5 Moderate deviations in spaces of functions

5a	Asymptotically quadratic generating functions .	50
$5\mathrm{b}$	Gärtner-Ellis, again	52
5c	Exponential tightness	55
5d	Mogulskii's theorem, again	56

5a Asymptotically quadratic generating functions

Let $p, q, \mu, S_n, \Lambda_n, \Lambda_\infty$ and A_n be as in Sect. 4b, $\int x^2 \mu(dx) = 1$ (that is, $\Lambda''_{\mu}(0) = 1$), and $p \leq 2 \leq q$ (see 4b4).

5a1 Proposition. For every $g \in L_q$,

$$\frac{1}{n\varepsilon^2}\Lambda_n(\varepsilon g) \to \frac{1}{2} \|g\|_2^2 \quad \text{as } \varepsilon \to 0, n \to \infty.$$

This is a two-dimensional limit; that is,

$$\forall \delta > 0 \; \exists \varepsilon_0 > 0 \; \exists n_0 \; \forall \varepsilon \le \varepsilon_0 \; \forall n \ge n_0 \quad \left| \frac{1}{n \varepsilon^2} \Lambda_n(\varepsilon g) - \frac{1}{2} \|g\|_2^2 \right| \le \delta \, .$$

Not the same as $\lim_{\varepsilon} \lim_{n \to \infty} \operatorname{or} \lim_{n \to \infty} \lim_{\varepsilon \to \infty} \operatorname{or} \lim_{\varepsilon \to \infty} \lim_{\varepsilon \to \infty} \operatorname{or} \lim_{\varepsilon \to \infty} \lim_{\varepsilon$

First, we improve 4b1, 4b2 for small arguments.

5a2 Lemma. $\Lambda'_{\mu}(t) \leq \text{const} \cdot \max(|t|, |t|^{q-1})$ for all $t \in \mathbb{R}$.

Proof. For large t we have $\Lambda'_{\mu}(t) = \mathcal{O}(|t|^{q-1})$ by 4b1; for small t, $\Lambda'_{\mu}(t) = \mathcal{O}(|t|)$.

5a3 Lemma. There exists C such that for all $g_1, g_2 \in L_q$,

$$\|\Lambda_{\infty}(g_1) - \Lambda_{\infty}(g_2)\| \le C \|g_1 - g_2\|_q \left(\|g_1\|_q + \|g_1\|_q^{q-1} + \|g_2\|_q + \|g_2\|_q^{q-1} \right).$$

Proof. Using 5a2, we take C such that

$$\forall t_1, t_2 |\Lambda_{\mu}(t_1) - \Lambda_{\mu}(t_2)| \le C |t_1 - t_2| \max(|t_1|, |t_1|^{q-1}, |t_2|, |t_2|^{q-1});$$

then

$$\left|\int_0^1 \Lambda_\mu(g_1(x)) \,\mathrm{d}x - \int_0^1 \Lambda_\mu(g_2(x)) \,\mathrm{d}x\right| \le \int_0^1 |\Lambda_\mu(g_1(x)) - \Lambda_\mu(g_2(x))| \,\mathrm{d}x \le$$

$$\leq C \langle |g_1 - g_2|, \max(|g_1|, |g_1|^{q-1}, |g_2|, |g_2|^{q-1}) \rangle \leq \leq C ||g_1 - g_2||_q || \max(|g_1|, |g_1|^{q-1}, |g_2|, |g_2|^{q-1}) ||_p,$$

and

$$\begin{aligned} \|\max(\dots)\|_{p} &= \|\max(|g_{1}|^{p/q}, |g_{1}|, |g_{2}|^{p/q}, |g_{2}|)\|_{q}^{q-1} \leq \\ &\leq \||g_{1}|^{p/q} + |g_{1}| + |g_{2}|^{p/q} + |g_{2}|\|_{q}^{q-1} \leq (\||g_{1}|^{p/q}\|_{q} + \|g_{1}\|_{q} + \|g_{2}|\|_{q}^{p/q}\|_{q} + \|g_{2}\|_{q})^{q-1} = \\ &= (\|g_{1}\|_{p}^{p/q} + \|g_{1}\|_{q} + \|g_{2}\|_{p}^{p/q} + \|g_{2}\|_{q})^{q-1} \leq \\ &\leq (4\max(\|g_{1}\|_{p}^{p/q}, \|g_{1}\|_{q}, \|g_{2}\|_{p}^{p/q}, \|g_{2}\|_{q}))^{q-1} = \\ &= 4^{q-1}\max(\|g_{1}\|_{p}, \|g_{1}\|_{q}^{q-1}, \|g_{2}\|_{p}, \|g_{2}\|_{q}^{q-1}) \leq \\ &\leq 4^{q-1}\max(\|g_{1}\|_{q}, \|g_{1}\|_{q}^{q-1}, \|g_{2}\|_{q}, \|g_{2}\|_{q}^{q-1}). \end{aligned}$$

5a4 Lemma. For every $g \in L_q$,

$$\frac{1}{\varepsilon^2} \Lambda_{\infty}(\varepsilon g) \to \frac{1}{2} \|g\|_2^2 \quad \text{as } \varepsilon \to 0 \,.$$

Proof. First, the bounded case: $g \in L_{\infty}$; we have then

$$\frac{1}{\varepsilon^2} \Lambda_{\infty}(\varepsilon g) = \int_0^1 \frac{1}{\varepsilon^2} \Lambda_{\mu}(\varepsilon g(x)) \, \mathrm{d}x \to \int_0^1 \frac{1}{2} g^2(x) \, \mathrm{d}x \,,$$

since $\frac{1}{\varepsilon^2} \Lambda_{\mu}(\varepsilon g(\cdot)) \to \frac{1}{2}g^2(\cdot)$ uniformly.

Second, the general case; given $\delta > 0$, we take $g_{\delta} \in L_{\infty}$ such that $||g_{\delta} - g||_q \leq \delta$; by 5a3, $|\Lambda_{\infty}(\varepsilon g) - \Lambda_{\infty}(\varepsilon g_{\delta})| \leq \text{const} \cdot \varepsilon^2 \delta$ with a constant that depends on g but does not depend on ε, δ (as long as $|\varepsilon| \leq 1, \delta \leq 1$). We get

$$\begin{split} & \left|\frac{1}{\varepsilon^2}\Lambda_{\infty}(\varepsilon g) - \frac{1}{2}\|g\|_2^2\right| \leq \\ & \leq \underbrace{\frac{1}{\varepsilon^2} \Big| \Lambda_{\infty}(\varepsilon g) - \Lambda_{\infty}(\varepsilon g_{\delta}) \Big|}_{\leq \operatorname{const} \cdot \delta} + \underbrace{\frac{1}{\varepsilon^2}\Lambda_{\infty}(\varepsilon g_{\delta}) - \frac{1}{2}\|g\|_2^2}_{\rightarrow 0 \text{ as } \varepsilon \rightarrow 0} + \underbrace{\frac{1}{2}\|g_{\delta}\|_2^2 - \frac{1}{2}\|g\|_2^2}_{\leq \operatorname{const} \cdot \delta}, \end{split}$$

thus, $\limsup_{\varepsilon \to 0} \left| \frac{1}{\varepsilon^2} \Lambda_{\infty}(\varepsilon g) - \frac{1}{2} \|g\|_2^2 \right| \le \operatorname{const} \cdot \delta$ for all δ .

Proof of Prop. 5a1. $\frac{1}{n}\Lambda_n(\varepsilon g) = \Lambda_\infty(A_n\varepsilon g)$; by 5a3, $|\Lambda_\infty(\varepsilon A_ng) - \Lambda_\infty(\varepsilon g)| \le \text{const} \cdot \varepsilon^2 ||A_ng - g||_q$ with a constant that depends on g but does not depend on ε, n (as long as $|\varepsilon| \le 1$). Thus, $\left|\frac{1}{n\varepsilon^2}\Lambda_n(\varepsilon g) - \frac{1}{\varepsilon^2}\Lambda_\infty(\varepsilon g)\right| \to 0$ as $n \to \infty$, uniformly on $|\varepsilon| \le 1$. It remains to use 5a4.

For the (one-dimensional) distribution ν_n of $\langle S_n, g \rangle$, similarly to (4b7), we get

(5a5)
$$\frac{1}{n\varepsilon^2}\Lambda_{\nu_n}(\varepsilon t) \to \frac{1}{2}\|g\|_2^2 t^2 \quad \text{as } \varepsilon \to 0, n \to \infty,$$

since $\Lambda_{\nu_n}(\varepsilon t) = \ln \mathbb{E} \exp(\varepsilon t \langle S_n, g \rangle) = \Lambda_n(\varepsilon t g).$

5b Gärtner-Ellis, again

DIMENSION 1

Let probability measures ν_1, ν_2, \ldots on \mathbb{R} be such that

(5b1)
$$\frac{1}{n\varepsilon^2}\Lambda_{\nu_n}(\varepsilon t) \to \frac{1}{2}t^2 \text{ as } \varepsilon \to 0, n \to \infty$$

for all $t \in \mathbb{R}$. (In particular, $\nu_n = \nu^{*n}$ satisfy it, provided that $\int x \nu(\mathrm{d}x) = 0$ and $\int x^2 \nu(\mathrm{d}x) = 1$, since $\frac{1}{n\varepsilon^2} \Lambda_{\nu_n}(\varepsilon t) = \frac{1}{\varepsilon^2} \Lambda_{\nu}(\varepsilon t) \to \frac{1}{2} t^2$.)

5b2 Example. It may seem that (4c1) with $\Lambda(t) \sim \frac{1}{2}t^2$ (for $t \to 0$) implies (5b1). But this is an illusion. Here is a counterexample.

Let $\frac{1}{\sqrt{n}} \ll a_n \ll 1$ (that is: $a_n \to 0$ and $\sqrt{n}a_n \to \infty$), and

$$\nu_n = \frac{1}{2}\mu^{*n} + \frac{1}{4}(\delta_{-na_n} + \delta_{na_n})$$

here $\mu = N(0, 1)$ is the standard normal distribution (thus, $\mu^{*n} = N(0, n)$), and δ_x is the unit atom at x. Then

$$\Lambda_{\nu_n}(t) = \ln\left(\frac{1}{2}\exp\frac{nt^2}{2} + \frac{1}{2}\cosh na_n t\right).$$

On one hand,

$$\frac{1}{n}\Lambda_{\nu_n}(t) \to \frac{1}{2}t^2 \quad \text{as } n \to \infty$$

since for t = 0 this holds trivially, otherwise $na_n t = o(nt^2)$ for large n.

On the other hand, taking ε_n such that $\frac{1}{\sqrt{n}} \ll \varepsilon_n \ll a_n$ we get

$$\frac{1}{n\varepsilon_n^2}\Lambda_{\nu_n}(\varepsilon_n t) \ge \frac{1}{n\varepsilon_n^2}\ln\left(\frac{1}{4}\exp na_n\varepsilon_n t\right) = \frac{a_n}{\varepsilon_n}t + \mathcal{O}\left(\frac{1}{n\varepsilon_n^2}\right) \to \infty \quad \text{as } n \to \infty.$$

By the way, these ν_n violate 5b3 below.

The Legendre transform of $\Lambda(t) = \frac{1}{2}t^2$ is $\Lambda^*(x) = \frac{1}{2}x^2$ (recall 2c6).

5b3 Exercise.

$$\nu_n[n\varepsilon x,\infty) \le \exp\left(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2)\right) \quad \text{for } x \ge 0;$$

$$\nu_n(-\infty,n\varepsilon x] \le \exp\left(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2)\right) \quad \text{for } x \le 0.$$

Of course, these $o(\ldots)$ are meant for $\varepsilon \to 0, n \to \infty$.

Prove it.¹

It follows that $\nu_n(n\varepsilon a, n\varepsilon b) \to 1$ as $\varepsilon \to 0, n \to \infty, n\varepsilon^2 \to \infty$, whenever a < 0 < b.

For tilted measures $\nu_{n,\varepsilon t}$ we have $\Lambda_{\nu_{n,\varepsilon t}}(\varepsilon s) = \Lambda_{\nu_n}(\varepsilon t + \varepsilon s) - \Lambda_{\nu_n}(\varepsilon t)$, thus $\frac{1}{n\varepsilon^2}\Lambda_{\nu_{n,\varepsilon t}}(\varepsilon s) \to \frac{1}{2}(t+s)^2 - \frac{1}{2}t^2 = ts + \frac{1}{2}s^2$; the corresponding Legendre transform is $\Lambda_t^*(x) = \frac{1}{2}(x-t)^2$ (since generally $\Lambda_t^*(x) = \Lambda^*(x) - tx + \Lambda(t)$, as noted after 4c2). Similarly to (4c3),

(5b4)

$$\nu_{n,\varepsilon t}(n\varepsilon a, n\varepsilon b) \to 1$$
 as $\varepsilon \to 0, n \to \infty, n\varepsilon^2 \to \infty$, whenever $a < t < b$.

Taking into account that

$$\frac{\mathrm{d}\nu_n}{\mathrm{d}\nu_{n,\varepsilon t}}(\varepsilon x) = \exp\left(-\varepsilon t\varepsilon x + \Lambda_{\nu_n}(\varepsilon t)\right) \ge \exp\left(-n\varepsilon^2 \max(ta, tb) + \Lambda_{\nu_n}(\varepsilon t)\right)$$

for $x \in (na, nb)$, we get, similarly to (4e4),

(5b5)
$$\nu_n(n\varepsilon a, n\varepsilon b) \ge \exp\left(-n\varepsilon^2 \max(ta, tb) + n\varepsilon^2 \cdot \frac{1}{2}t^2 + o(n\varepsilon^2)\right)$$

whenever a < t < b.

Similarly to 4c5 (but simpler), if $x \ge 0$ and $\delta > 0$ then

$$\nu_n(n\varepsilon x, n\varepsilon(x+\delta)) \ge \exp\left(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2)\right),$$

and similarly to 4c6,

$$\nu_n \left(n \varepsilon x, n \varepsilon (x + \delta) \right) = \exp\left(-\frac{1}{2} x^2 n \varepsilon^2 + o(n \varepsilon^2) \right).$$

DIMENSION d

All limits, as well as symbols $o(\ldots)$, $\mathcal{O}(\ldots)$ are taken for $\varepsilon \to 0, n \to \infty, n\varepsilon^2 \to \infty$ (unless stated otherwise).

Let probability measures ν_1, ν_2, \ldots on \mathbb{R}^d be such that

(5b6)
$$\frac{1}{n\varepsilon^2}\Lambda_{\nu_n}(\varepsilon t) \to \frac{1}{2}|t|^2 \text{ for all } t \in \mathbb{R}^d.$$

¹Hint: similar to 4c2.

5b7 Theorem. (a) For every nonempty closed set $F \subset \mathbb{R}^d$,

$$\limsup \frac{1}{n\varepsilon^2} \ln \nu_n(n\varepsilon F) \le -\min_{x\in F} \frac{1}{2} |x|^2.$$

(b) For every open set $U \subset \mathbb{R}^d$,

$$\liminf \frac{1}{n\varepsilon^2} \ln \nu_n(n\varepsilon U) \ge -\inf_{x\in U} \frac{1}{2} |x|^2.$$

5b8 Exercise (upper bound for a half-space).

$$\nu_n\big(\{n\varepsilon x: \langle t, x \rangle - \frac{1}{2}|t|^2 \ge c\}\big) \le \exp\big(-cn\varepsilon^2 + o(n\varepsilon^2)\big)$$

for all $t \in \mathbb{R}^d$ and $c \ge 0$.

Prove it.

5b9 Exercise (half-space not containing the expectation). If c > 0, then

$$\exists \delta > 0 \ \nu_n(\{n\varepsilon x : \langle t, x \rangle \ge c\}) = \mathcal{O}(e^{-\delta n\varepsilon^2}).$$

Prove it.

5b10 Exercise (lower bound). If $U \subset \mathbb{R}^d$ is open, then

$$\ln \nu_n(n\varepsilon U) \ge -n\varepsilon^2 \inf_{x\in U} \frac{1}{2} |x|^2 + o(n\varepsilon^2) \,.$$

Prove it.

5b11 Exercise. Prove Theorem 5b7.¹

The simple rate function $\frac{1}{2}|\cdot|^2$ leads to a simple formula for half-spaces. Every closed half-space $H \subset \mathbb{R}^d$ not containing 0 is

$$H = \{x : \langle x, x_H \rangle \ge |x_H|^2\}$$

where x_H is the point of H closest to 0. Now, 5b8 with $t = x_H$ and $c = \frac{1}{2}|x_H|^2$ gives

(5b12)
$$\nu_n(n\varepsilon H) \le \exp\left(-\frac{1}{2}|x_H|^2 n\varepsilon^2 + o(n\varepsilon^2)\right);$$

we see very clearly that every $x \neq 0$ belongs to (a) a closed half-space that satisfies the upper bound with rate $\frac{1}{2}|x|^2$, and (b) an open half-space that satisfies the upper bound with rate arbitrarily close to $\frac{1}{2}|x|^2$.

¹Hint: recall the proof of 4c10(a).

5c Exponential tightness

What about a weakly compact set $K \subset L_p$ such that $\mathbb{P}(S_n \notin n \in K) \leq \exp(-Cn\varepsilon^2 + o(n\varepsilon^2))$ (for a given C)? No, this cannot happen. Indeed, on one hand, K must be bounded, that is, $K \subset \{f : ||f||_p \leq R\}$ for some R; on the other hand, $||S_n||_1 = |X_1| + \cdots + |X_n|$; $\mathbb{E} ||S_n||_1 = n\mathbb{E} |X_1|$; $\mathbb{P}(S_n \in n \in K) \leq \mathbb{P}(||S_n||_p \leq n \in R) \leq \mathbb{P}(||S_n||_1 \leq n \in R)$ is close to 0 (rather than 1) when $n \in R \ll \mathbb{E} ||S_n||_1$, that is, $\varepsilon \ll \mathbb{E} |X_1|/R$.

The joint compactification introduced in Sect. 4b and used successfully for large deviations, fails for moderate deviations. We need another joint compactification. The L_p -norm feels only absolute values of X_1, \ldots, X_n . But we have $\mathbb{E} X_1 = 0$, and cancellation of positive and negative summands should not be ignored.

We sacrifice invariance under permutations of the random variables X_1, \ldots, X_n (thus, by the way, complicating generalization to, say, two-dimensional arrays of random variables) and take indefinite integrals of the functions S_n (and others). We move to the space $C_0[0, 1]$ of all continuous functions on [0, 1]vanishing at 0, and redefine the random function S_n as such piecewise-linear function of $C_0[0, 1]$:

$$S_n(x) = \int_0^x \left(n X_1 \mathbb{1}_{(0,\frac{1}{n})} + \dots + n X_n \mathbb{1}_{(\frac{n-1}{n},1)} \right).$$

Note that indefinite integrals of functions of L_p (or L_1) are absolutely continuous; they are dense in the space $C_0[0, 1]$, but far not the whole space. In this sense, we really move to a larger space.

We also need Hölder spaces $C_{0,\alpha}$ and Hölder norms $\|\cdot\|_{\alpha}$ for $\alpha \in (0,1)$,

$$||f||_{\alpha} = \sup_{0 < x < y < 1} \frac{|f(y) - f(x)|}{(y - x)^{\alpha}} \in [0, \infty] \quad \text{for } f \in C_0[0, 1],$$
$$C_{0,\alpha} = \{f \in C_0[0, 1] : ||f||_{\alpha} < \infty\}.$$

For $0 < \alpha \leq \beta < 1$ we have $\|\cdot\|_{\alpha} \leq \|\cdot\|_{\beta}$ and $C_{0,\alpha} \supset C_{0,\beta}$.

The unit ball $B_{\alpha} = \{f : ||f||_{\alpha} \leq 1\}$ is separable, but not compact (in $C_{0,\alpha}$).¹ However, B_{α} is compact in $C_0[0,1]$.² Note that Hölder functions need not be absolutely continuous.

We also redefine operators A_n ; now $A_n f$ is the function linear on $[0, \frac{1}{n}]$, $[\frac{1}{n}, \frac{2}{n}], \ldots, [\frac{n-1}{n}, 1]$ and equal to f at $0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1$.

¹Try $f_n(x) = \min(x^{\alpha}, 1/n).$

²Hint: in this situation, convergence on a dense countable set implies uniform convergence. In fact, moreover, B_{β} is compact in $C_{0,\alpha}$ whenever $0 < \alpha < \beta < 1$; hint: if $f, g \in B_{\beta}$ satisfy $|f(x) - g(x)| \leq \frac{1}{n}$ for $x = \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}$, then $||f - g||_{\alpha} \leq 4/n^{\beta-\alpha}$.

For a piecewise-linear function $f = A_n f$ we have

$$||f||_{\alpha} = \max_{0 \le k < l \le n} \frac{1}{\left(\frac{l}{n} - \frac{k}{n}\right)^{\alpha}} \left| f\left(\frac{l}{n}\right) - f\left(\frac{k}{n}\right) \right|;$$

indeed, $\frac{|f(y)-f(x)|}{(y-x)^{\alpha}}$ cannot be maximal between the nodes $\frac{0}{n}, \frac{1}{n}, \ldots, \frac{n}{n}$ due to concavity of the function $x \mapsto x^{\alpha}$. For such f,

$$||f||_{\alpha} = \max_{0 \le k < l \le n} |\langle f', g_{k,l} \rangle| \quad \text{where } g_{k,l} = \frac{n^{\alpha}}{(l-k)^{\alpha}} \mathbb{1}_{\left(\frac{k}{n}, \frac{l}{n}\right)}.$$

We note that $||g_{k,l}||_q = \left(\frac{l-k}{n}\right)^{\frac{1}{q}-\alpha} \le 1$ for $\alpha \le 1/q$. We use 5b3,

$$\mathbb{P}(\|S_n\|_{\alpha} \ge n\varepsilon x) \le \\ \le \sum_{k,l} \mathbb{P}(|\langle S'_n, g_{k,l} \rangle| \ge n\varepsilon x) \le 2\binom{n+1}{2} \exp\left(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2)\right),$$

and get

$$\mathbb{P}(\|S_n\|_{\alpha} \ge n\varepsilon x) \le \exp\left(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2) + \mathcal{O}(\ln n)\right)$$

for $\alpha \leq 1/q$.

From now on, all limits, as well as symbols $o(\ldots)$, $\mathcal{O}(\ldots)$ are taken for $\varepsilon \to 0, n \to \infty, \frac{n\varepsilon^2}{\ln n} \to \infty$ (unless stated otherwise). Note the logarithmic gap between moderate deviations and central limit theorem.

Now, for $\alpha \leq 1/q$ we have

(5c1)
$$\mathbb{P}(\|S_n\|_{\alpha} \ge n\varepsilon x) \le \exp(-\frac{1}{2}x^2n\varepsilon^2 + o(n\varepsilon^2)),$$

which is exponential tightness; K_C is the ball xB_{α} (with x such that $x^2/2 = C$) endowed with the compact topology from $C_0[0, 1]$.

5d Mogulskii's theorem, again

We interpret $||f'||_2$ as $+\infty$ if f is not the indefinite integral of a function of $L_2[0,1]$. As before, all limits, as well as symbols $o(\ldots)$, $\mathcal{O}(\ldots)$ are taken for $\varepsilon \to 0, n \to \infty, \frac{n\varepsilon^2}{\ln n} \to \infty$ (unless stated otherwise). Also, $1 , and <math>\alpha \le 1/q$.

5d1 Theorem. (a) For every nonempty closed set $F \subset C_0[0, 1]$,

$$\limsup \frac{1}{n\varepsilon^2} \ln \mathbb{P}\left(\frac{1}{n\varepsilon}S_n \in F\right) \le -\min_{f \in F} \frac{1}{2} \|f'\|_2^2.$$

(b) For every open set $U \subset C_0[0, 1]$,

$$\liminf \frac{1}{n\varepsilon^2} \ln \mathbb{P}\left(\frac{1}{n\varepsilon}S_n \in U\right) \ge -\inf_{f \in U} \frac{1}{2} \|f'\|_2^2.$$

57

5d2 Remark. Weaker conditions on F and U are sufficient for the theorem (and the proof): for all R > 0,

 $F \cap RB_{\alpha}$ is closed, $U \cap RB_{\alpha}$ is relatively open in RB_{α} ;

here $RB_{\alpha} = \{Rf : f \in B_{\alpha}\} = \{f : ||f||_{\alpha} \le R\}.$

We choose a dense sequence $x_1, x_2, \dots \in [0, 1]$ and denote $g_k = 1_{(0, x_k)}$. If $f \in C_0[0, 1]$ is the indefinite integral of a function of $L_2[0, 1]$,

$$f(x) = \int_0^x f'(u) \,\mathrm{d}u \,,$$

then clearly $f(x_k) = \langle f', g_k \rangle$. It is convenient to denote $\langle f', g_k \rangle = f(x_k)$ for arbitrary $f \in C_0[0, 1]$ (even though f' is ill-defined). We note that

$$(f_n \to f \text{ in } C_0[0,1]) \iff \forall k \langle f'_n, g_k \rangle \xrightarrow[n \to \infty]{} \langle f', g_k \rangle$$

for all $f, f_1, f_2, \dots \in B_{\alpha}$.

We fix d for a while, and enumerate x_1, \ldots, x_d in ascending order:

$$\{x_1, \ldots, x_d\} = \{y_1, \ldots, y_d\}, \quad 0 < y_1 < \cdots < y_d < 1.$$

Here is an orthonormal basis in the *d*-dimensional space spanned by g_1, \ldots, g_d :

$$h_1 = \frac{1}{\sqrt{y_1}} \mathbb{1}_{(0,y_1)}, \ h_2 = \frac{1}{\sqrt{y_2 - y_1}} \mathbb{1}_{(y_1,y_2)}, \ \dots, \ h_d = \frac{1}{\sqrt{y_d - y_{d-1}}} \mathbb{1}_{(y_{d-1},y_d)}.$$

Naturally, we let $\langle f', h_i \rangle = \frac{1}{\sqrt{y_i - y_{i-1}}} (f(y_i) - f(y_{i-1}))$ (where $y_0 = 0$). We introduce linear operators $T_d : C_0[0, 1] \to \mathbb{R}^d$ by

$$T_d f = (\langle f', h_1 \rangle, \dots, \langle f', h_d \rangle);$$

they are continuous.

Similarly to A_n , we define operator $\tilde{A}_d : C_0[0,1] \to C_0[0,1]; \tilde{A}_d f$ is the function linear on $[0, y_1], [y_1, y_2], \ldots, [y_{d-1}, y_d]$, equal to f at $0, y_1, \ldots, y_d$, and constant on $[y_d, 1]$. Thus, $(\tilde{A}_d f)' = \langle f', h_1 \rangle h_1 + \cdots + \langle f', h_d \rangle h_d$ and $\langle f', (\tilde{A}_d g)' \rangle = \langle (\tilde{A}_d f)', (\tilde{A}_d g)' \rangle = \langle (\tilde{A}_d f)', g' \rangle$ (like the orthogonal projection, but f', g' are ill-defined). Note that $\| (\tilde{A}_d f)' \|_2 = \| T_d f \|_2$ and $\langle (\tilde{A}_d f)', (\tilde{A}_d g)' \rangle = \langle T_d f, T_d g \rangle$.

Now we have three "incarnations" of the d-dimensional Euclidean vector space:

- * subspace of $L_2[0, 1]$ spanned by g_1, \ldots, g_d or, equivalently, by h_1, \ldots, h_d , with the norm $\|\cdot\|_2$ (step functions);
- * subspace $\{f: \tilde{A}_d f = f\}$ of $C_0[0,1]$, with the norm $f \mapsto ||f'||_2$ (polygonal functions).

They are intertwined by a commutative diagram of linear isometries:

We turn to $d \to \infty$. Clearly,

$$f_n \to f \text{ in } C_0[0,1] \iff \forall d \ T_d f_n \xrightarrow[n \to \infty]{} T_d f$$

for all $f, f_1, f_2, \dots \in B_{\alpha}$.

for all $f, f_1, f_2, \dots \in B_{\alpha}$. If $d_1 \leq d_2$, then $\tilde{A}_{d_1}\tilde{A}_{d_2} = \tilde{A}_{d_1} = \tilde{A}_{d_2}\tilde{A}_{d_1}$, and $(\tilde{A}_{d_1}f)'$ is the orthogonal projection of $(\tilde{A}_{d_2}f)'$. Thus, $\|(\tilde{A}_df)'\|_2$ is increasing (in d).

5d3 Lemma. $\|(\tilde{A}_d f)'\|_2 \uparrow \|f'\|_2$ (be it finite or infinite) as $d \to \infty$.

Proof. On one hand, if $f' \in L_2$, then $(\tilde{A}_d f)'$ is the orthogonal projection of f' to the subspace spanned by g_1, \ldots, g_d ; the union of these subspaces is dense in L_2 , thus, $||(A_d f)'||_2 \uparrow ||f'||_2$.

On the other hand, assume that $\lim_d ||(\tilde{A}_d f)'||_2 < \infty$; we have to prove that $f' \in L_2$. The series

$$(\tilde{A}_1 f)' + (\tilde{A}_2 f - \tilde{A}_1 f)' + (\tilde{A}_3 f - \tilde{A}_2 f)' + \dots$$

consists of orthogonal summands, and its partial sums are bounded. It follows easily that these partial sums are a Cauchy sequence. Thus, the series converges:

$$(\tilde{A}_d f)' \to \varphi$$
 for some $\varphi \in L_2$.

We note that $\langle (\tilde{A}_k f)', g_d \rangle = \langle f', g_d \rangle$ when $k \ge d$; thus, it equals $\langle \varphi, g_d \rangle$; that is, $\int_0^{x_d} \varphi(u) \, du = f(x_d)$ for all d; this shows that $\varphi = f'$.

Denote by $\nu_{d,n}$ the distribution of $T_d S_n$. By 5a1,

$$\frac{1}{n\varepsilon^2}\Lambda_{\nu_{d,n}}(\varepsilon t_1,\ldots,\varepsilon t_d)\to \frac{1}{2}(t_1^2+\cdots+t_d^2) \quad \text{as } n\to\infty$$

for all $(t_1, \ldots, t_d) \in \mathbb{R}^d$, since $\Lambda_{\nu_{d,n}}(t_1, \ldots, t_d) = \ln \mathbb{E} \exp(\varepsilon t_1 \langle S_n, h_1 \rangle + \cdots + \varepsilon t_d \langle S_n, h_d \rangle) = \ln \mathbb{E} \exp(S_n, \varepsilon t_1 h_1 + \cdots + \varepsilon t_d h_d) = \Lambda_n(\varepsilon t_1 h_1 + \cdots + \varepsilon t_d h_d).$

Thus, Theorem 5b7 (as well as 5b8–(5b12)) applies to $\nu_{d,n}$ for given d. That theorem is formulated for \mathbb{R}^d , but may be transferred readily to the "step" or "polygonal" space. In all cases, the rate function is $\frac{1}{2} \| \cdot \|^2$.

5d4 Exercise. Let $g \in C_0[0,1]$ satisfy $g = \tilde{A}_d g$ (for a given d), and $H = \{f \in C_0[0,1] : \langle f',g' \rangle \geq \|g'\|_2^2\}$ (even though f' is ill-defined...). Then

(a) $H = \{ f \in C_0[0, 1] : \langle T_d f, T_d g \rangle \ge |T_d g|^2 \};$

(b) $\mathbb{P}(S_n \in n\varepsilon H) \leq \exp(-\frac{1}{2}||g'||_2^2 n\varepsilon^2 + o(n\varepsilon^2)).$

Prove it.

Our space $C_0[0,1]$ is not a finite-dimensional Euclidean space, nor a Hilbert space, and still, every $f \neq 0$ belongs to an open half-space that satisfies the upper bound with rate arbitrarily close to $\Lambda_{\infty}^*(f)$. Indeed, if $c < \Lambda_{\infty}^*(f)$ (being the latter finite or infinite), then $\frac{1}{2} ||(\tilde{A}_d f)'||_2^2 > c$ for dlarge enough; we take such d, and introduce $g = (1-\delta)\tilde{A}_d f$ with $\delta > 0$ small enough, then $\frac{1}{2} ||g'||_2^2 \ge c$ and $g = \tilde{A}_d g$; the half-space $H = \{f_1 \in C_0[0,1] :$ $\langle f'_1, g' \rangle > ||g'||_2^2 \}$ is open in $C_0[0,1]$ (think, why), $f \in H$ (think, why), and $\mathbb{P}(S_n \in n \in H) \le \exp(-cn \varepsilon^2 + o(n \varepsilon^2))$ by 5d4(b).

5d5 Exercise. Prove Theorem 5d1(a).

5d6 Exercise. Let $U \subset C_0[0,1]$ be open, and $f_0 \in U \cap B_{\alpha}$. Then there exist d and $\delta > 0$ such that

$$\forall f \in B_{\alpha} \left(\left| T_d f - T_d f_0 \right| \le \delta \implies f \in U \right).$$

Prove it.¹

5d7 Exercise. $||f||_{1/2} \leq ||f'||_2$ for all $f \in C_0[0,1]$ (be the norms finite or infinite). (Here $|| \cdot ||_{1/2}$ is the Hölder norm for $\alpha = 1/2$, while $|| \cdot ||_2$ is the L_2 norm.)

Prove it.

Also, $\alpha \leq \frac{1}{q}$ and $p \leq 2 \leq q$, thus, $||f||_{\alpha} \leq ||f||_{1/2} \leq ||f'||_2$.

Proof of Theorem 5d1(b). ² Let $f_0 \in U$; we'll prove that $\liminf \frac{1}{n\varepsilon^2} \ln \mathbb{P}(S_n \in n\varepsilon U) \geq -\frac{1}{2} \|f'_0\|_2^2$, assuming $\|f'_0\|_2 < \infty$ (otherwise the claim is void). We take $R > \|f'_0\|_2$, then $f_0 \in RB_{\alpha}$ by 5d7, and $\limsup \frac{1}{n\varepsilon^2} \ln \mathbb{P}(\|S_n\|_{\alpha} \geq Rn\varepsilon) < -\frac{1}{2} \|f'_0\|_2^2$ by 5c1. Exercise 5d6 gives d and $\delta > 0$ such that $\forall f \in RB_{\alpha}$ $(|T_d f - T_d f_0| \leq \delta \implies f \in U)$. It is sufficient to prove that

$$\liminf \frac{1}{n\varepsilon^2} \ln \mathbb{P}\left(\left\| T_d \frac{S_n}{n\varepsilon} - T_d f_0 \right\| < \delta \right) \ge - \inf_{x: \|x - T_d f_0\| < \delta} \frac{1}{2} |x|^2 \,,$$

¹Hint: similar to 4e7.

²Quite similar to the proof of Theorem 4e1(b).

since $\inf_{x:|x-T_df_0|<\delta} \frac{1}{2}|x|^2 \leq \frac{1}{2}|T_df_0|^2 = \frac{1}{2}||(\tilde{A}_df_0)'||_2^2 \leq \frac{1}{2}||f_0'||^2$. Theorem 5b7(b) gives the needed inequality, since $\nu_{d,n}(\{n\varepsilon x: |x-T_df_0|<\delta\}) = \mathbb{P}(|T_d\frac{S_n}{n\varepsilon} - T_df_0|<\delta)$.

5d8 Exercise. A fair coin is tossed *n* times, giving $(\beta_1, \ldots, \beta_n) \in \{0, 1\}^n$. Given a continuous $\varphi : [0, 1] \to (0, \infty)$, consider

$$p_n = \mathbb{P}\left(\forall k = 1, \dots, n \quad \frac{2(\beta_1 + \dots + \beta_k) - k}{n^{2/3}} \le \varphi\left(\frac{k}{n}\right)\right).$$

(a) Prove that

$$p_n = 1 - \exp(-an^{1/3}(1+o(1)))$$
 for $n \to \infty$

for some a > 0;

- (b) find a when $\varphi(x) = 1 + vx$ for a given v > 0;
- (c) find a when $\varphi(x) = \max(1 + vx, y)$ for given v > 0 and y > 1;
- (d) find a when $\varphi(x) = 1 + cx^2$ for a given c > 0;
- (e) find a when $\varphi(x) = 1 + c\sqrt{x}$ for a given c > 0.

Index

limit in n and ε , 50, 53, 56	$\mu, 50$
4 50 55	$\nu_n, 52, 53$
$\tilde{A}_{d}, 50, 55$ $\tilde{A}_{d}, 57$	$\nu_{d,n}, 58$
$\alpha, 56$	$\nu_{n,\varepsilon t}, 53$
$B_{\alpha}, 55$	$ f _{2}, 50$ $ \cdot _{\alpha}, 55$
$C_0[0, 1], 55$ $C_0 = 55$	p, 50
$\varepsilon, 50$	q,50
$\langle f',g\rangle,57$	$RB_{\alpha}, 57$
$g_k, 57$	$S_n, 50, 55$ T, 57
$\Lambda_{\infty}, 50$ $\Lambda_n, 50$	$x_k, 57$
,	