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5a Asymptotically quadratic generating functions

Let p,q, g, Sn, An, Ao and A,, be as in Sect. 4b, [2?pu(dz) = 1 (that is,
A5(0) = 1), and p < 2 < g (see 4b4).

5al Proposition. For every g € L,,
S Au(eg) = 5l s e 0n
= n(eg Slgllz ase ,M— 0.
This is a two-dimensional limit; that is,
1 1. 9
Vo >0 Jeg >0 3ng Ve < g9 Vn > ng ‘—2An(59) — §HgH2 <.
ne

Not the same as lim, lim,, or lim,, lim,.
First, we improve 4b1l, 4b2 for small arguments.

5a2 Lemma. A/ (t) < const - max (¢[,[t[9™") for all ¢ € R.

PE'|0|o)f. For large t we have A}, (t) = O(|t|*™") by 4bl; for small ¢, A/ (t)
O(|t)).

O

5a3 Lemma. There exists C' such that for all g, g, € Ly,
1Aso(91) = Aso(g2)ll < Cllgr = gallg(lgullg + g llg™ + llgzlly + llgallg™) -
Proof. Using pa2] we take C' such that
Vi, by [Au(th) — Aulta)| < Clty — to| max(|ta], |67, [t [t2]771);

then

/0 Ay (1)) dz — / A (g2(2)) da| < / 0 (01(2)) — A (92(2)) ] <
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< C{lg1 — gol max(lgi|, 911", ol 192" 1)) <
< Cllgr — g2llqll max(|gi |, 111", [gl. g2l )l -

and

| max(... )|, = | max(|g1[”/%, |gl, |g2|"?, |g2]) |37 <
< |Hga P41 [+l “+gal 157 < (Maal” g+ gallg+ g2 N+ g21lg) =
= (g1l + lgnllg + llgall? + llgally) " <
< (dmax([|g: [, Ngallg, NgallZ/%, lg2llq)) " =
= 477 max(||gillp, |91 127, [|g2llp, lg2llZ) <
< 4 max(||gillg, 1o 127 lg2llg, o212 )
]

5a4 Lemma. For every g € L,,
1 1. s
ngo(gg) - 5”9”2 as e — 0.

Proof. First, the bounded case: g € L,; we have then

1 "1 !
ngo(eg):/O g—zAu(eg(x)) dx—>/0 592(95) dz,

since A, (eg(+)) — 34°(-) uniformly.

Second, the general case; given > 0, we take gs € L, such that ||gs —
gllq < 6 by pa3l [Ax(eg) — Axc(egs)] < const - €26 with a constant that
depends on ¢ but does not depend on €, (as long as [e| < 1,6 < 1). We get

1 1

1 1 Lol (10 e 1 s
< S5[Acle0) — Aswles)| + | Sclean) — SlalB]+ | lanll Sl

<

lgll3

Vv Vv Vv
<const-§ —0 as e—0 <const-d

thus, limsup, o | %A« (eg) — 3/l9l3] < const - § for all 4. O

Proof of Prop.[5al. 1A, (cg) = Aso(Aneg); by , A (eAng) — Aso(eg)] <
const - £2||A,g — g||, with a constant that depends on g but does not depend
on g,n (as long as |¢] < 1). Thus, ‘%An(eg) — 6%Aoo(sg)| — 0 asn — oo,
uniformly on || < 1. It remains to use [fad] O
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For the (one-dimensional) distribution v, of (S,,g), similarly to (4b7),
we get

1
(hab) A, (et) — §||g||§t2 as e — 0,n — 00,

ne?

since A,, (¢t) = InE exp(et(S,, 9)) = An(ctg).

5b Gartner-Ellis, again

DIMENSION 1

Let probability measures vy, 15,... on R be such that

1
(5b1) —A,, (et) — 5752 as e — 0,n — 00

ne?
for all ¢ € R. (In particular, v, = v*" satisfy it, provided that [z v(dz) =0
and [2?v(dz) =1, since A, (et) = A, (et) — 22)

5b2 Example. It may seem that (4cl) with A(t) ~ 3¢ (for ¢ — 0) implies
(bb1f). But this is an illusion. Here is a counterexample.
Let \/Lﬁ < a, < 1 (that is: a, — 0 and y/na, — o), and

1 1
n— 3 " - 6—na 5na )
here = N(0,1) is the standard normal distribution (thus, p** = N(0,n)),

and ¢, is the unit atom at x. Then

1 2 1
A, (t) =In (5 exp % + 3 cosh nant> .

On one hand,
1

1
—A,, (t) = =t* asn — o0,
n 2
since for ¢ = 0 this holds trivially, otherwise na,t = o(nt?) for large n.
On the other hand, taking €,, such that \/iﬁ <L e, X a, we get

1 1 1 . 1
—A,, (eat) > —1In (— exp nanant) = Iy (9(—> — 00 asn — o0o.
ne2 4 En 2

TLE-:% n ne,

By the way, these v, violate below.

The Legendre transform of A(t) = 1¢% is A*(z) = 2% (recall 2¢6).
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5b3 Exercise.

Of course, these of...) are meant for ¢ — 0,7 — oo.
Prove it.!

It follows that v,(nea,neb) — 1 as € — 0,n — 00, ne? — oo, whenever
a<0<b.

For tilted measures v, we have A, _(es) = Ay, (et + es) — A, (et),
thus -5 A, (es) = 3(t + 5)* — 5t* = ts + 3s%; the corresponding Legendre

transform is A} (z) = 3(z —t)? (since generally Aj(z) = A*(z) — tz + A(t), as

noted after 4¢2). Similarly to (4c3),
(5b4)
Unet(nea,neb) — 1 ase — 0,n — 0o,ne? — oo, whenever a < t < b.

Taking into account that

dv,

an,et

(ex) = exp(—etsx +A,, (575)) > exp(—me2 max(ta, tb) + Al,n(gt))

for € (na,nb), we get, similarly to (4e4),
(5b5) vn(nea,neb) > exp(—ne® max(ta, tb) + ne” - $1* + o(ne?))

whenever a <t < b.
Similarly to 4¢b (but simpler), if z > 0 and 6 > 0 then

Vo (nex,ne(z + 6)) > exp(—12°ne® + o(ne?)),
and similarly to 4c6,
Vn(nex,ne(x +6)) = exp(—1a°ne® 4 o(ne?)) .
DIMENSION d

All limits, as well as symbols o(...), O(...) are taken for ¢ — 0,n —
00, ne? — oo (unless stated otherwise).

Let probability measures vy, v, ... on R? be such that
(5b6) LA (t)—>1|t\2 for all + € R?
—A, (¢ = or a .
ne2 " 2

Hint: similar to 4c2.
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5b7 Theorem. (a) For every nonempty closed set F' C R,

1 1
li — Inv,(neF) < —min =|z|?.
im sup — nv,(nek’) < 15161{712|x|

(b) For every open set U C R,

1 1
coepe L > L2 '
lim inf — Inv,(nel) > ;1615 2|x|

5b8 Exercise (upper bound for a half-space).
vn({nex : (t,z) — 3|t]> > ¢}) < exp(—cne® + o(ne?))

for all t € R? and ¢ > 0.
Prove it.

5b9 Exercise (half-space not containing the expectation). If ¢ > 0, then
30> 0 vy({nex: {t,z) > c}) = Oe~*").
Prove it.

5b10 Exercise (lower bound). If U C R? is open, then
1

> o 2ie b 2y

In v, (nel) > —ne ;161[1?2156\ + o(ne?)

Prove it.

5b11 Exercise. Prove Theorem [Gh7l!

The simple rate function %| - |2 leads to a simple formula for half-spaces.

Every closed half-space H C R? not containing 0 is
H={z:(z,xg) > |vg|*}

where z is the point of H closest to 0. Now, [5b8|with ¢t = 2 and ¢ = 3|z g/
gives

(5b12) vn(neH) < exp(—3|zu[’ne® + o(ne?)) ;

we see very clearly that every x # 0 belongs to (a) a closed half-space that
satisfies the upper bound with rate 1|z|?, and (b) an open half-space that
satisfies the upper bound with rate arbitrarily close to 3|x|?.

'Hint: recall the proof of 4c10(a).
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5c Exponential tightness

What about a weakly compact set K C L, such that P(Sn ¢ neK ) <
exp(—Cne? + o(ne?)) (for a given C)? No, this cannot happen. Indeed, on
one hand, K must be bounded, that is, K C {f : ||f||, < R} for some R;
on the other hand, |[S,|li = [Xi| + -+ + | X,]; E||Su]i = nE|Xy]; P(S, €
neK) < P(||Sull, < neR) < P([|Sulli < neR) is close to 0 (rather than 1)
when neR < E ||S,||1, that is, e < E | X;|/R.

The joint compactification introduced in Sect. 4b and used successfully
for large deviations, fails for moderate deviations. We need another joint
compactification. The L,-norm feels only absolute values of X3, ..., X,,. But
we have E X; = 0, and cancellation of positive and negative summands
should not be ignored.

We sacrifice invariance under permutations of the random variables X7, ..., X,
(thus, by the way, complicating generalization to, say, two-dimensional arrays
of random variables) and take indefinite integrals of the functions S, (and
others). We move to the space Cy|0, 1] of all continuous functions on [0, 1]
vanishing at 0, and redefine the random function S,, as such piecewise-linear
function of Cy[0, 1]:

Sn(l’) — / (nXl]l(O’l) + st ‘I_ an]l(L*lyl)) .
0 n n

Note that indefinite integrals of functions of L, (or L;) are absolutely con-
tinuous; they are dense in the space Cy[0, 1], but far not the whole space. In
this sense, we really move to a larger space.

We also need Holder spaces Cj,, and Holder norms || - ||, for a € (0,1),

||f||a = sup |f(y)__ f(ax”
O<zr<y<l (y ZL‘)

Coo ={f € Co[0,1] : [[flla < o0}

€[0,00] for f e Cy[0,1],

For 0 <a < <1wehave ||| <|-|gand Cyo D Cop.

The unit ball B, = {f : ||f|la < 1} is separable, but not compact (in
Co.a).! However, B, is compact in Cp[0,1].? Note that Holder functions
need not be absolutely continuous.

1

We also redefine operators A,; now A, f is the function linear on [0, 5],
- [”T_l,l] and equal to f at O,%,%,...,”—_l 1.

n’n n ’

'Try f,.(x) = min(z®, 1/n).

2Hint: in this situation, convergence on a dense countable set implies uniform con-
vergence. In fact, moreover, Bg is compact in Cp, whenever 0 < a < < 1; hint: if
f.g € Bg satisfy |f(z) —g(z)| < L forz =212 . 2=L then | f — gl < 4/nf~.

—n n’n’ ’on )
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For a piecewise-linear function f = A, f we have
1 [ k
1 lla = , max 1) -1
n n

I _k
0<k<I<n (E — ;)a
indeed, % cannot be maximal between the nodes %, =y, due to
concavity of the function x +— x®. For such f,

[0}

n
_ / _
1 flla = Ognklglin I(f', grk1)| where gi; = =k (kL)

We note that || gk, = (l k) <1 for a < 1/q. We use [5b3]

n

= ZP Siv gia)| = new) < 2<n; 1) eXP(—%xQnez + o(ne?)),

]P’(HSnHa > ns:c) <

and get
P(|[Snlla = nex) < exp(—3a”ne® + o(ne®) + O(Inn))

for « < 1/q.

From now on, all limits, as well as symbols of...), O(...) are taken for
e—0,n = 00, 2 — 50 (unless stated otherwise). Note the logarithmic gap
between moderate deviations and central limit theorem.

Now, for @ < 1/q we have

(5cl) P([|Snlla > nex) < exp(—iane® + o(ne?)),

which is exponential tightness; K¢ is the ball #B, (with z such that x?/2 =
(') endowed with the compact topology from Cy[0, 1].

5d Mogulskii’s theorem, again

We interpret || f'||2 as +oo if f is not the indefinite integral of a function of
Ly]0,1]. As before all limits, as well as symbols o(...), O(...) are taken for
e — 0,n — oo, ”5 — 0o (unless stated otherwise). Also, 1 <p <2<g¢g<
00, p+5_1’ andagl/q.

5d1 Theorem. (a) For every nonempty closed set F' C Cy[0, 1],

1 1 1
- - < —_min =l 2.
lim sup — InP <n55n € F) < —min 2Hf I3
(b) For every open set U C 0, 1],

1 1
. . > _ p—
lim inf e InP (—ngsn € U) }ng 5 Hf Hz
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5d2 Remark. Weaker conditions on F and U are sufficient for the theorem
(and the proof): for all R > 0,

FNRB, is closed,
U N RB, is relatively open in RB, ;

here RB, ={Rf: f € Bo} ={f:|flla < R}

We choose a dense sequence xq, s, --- € [0,1] and denote g = g 4,). If
f € Co[0,1] is the indefinite integral of a function of L0, 1],

_ /O () du

then clearly f(xx) = (f’, gx). It is convenient to denote (f’, gx) = f(zx) for
arbitrary f € ([0, 1] (even though f’ is ill-defined). We note that

(fo = fin Go[0,1]) <= Vk <fn,gk> <f k)

for all faflaf?v' € Ba'
We fix d for a while, and enumerate x1, ..., x4 in ascending order:

{e, o ray ={y . oya, O0<ypi<---<wya<l1.

Here is an orthonormal basis in the d-dimensional space spanned by gy, . . ., g4:
hy = ! 1 hy = ! 1 hqg = L 1
1 N (0,y1)> %2 Yo — U1 (y1,y2)> -+ ltd Vd — Va1 (Ya—1,Ya) *

Naturally, we let (f’, h et f i-1)) (where yo = 0). We
introduce linear operators Ty C’o [0, 1] — Rd by

Taf = ((f'sha)s -, (f' ha)) 5

they are continuous.

Similarly to A,, we define operator Ay : Co[0,1] — Co[0,1]; Aqf is the
function linear on [0,v1], [y1, 2], ---, [Ya—1,va], equal to f at 0,y1,...,ya,
and constant on [yg,1]. Thus, (Agf) = (f',hi)hy + --- + (f', hg)hg and
(1", (Aag)') = ((Aaf), (Aag)') = ((Aaf),d') (like the orthogonal projection,
but f’, ¢’ are ill-defined). Note that ||(Agf)||l2 = |Tuf |2 and ((Aaf), (Agg)’) =
(Taf,Tug)-

Now we have three “incarnations” of the d-dimensional Euclidean vector
space:
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* R%
« subspace of Ly[0, 1] spanned by ¢1, ..., g4 or, equivalently, by hy, ..., hq,
with the norm || - ||2 (step functions);

% subspace {f : Agf = f} of Cy[0, 1], with the norm f +— || f'||> (polygo-

nal functions).

They are intertwined by a commutative diagram of linear isometries:

polygonal <———— = step f 1
\ y / \T f /
d

We turn to d — oo. Clearly,

fo— finCo[0,1] <= Vd Tyf, —— Tuf

foraufafl>f27"'€5a-~ 5 . 5
If dy < dy, then Ag Ay, = Ag, = Aa, Ay, and (Ag, f)" is the orthogonal
projection of (Ag, f). Thus, ||(Agf)||2 is increasing (in d).

5d3 Lemma. ||(Ayf)|l2 1| f']l2 (be it finite or infinite) as d — oo.

Proof. On one hand, if f' € Ly, then (Ayf) is the orthogonal projection
of f’ to the subspace spanned by g1, ..., ga; the union of these subspaces is
dense in Lo, thus, ||(Aaf)|l2 T IIf||2- .

On the other hand, assume that limg [[(Aqf)||2 < oo; we have to prove
that f’ € L. The series

(Avf) + (Aof — Arf) + (Asf — Aof) + ...

consists of orthogonal summands, and its partial sums are bounded. It fol-
lows easily that these partial sums are a Cauchy sequence. Thus, the series
converges:

(Aaf) — ¢ for some p € Ly.
We note that ((flkf)’,gd> = (f’, ga) when k > d; thus, it equals (p, gq); that
is, [T ¢(u)du = f(zg) for all d; this shows that ¢ = f. O

Denote by v4, the distribution of TS, By [pall,
1
@Al,d’n(gtl, ooy Elg) = §(t% + 4 t3) asn — oo

for all (t,...,tq) € RY since Ay, (t1,...,tg) =InE exp(5t1<8n, hy) + -+
ety S, hd)) = InE exp(S,,ectihy + -+ + etghg) = Ay (etihy + -+ + etghg).
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Thus, Theorem W (as well as (5b12))) applies to vy, for given d. That
theorem is formulated for RY, but may be transferred readily to the “step”

or “polygonal” space. In all cases, the rate function is 3| - ||

5d4 Exercise. Let g € Cy[0,1] satisfy g = Aqg (for a given d), and H =
{f€Col0,1]: {f",g") > 1lg'lI3} (even though f’is ill-defined...). Then

(a) H ={f € Co[0,1] : (Tuf, Tug) = |Tag*};

(b) P(S,, € neH) < exp(—3]|¢'||3ne* + o(ne?)).
Prove it.

Our space Cy[0,1] is not a finite-dimensional Euclidean space, nor a
Hilbert space, and still, every f # 0 belongs to an open half-space that
satisfies the upper bound with rate arbitrarily close to A% (f). Indeed, if
¢ < A% (f) (being the latter finite or infinite), then 1[|(Asf)[|3 > ¢ for d
large enough; we take such d, and introduce g = (1 — 5)Adf with 0 > 0 small
enough, then 3|¢||l3 > ¢ and g = Aqg; the half-space H = {f, € Cp[0,1] :
(fi,d) > |43} is open in Cy[0,1] (think, why), f € H (think, why), and
P(S, € neH) < exp(—cne? 4 o(ne?)) by 5d4(b).

5d5 Exercise. Prove Theorem [5d1fa).

5d6 Exercise. Let U C Cy[0, 1] be open, and fy € UN B,. Then there exist
d and 0 > 0 such that

Vf € Ba (|Tuf —Tufol <6 = feU).

Prove it.!
5d7 Exercise. [|f|i/2 < ||f||2 for all f € Cy[0,1] (be the norms finite or
infinite). (Here || - ||1/2 is the Hélder norm for o = 1/2, while || - [|2 is the Ly
norm.)

Prove it.

Also, o < 1 and p <2 < g, thus, [|fla < |f1)2 < /]l

Proof of Theorem [5d1|(b). * Let fo € U; we'll prove that liminf -5 InP (S, €
neU) > —1||f5l13, assuming || fj]l2 < oo (otherwise the claim is void). We
take R > ||fll2, then fo € RB, by [pd7 and limsup - InP ([|Sulla >

ne2

Rne) < —3||fol13 by . Exercise [5d6| gives d and § > 0 such that Vf €
RB, (|Tdf —Tufo] <6 = f € U). It is sufficient to prove that

1 1
lim inf — InP (HTd& . TdfOH < 5) > inf -
ne

2 ’.Z'|2 ’
ne z:||lz—Tyfol|<6 2

'Hint: similar to 4e7.
2Quite similar to the proof of Theorem 4el(b).



Tel Aviv University, 2015

) . 11,12
since Hlfz;|x—TdfO|<5 §\x| <

Large and moderate deviations 60

sITafol? = 5I(Aafo) 5 < 5lf6l°.  Theorem

5b7|(b) gives the needed inequality, since vy, ({nex : |z — Tyufy| < &6}) =

P([Ty%2 — Tyufo| < 9).

]

5d8 Exercise. A fair coin is tossed n times, giving (f1,...,05,) € {0,1}".

Given a continuous ¢ : [0, 1] —

:P(szl,...,n

(a) Prove that

(0,00), consider

281 + -+ Br) —

k
n2/3 < 90(%)) :

pn=1-— exp(—cml/3(1 +0(1))) forn — oo

for some a > 0;
(b) find @ when ¢(
¢) find a when p(x

(
(d) find @ when p(z) =
(e) find @ when ¢(z)

limit in n and ¢,

|3_3]
Ad7

Baa@
Co0,1], [55]

0,005

, B0

67
('.9),B7
gk|3_7|
Aso

Ay @

x)

1 4+ vz for a given v > 0;

ax(1l + vz, y) for given v > 0 and y > 1;
1 + ca? for a given ¢ > 0;
1+ ¢y/x for a given ¢ > 0.

Index

1, B0
vn, B2} B3]
Vd,n,@
Vn,eh@
[1£1]2, [56]
1 lla
p, B0

¢, 50
RB,, [T
S, B0} B3]
T4, [57]
xk,|'5_7|
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