[0,1] ; \tilde{A}_{d} f$ is the function linear on $\left[0, y_{1}\right],\left[y_{1}, y_{2}\right], \ldots,\left[y_{d-1}, y_{d}\right]$, equal to f at $0, y_{1}, \ldots, y_{d}$, and constant on $\left[y_{d}, 1\right]$. Thus, $\left(\tilde{A}_{d} f\right)^{\prime}=\left\langle f^{\prime}, h_{1}\right\rangle h_{1}+\cdots+\left\langle f^{\prime}, h_{d}\right\rangle h_{d}$ and $\left\langle f^{\prime},\left(\tilde{A}_{d} g\right)^{\prime}\right\rangle=\left\langle\left(\tilde{A}_{d} f\right)^{\prime},\left(\tilde{A}_{d} g\right)^{\prime}\right\rangle=\left\langle\left(\tilde{A}_{d} f\right)^{\prime}, g^{\prime}\right\rangle$ (like the orthogonal projection, but f^{\prime}, g^{\prime} are ill-defined). Note that $\left\|\left(\tilde{A}_{d} f\right)^{\prime}\right\|_{2}=\left\|T_{d} f\right\|_{2}$ and $\left\langle\left(\tilde{A}_{d} f\right)^{\prime},\left(\tilde{A}_{d} g\right)^{\prime}\right\rangle=$ $\left\langle T_{d} f, T_{d} g\right\rangle$.

Now we have three "incarnations" of the d-dimensional Euclidean vector space:

* \mathbb{R}^{d};
* subspace of $L_{2}[0,1]$ spanned by g_{1}, \ldots, g_{d} or, equivalently, by h_{1}, \ldots, h_{d}, with the norm $\|\cdot\|_{2}$ (step functions);
* subspace $\left\{f: \tilde{A}_{d} f=f\right\}$ of $C_{0}[0,1]$, with the norm $f \mapsto\left\|f^{\prime}\right\|_{2}$ (polygonal functions).
They are intertwined by a commutative diagram of linear isometries:

We turn to $d \rightarrow \infty$. Clearly,

$$
f_{n} \rightarrow f \text { in } C_{0}[0,1] \Longleftrightarrow \forall d T_{d} f_{n} \underset{n \rightarrow \infty}{\longrightarrow} T_{d} f
$$

for all $f, f_{1}, f_{2}, \cdots \in \underset{\sim}{B_{\alpha}}$.
If $d_{1} \leq d_{2}$, then $\tilde{A}_{d_{1}} \tilde{A}_{d_{2}}=\tilde{A}_{d_{1}}=\tilde{A}_{d_{2}} \tilde{A}_{d_{1}}$, and $\left(\tilde{A}_{d_{1}} f\right)^{\prime}$ is the orthogonal projection of $\left(\tilde{A}_{d_{2}} f\right)^{\prime}$. Thus, $\left\|\left(\tilde{A}_{d} f\right)^{\prime}\right\|_{2}$ is increasing (in d).
5d3 Lemma. $\left\|\left(\tilde{A}_{d} f\right)^{\prime}\right\|_{2} \uparrow\left\|f^{\prime}\right\|_{2}$ (be it finite or infinite) as $d \rightarrow \infty$.
Proof. On one hand, if $f^{\prime} \in L_{2}$, then $\left(\tilde{A}_{d} f\right)^{\prime}$ is the orthogonal projection of f^{\prime} to the subspace spanned by g_{1}, \ldots, g_{d}; the union of these subspaces is dense in L_{2}, thus, $\left\|\left(\tilde{A}_{d} f\right)^{\prime}\right\|_{2} \uparrow\left\|f^{\prime}\right\|_{2}$.

On the other hand, assume that $\lim _{d}\left\|\left(\tilde{A}_{d} f\right)^{\prime}\right\|_{2}<\infty$; we have to prove that $f^{\prime} \in L_{2}$. The series

$$
\left(\tilde{A}_{1} f\right)^{\prime}+\left(\tilde{A}_{2} f-\tilde{A}_{1} f\right)^{\prime}+\left(\tilde{A}_{3} f-\tilde{A}_{2} f\right)^{\prime}+\ldots
$$

consists of orthogonal summands, and its partial sums are bounded. It follows easily that these partial sums are a Cauchy sequence. Thus, the series converges:

$$
\left(\tilde{A}_{d} f\right)^{\prime} \rightarrow \varphi \quad \text { for some } \varphi \in L_{2}
$$

We note that $\left\langle\left(\tilde{A}_{k} f\right)^{\prime}, g_{d}\right\rangle=\left\langle f^{\prime}, g_{d}\right\rangle$ when $k \geq d$; thus, it equals $\left\langle\varphi, g_{d}\right\rangle$; that is, $\int_{0}^{x_{d}} \varphi(u) \mathrm{d} u=f\left(x_{d}\right)$ for all d; this shows that $\varphi=f^{\prime}$.

Denote by $\nu_{d, n}$ the distribution of $T_{d} S_{n}$. By 5a1,

$$
\frac{1}{n \varepsilon^{2}} \Lambda_{\nu_{d, n}}\left(\varepsilon t_{1}, \ldots, \varepsilon t_{d}\right) \rightarrow \frac{1}{2}\left(t_{1}^{2}+\cdots+t_{d}^{2}\right) \quad \text { as } n \rightarrow \infty
$$

for all $\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{R}^{d}$, since $\Lambda_{\nu_{d, n}}\left(t_{1}, \ldots, t_{d}\right)=\ln \mathbb{E} \exp \left(\varepsilon t_{1}\left\langle S_{n}, h_{1}\right\rangle+\cdots+\right.$ $\left.\varepsilon t_{d}\left\langle S_{n}, h_{d}\right\rangle\right)=\ln \mathbb{E} \exp \left\langle S_{n}, \varepsilon t_{1} h_{1}+\cdots+\varepsilon t_{d} h_{d}\right\rangle=\Lambda_{n}\left(\varepsilon t_{1} h_{1}+\cdots+\varepsilon t_{d} h_{d}\right)$.

Thus, Theorem 5b7 (as well as 5b8-(5b12)) applies to $\nu_{d, n}$ for given d. That theorem is formulated for \mathbb{R}^{d}, but may be transferred readily to the "step" or "polygonal" space. In all cases, the rate function is $\frac{1}{2}\|\cdot\|^{2}$.
5d4 Exercise. Let $g \in C_{0}[0,1]$ satisfy $g=\tilde{A}_{d} g$ (for a given d), and $H=$ $\left\{f \in C_{0}[0,1]:\left\langle f^{\prime}, g^{\prime}\right\rangle \geq\left\|g^{\prime}\right\|_{2}^{2}\right\}$ (even though f^{\prime} is ill-defined...). Then
(a) $H=\left\{f \in C_{0}[0,1]:\left\langle T_{d} f, T_{d} g\right\rangle \geq\left|T_{d} g\right|^{2}\right\}$;
(b) $\mathbb{P}\left(S_{n} \in n \varepsilon H\right) \leq \exp \left(-\frac{1}{2}\left\|g^{\prime}\right\|_{2}^{2} n \varepsilon^{2}+o\left(n \varepsilon^{2}\right)\right)$.

Prove it.

Our space $C_{0}[0,1]$ is not a finite-dimensional Euclidean space, nor a Hilbert space, and still, every $f \neq 0$ belongs to an open half-space that satisfies the upper bound with rate arbitrarily close to $\Lambda_{\infty}^{*}(f)$. Indeed, if $c<\Lambda_{\infty}^{*}(f)$ (being the latter finite or infinite), then $\frac{1}{2}\left\|\left(\tilde{A}_{d} f\right)^{\prime}\right\|_{2}^{2}>c$ for d large enough; we take such d, and introduce $g=(1-\delta) \tilde{A}_{d} f$ with $\delta>0$ small enough, then $\frac{1}{2}\left\|g^{\prime}\right\|_{2}^{2} \geq c$ and $g=\tilde{A}_{d} g$; the half-space $H=\left\{f_{1} \in C_{0}[0,1]\right.$: $\left.\left\langle f_{1}^{\prime}, g^{\prime}\right\rangle>\left\|g^{\prime}\right\|_{2}^{2}\right\}$ is open in $C_{0}[0,1]$ (think, why), $f \in H$ (think, why), and $\mathbb{P}\left(S_{n} \in n \varepsilon H\right) \leq \exp \left(-c n \varepsilon^{2}+o\left(n \varepsilon^{2}\right)\right)$ by 5 d 4 (b).

5d5 Exercise. Prove Theorem 5d1(a).
5 d 6 Exercise. Let $U \subset C_{0}[0,1]$ be open, and $f_{0} \in U \cap B_{\alpha}$. Then there exist d and $\delta>0$ such that

$$
\forall f \in B_{\alpha}\left(\left|T_{d} f-T_{d} f_{0}\right| \leq \delta \Longrightarrow f \in U\right)
$$

Prove it. ${ }^{1}$
5d7 Exercise. $\|f\|_{1 / 2} \leq\left\|f^{\prime}\right\|_{2}$ for all $f \in C_{0}[0,1]$ (be the norms finite or infinite). (Here $\|\cdot\|_{1 / 2}$ is the Hölder norm for $\alpha=1 / 2$, while $\|\cdot\|_{2}$ is the L_{2} norm.)

Prove it.
Also, $\alpha \leq \frac{1}{q}$ and $p \leq 2 \leq q$, thus, $\|f\|_{\alpha} \leq\|f\|_{1 / 2} \leq\left\|f^{\prime}\right\|_{2}$.
Proof of Theorem 5d1(b). ${ }^{2}$ Let $f_{0} \in U$; we'll prove that $\lim \inf \frac{1}{n \varepsilon^{2}} \ln \mathbb{P}\left(S_{n} \in\right.$ $n \varepsilon U) \geq-\frac{1}{2}\left\|f_{0}^{\prime}\right\|_{2}^{2}$, assuming $\left\|f_{0}^{\prime}\right\|_{2}<\infty$ (otherwise the claim is void). We take $R>\left\|f_{0}^{\prime}\right\|_{2}$, then $f_{0} \in R B_{\alpha}$ by 5 d 7 , and $\lim \sup \frac{1}{n \varepsilon^{2}} \ln \mathbb{P}\left(\left\|S_{n}\right\|_{\alpha} \geq\right.$ $R n \varepsilon)<-\frac{1}{2}\left\|f_{0}^{\prime}\right\|_{2}^{2}$ by 5c1. Exercise 5d6 gives d and $\delta>0$ such that $\forall f \in$ $R B_{\alpha}\left(\left|T_{d} f-T_{d} f_{0}\right| \leq \delta \Longrightarrow f \in U\right)$. It is sufficient to prove that

$$
\lim \inf \frac{1}{n \varepsilon^{2}} \ln \mathbb{P}\left(\left\|T_{d} \frac{S_{n}}{n \varepsilon}-T_{d} f_{0}\right\|<\delta\right) \geq-\inf _{x:\left\|x-T_{d} f_{0}\right\|<\delta} \frac{1}{2}|x|^{2}
$$

[^3]since $\inf _{x:\left|x-T_{d} f_{0}\right|<\delta} \frac{1}{2}|x|^{2} \leq \frac{1}{2}\left|T_{d} f_{0}\right|^{2}=\frac{1}{2}\left\|\left(\tilde{A}_{d} f_{0}\right)^{\prime}\right\|_{2}^{2} \leq \frac{1}{2}\left\|f_{0}^{\prime}\right\|^{2}$. Theorem $5 \mathrm{~b} 7(\mathrm{~b})$ gives the needed inequality, since $\nu_{d, n}\left(\left\{n \varepsilon x:\left|x-T_{d} f_{0}\right|<\delta\right\}\right)=$
$\mathbb{P}\left(\left|T_{d} \frac{S_{n}}{n \varepsilon}-T_{d} f_{0}\right|<\delta\right)$.
\square

5d8 Exercise. A fair coin is tossed n times, giving $\left(\beta_{1}, \ldots, \beta_{n}\right) \in\{0,1\}^{n}$. Given a continuous $\varphi:[0,1] \rightarrow(0, \infty)$, consider

$$
p_{n}=\mathbb{P}\left(\forall k=1, \ldots, n \quad \frac{2\left(\beta_{1}+\cdots+\beta_{k}\right)-k}{n^{2 / 3}} \leq \varphi\left(\frac{k}{n}\right)\right)
$$

(a) Prove that

$$
p_{n}=1-\exp \left(-a n^{1 / 3}(1+o(1))\right) \quad \text { for } n \rightarrow \infty
$$

for some $a>0$;
(b) find a when $\varphi(x)=1+v x$ for a given $v>0$;
(c) find a when $\varphi(x)=\max (1+v x, y)$ for given $v>0$ and $y>1$;
(d) find a when $\varphi(x)=1+c x^{2}$ for a given $c>0$;
(e) find a when $\varphi(x)=1+c \sqrt{x}$ for a given $c>0$.

Index

limit in n and $\varepsilon, 50,53,56$
$A_{n}, 50,55$
$\tilde{A}_{d}, 57$
$\alpha, 56$
$B_{\alpha}, 55$
$C_{0}[0,1], 55$
$C_{0, \alpha}, 55$
$\varepsilon, 50$
$\left\langle f^{\prime}, g\right\rangle, 57$
$g_{k}, 57$
$\Lambda_{\infty}, 50$
$\Lambda_{n}, 50$
$\mu, 50$
$\nu_{n}, 52,53$
$\nu_{d, n}, 58$
$\nu_{n, \varepsilon t}, 53$
$\left\|f^{\prime}\right\|_{2}, 56$
$\|\cdot\|_{\alpha}, 55$
$p, 50$
$q, 50$
$R B_{\alpha}, 57$
$S_{n}, 50,55$
$T_{d}, 57$
$x_{k}, 57$

[^0]: ${ }^{1}$ Hint: similar to 4 c 2 .

[^1]: ${ }^{1}$ Hint: recall the proof of $4 \mathrm{c} 10(\mathrm{a})$

[^2]: ${ }^{1} \operatorname{Try} f_{n}(x)=\min \left(x^{\alpha}, 1 / n\right)$.
 ${ }^{2}$ Hint: in this situation, convergence on a dense countable set implies uniform convergence. In fact, moreover, B_{β} is compact in $C_{0, \alpha}$ whenever $0<\alpha<\beta<1$; hint: if $f, g \in B_{\beta}$ satisfy $|f(x)-g(x)| \leq \frac{1}{n}$ for $x=\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}$, then $\|f-g\|_{\alpha} \leq 4 / n^{\beta-\alpha}$.

[^3]: ${ }^{1}$ Hint: similar to 4 e 7 .
 ${ }^{2}$ Quite similar to the proof of Theorem 4e1(b).

