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5a Asymptotically quadratic generating functions

Let p, q, µ, Sn,Λn,Λ∞ and An be as in Sect. 4b,
∫
x2 µ(dx) = 1 (that is,

Λ′′µ(0) = 1), and p ≤ 2 ≤ q (see 4b4).

5a1 Proposition. For every g ∈ Lq,

1

nε2
Λn(εg)→ 1

2
‖g‖22 as ε→ 0, n→∞ .

This is a two-dimensional limit; that is,

∀δ > 0 ∃ε0 > 0 ∃n0 ∀ε ≤ ε0 ∀n ≥ n0

∣∣∣ 1

nε2
Λn(εg)− 1

2
‖g‖22

∣∣∣ ≤ δ .

Not the same as limε limn or limn limε.
First, we improve 4b1, 4b2 for small arguments.

5a2 Lemma. Λ′µ(t) ≤ const ·max
(
|t|, |t|q−1

)
for all t ∈ R.

Proof. For large t we have Λ′µ(t) = O(|t|q−1) by 4b1; for small t, Λ′µ(t) =
O(|t|).

5a3 Lemma. There exists C such that for all g1, g2 ∈ Lq,

‖Λ∞(g1)− Λ∞(g2)‖ ≤ C‖g1 − g2‖q
(
‖g1‖q + ‖g1‖q−1q + ‖g2‖q + ‖g2‖q−1q

)
.

Proof. Using 5a2, we take C such that

∀t1, t2 |Λµ(t1)− Λµ(t2)| ≤ C|t1 − t2|max(|t1|, |t1|q−1, |t2|, |t2|q−1) ;

then∣∣∣∣ ∫ 1

0

Λµ

(
g1(x)

)
dx−

∫ 1

0

Λµ

(
g2(x)

)
dx

∣∣∣∣ ≤ ∫ 1

0

|Λµ

(
g1(x)

)
− Λµ

(
g2(x)

)
| dx ≤
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≤ C〈|g1 − g2|,max(|g1|, |g1|q−1, |g2|, |g2|q−1)〉 ≤
≤ C‖g1 − g2‖q‖max(|g1|, |g1|q−1, |g2|, |g2|q−1)‖p ,

and

‖max(. . . )‖p = ‖max(|g1|p/q, |g1|, |g2|p/q, |g2|)‖q−1q ≤
≤ ‖ |g1|p/q+|g1|+|g2|p/q+|g2| ‖q−1q ≤

(
‖|g1|p/q‖q+‖g1‖q+‖|g2|p/q‖q+‖g2‖q

)
q−1 =

=
(
‖g1‖p/qp + ‖g1‖q + ‖g2‖p/qp + ‖g2‖q

)
q−1 ≤

≤
(
4 max(‖g1‖p/qp , ‖g1‖q, ‖g2‖p/qp , ‖g2‖q)

)
q−1 =

= 4q−1 max
(
‖g1‖p, ‖g1‖q−1q , ‖g2‖p, ‖g2‖q−1q

)
≤

≤ 4q−1 max
(
‖g1‖q, ‖g1‖q−1q , ‖g2‖q, ‖g2‖q−1q .

)

5a4 Lemma. For every g ∈ Lq,

1

ε2
Λ∞(εg)→ 1

2
‖g‖22 as ε→ 0 .

Proof. First, the bounded case: g ∈ L∞; we have then

1

ε2
Λ∞(εg) =

∫ 1

0

1

ε2
Λµ

(
εg(x)

)
dx→

∫ 1

0

1

2
g2(x) dx ,

since 1
ε2

Λµ(εg(·))→ 1
2
g2(·) uniformly.

Second, the general case; given δ > 0, we take gδ ∈ L∞ such that ‖gδ −
g‖q ≤ δ; by 5a3, |Λ∞(εg) − Λ∞(εgδ)| ≤ const · ε2δ with a constant that
depends on g but does not depend on ε, δ (as long as |ε| ≤ 1, δ ≤ 1). We get∣∣∣ 1

ε2
Λ∞(εg)− 1

2
‖g‖22

∣∣∣ ≤
≤ 1

ε2

∣∣∣Λ∞(εg)− Λ∞(εgδ)
∣∣∣︸ ︷︷ ︸

≤const·δ

+
∣∣∣ 1

ε2
Λ∞(εgδ)−

1

2
‖g‖22

∣∣∣︸ ︷︷ ︸
→0 as ε→0

+
∣∣∣1
2
‖gδ‖22 −

1

2
‖g‖22

∣∣∣︸ ︷︷ ︸
≤const·δ

,

thus, lim supε→0

∣∣ 1
ε2

Λ∞(εg)− 1
2
‖g‖22

∣∣ ≤ const · δ for all δ.

Proof of Prop. 5a1. 1
n
Λn(εg) = Λ∞(Anεg); by 5a3, |Λ∞(εAng)− Λ∞(εg)| ≤

const · ε2‖Ang− g‖q with a constant that depends on g but does not depend
on ε, n (as long as |ε| ≤ 1). Thus,

∣∣ 1
nε2

Λn(εg) − 1
ε2

Λ∞(εg)
∣∣ → 0 as n → ∞,

uniformly on |ε| ≤ 1. It remains to use 5a4.
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For the (one-dimensional) distribution νn of 〈Sn, g〉, similarly to (4b7),
we get

(5a5)
1

nε2
Λνn(εt)→ 1

2
‖g‖22t2 as ε→ 0, n→∞ ,

since Λνn(εt) = lnE exp
(
εt〈Sn, g〉

)
= Λn(εtg).

5b Gärtner-Ellis, again

Dimension 1

Let probability measures ν1, ν2, . . . on R be such that

(5b1)
1

nε2
Λνn(εt)→ 1

2
t2 as ε→ 0, n→∞

for all t ∈ R. (In particular, νn = ν∗n satisfy it, provided that
∫
x ν(dx) = 0

and
∫
x2 ν(dx) = 1, since 1

nε2
Λνn(εt) = 1

ε2
Λν(εt)→ 1

2
t2.)

5b2 Example. It may seem that (4c1) with Λ(t) ∼ 1
2
t2 (for t→ 0) implies

(5b1). But this is an illusion. Here is a counterexample.
Let 1√

n
� an � 1 (that is: an → 0 and

√
nan →∞), and

νn =
1

2
µ∗n +

1

4
(δ−nan + δnan) ;

here µ = N(0, 1) is the standard normal distribution (thus, µ∗n = N(0, n)),
and δx is the unit atom at x. Then

Λνn(t) = ln
(1

2
exp

nt2

2
+

1

2
coshnant

)
.

On one hand,
1

n
Λνn(t)→ 1

2
t2 as n→∞ ,

since for t = 0 this holds trivially, otherwise nant = o(nt2) for large n.
On the other hand, taking εn such that 1√

n
� εn � an we get

1

nε2n
Λνn(εnt) ≥

1

nε2n
ln
(1

4
expnanεnt

)
=
an
εn
t+O

( 1

nε2n

)
→∞ as n→∞ .

By the way, these νn violate 5b3 below.

The Legendre transform of Λ(t) = 1
2
t2 is Λ∗(x) = 1

2
x2 (recall 2c6).
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5b3 Exercise.

νn[nεx,∞) ≤ exp
(
−1

2
x2nε2 + o(nε2)

)
for x ≥ 0 ;

νn(−∞, nεx] ≤ exp
(
−1

2
x2nε2 + o(nε2)

)
for x ≤ 0 .

Of course, these o(. . . ) are meant for ε→ 0, n→∞.
Prove it.1

It follows that νn(nεa, nεb) → 1 as ε → 0, n → ∞, nε2 → ∞, whenever
a < 0 < b.

For tilted measures νn,εt we have Λνn,εt(εs) = Λνn(εt + εs) − Λνn(εt),
thus 1

nε2
Λνn,εt(εs)→ 1

2
(t + s)2 − 1

2
t2 = ts + 1

2
s2; the corresponding Legendre

transform is Λ∗t (x) = 1
2
(x− t)2 (since generally Λ∗t (x) = Λ∗(x)− tx+ Λ(t), as

noted after 4c2). Similarly to (4c3),
(5b4)

νn,εt(nεa, nεb)→ 1 as ε→ 0, n→∞, nε2 →∞,whenever a < t < b .

Taking into account that

dνn
dνn,εt

(εx) = exp
(
−εtεx+ Λνn(εt)

)
≥ exp

(
−nε2 max(ta, tb) + Λνn(εt)

)
for x ∈ (na, nb), we get, similarly to (4e4),

(5b5) νn(nεa, nεb) ≥ exp
(
−nε2 max(ta, tb) + nε2 · 1

2
t2 + o(nε2)

)
whenever a < t < b.

Similarly to 4c5 (but simpler), if x ≥ 0 and δ > 0 then

νn
(
nεx, nε(x+ δ)

)
≥ exp

(
−1

2
x2nε2 + o(nε2)

)
,

and similarly to 4c6,

νn
(
nεx, nε(x+ δ)

)
= exp

(
−1

2
x2nε2 + o(nε2)

)
.

Dimension d

All limits, as well as symbols o(. . . ), O(. . . ) are taken for ε → 0, n →
∞, nε2 →∞ (unless stated otherwise).

Let probability measures ν1, ν2, . . . on Rd be such that

(5b6)
1

nε2
Λνn(εt)→ 1

2
|t|2 for all t ∈ Rd .

1Hint: similar to 4c2.
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5b7 Theorem. (a) For every nonempty closed set F ⊂ Rd,

lim sup
1

nε2
ln νn(nεF ) ≤ −min

x∈F

1

2
|x|2 .

(b) For every open set U ⊂ Rd,

lim inf
1

nε2
ln νn(nεU) ≥ − inf

x∈U

1

2
|x|2 .

5b8 Exercise (upper bound for a half-space).

νn
(
{nεx : 〈t, x〉 − 1

2
|t|2 ≥ c}

)
≤ exp

(
−cnε2 + o(nε2)

)
for all t ∈ Rd and c ≥ 0.

Prove it.

5b9 Exercise (half-space not containing the expectation). If c > 0, then

∃δ > 0 νn({nεx : 〈t, x〉 ≥ c}) = O(e−δnε
2

) .

Prove it.

5b10 Exercise (lower bound). If U ⊂ Rd is open, then

ln νn(nεU) ≥ −nε2 inf
x∈U

1

2
|x|2 + o(nε2) .

Prove it.

5b11 Exercise. Prove Theorem 5b7.1

The simple rate function 1
2
| · |2 leads to a simple formula for half-spaces.

Every closed half-space H ⊂ Rd not containing 0 is

H = {x : 〈x, xH〉 ≥ |xH |2}

where xH is the point of H closest to 0. Now, 5b8 with t = xH and c = 1
2
|xH |2

gives

(5b12) νn(nεH) ≤ exp
(
−1

2
|xH |2nε2 + o(nε2)

)
;

we see very clearly that every x 6= 0 belongs to (a) a closed half-space that
satisfies the upper bound with rate 1

2
|x|2, and (b) an open half-space that

satisfies the upper bound with rate arbitrarily close to 1
2
|x|2.

1Hint: recall the proof of 4c10(a).
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5c Exponential tightness

What about a weakly compact set K ⊂ Lp such that P
(
Sn /∈ nεK

)
≤

exp
(
−Cnε2 + o(nε2)

)
(for a given C)? No, this cannot happen. Indeed, on

one hand, K must be bounded, that is, K ⊂ {f : ‖f‖p ≤ R} for some R;
on the other hand, ‖Sn‖1 = |X1| + · · · + |Xn|; E ‖Sn‖1 = nE |X1|; P

(
Sn ∈

nεK
)
≤ P

(
‖Sn‖p ≤ nεR

)
≤ P

(
‖Sn‖1 ≤ nεR

)
is close to 0 (rather than 1)

when nεR� E ‖Sn‖1, that is, ε� E |X1|/R.
The joint compactification introduced in Sect. 4b and used successfully

for large deviations, fails for moderate deviations. We need another joint
compactification. The Lp-norm feels only absolute values of X1, . . . , Xn. But
we have EX1 = 0, and cancellation of positive and negative summands
should not be ignored.

We sacrifice invariance under permutations of the random variablesX1, . . . , Xn

(thus, by the way, complicating generalization to, say, two-dimensional arrays
of random variables) and take indefinite integrals of the functions Sn (and
others). We move to the space C0[0, 1] of all continuous functions on [0, 1]
vanishing at 0, and redefine the random function Sn as such piecewise-linear
function of C0[0, 1]:

Sn(x) =

∫ x

0

(
nX11l(0, 1

n
) + · · ·+ nXn1l(n−1

n
,1)

)
.

Note that indefinite integrals of functions of Lp (or L1) are absolutely con-
tinuous; they are dense in the space C0[0, 1], but far not the whole space. In
this sense, we really move to a larger space.

We also need Hölder spaces C0,α and Hölder norms ‖ · ‖α for α ∈ (0, 1),

‖f‖α = sup
0<x<y<1

|f(y)− f(x)|
(y − x)α

∈ [0,∞] for f ∈ C0[0, 1] ,

C0,α = {f ∈ C0[0, 1] : ‖f‖α <∞} .

For 0 < α ≤ β < 1 we have ‖ · ‖α ≤ ‖ · ‖β and C0,α ⊃ C0,β.
The unit ball Bα = {f : ‖f‖α ≤ 1} is separable, but not compact (in

C0,α).1 However, Bα is compact in C0[0, 1].2 Note that Hölder functions
need not be absolutely continuous.

We also redefine operators An; now Anf is the function linear on [0, 1
n
],

[ 1
n
, 2
n
], . . . , [n−1

n
, 1] and equal to f at 0, 1

n
, 2
n
, . . . , n−1

n
, 1.

1Try fn(x) = min(xα, 1/n).
2Hint: in this situation, convergence on a dense countable set implies uniform con-

vergence. In fact, moreover, Bβ is compact in C0,α whenever 0 < α < β < 1; hint: if
f, g ∈ Bβ satisfy |f(x)− g(x)| ≤ 1

n for x = 1
n ,

2
n , . . . ,

n−1
n , then ‖f − g‖α ≤ 4/nβ−α.
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For a piecewise-linear function f = Anf we have

‖f‖α = max
0≤k<l≤n

1

( l
n
− k

n
)α

∣∣∣f( l
n

)
− f

(k
n

)∣∣∣ ;
indeed, |f(y)−f(x)|

(y−x)α cannot be maximal between the nodes 0
n
, 1
n
, . . . , n

n
due to

concavity of the function x 7→ xα. For such f ,

‖f‖α = max
0≤k<l≤n

|〈f ′, gk,l〉| where gk,l =
nα

(l − k)α
1l( k

n
, l
n
) .

We note that ‖gk,l‖q =
(
l−k
n

) 1
q
−α ≤ 1 for α ≤ 1/q. We use 5b3,

P
(
‖Sn‖α ≥ nεx

)
≤

≤
∑
k,l

P
(
|〈S ′n, gk,l〉| ≥ nεx

)
≤ 2

(
n+ 1

2

)
exp
(
−1

2
x2nε2 + o(nε2)

)
,

and get

P
(
‖Sn‖α ≥ nεx

)
≤ exp

(
−1

2
x2nε2 + o(nε2) +O(lnn)

)
for α ≤ 1/q.

From now on, all limits, as well as symbols o(. . . ), O(. . . ) are taken for
ε→ 0, n→∞, nε2

lnn
→∞ (unless stated otherwise). Note the logarithmic gap

between moderate deviations and central limit theorem.
Now, for α ≤ 1/q we have

(5c1) P
(
‖Sn‖α ≥ nεx

)
≤ exp

(
−1

2
x2nε2 + o(nε2)

)
,

which is exponential tightness; KC is the ball xBα (with x such that x2/2 =
C) endowed with the compact topology from C0[0, 1].

5d Mogulskii’s theorem, again

We interpret ‖f ′‖2 as +∞ if f is not the indefinite integral of a function of
L2[0, 1]. As before, all limits, as well as symbols o(. . . ), O(. . . ) are taken for
ε → 0, n → ∞, nε2

lnn
→ ∞ (unless stated otherwise). Also, 1 < p ≤ 2 ≤ q <

∞, 1
p

+ 1
q

= 1, and α ≤ 1/q.

5d1 Theorem. (a) For every nonempty closed set F ⊂ C0[0, 1],

lim sup
1

nε2
lnP

( 1

nε
Sn ∈ F

)
≤ −min

f∈F

1

2
‖f ′‖22 .

(b) For every open set U ⊂ C0[0, 1],

lim inf
1

nε2
lnP

( 1

nε
Sn ∈ U

)
≥ − inf

f∈U

1

2
‖f ′‖22 .
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5d2 Remark. Weaker conditions on F and U are sufficient for the theorem
(and the proof): for all R > 0,

F ∩RBα is closed,

U ∩RBα is relatively open in RBα ;

here RBα = {Rf : f ∈ Bα} = {f : ‖f‖α ≤ R}.

We choose a dense sequence x1, x2, · · · ∈ [0, 1] and denote gk = 1l(0,xk). If
f ∈ C0[0, 1] is the indefinite integral of a function of L2[0, 1],

f(x) =

∫ x

0

f ′(u) du ,

then clearly f(xk) = 〈f ′, gk〉. It is convenient to denote 〈f ′, gk〉 = f(xk) for
arbitrary f ∈ C0[0, 1] (even though f ′ is ill-defined). We note that

(fn → f in C0[0, 1]) ⇐⇒ ∀k 〈f ′n, gk〉 −−−→
n→∞

〈f ′, gk〉

for all f, f1, f2, · · · ∈ Bα.
We fix d for a while, and enumerate x1, . . . , xd in ascending order:

{x1, . . . , xd} = {y1, . . . , yd} , 0 < y1 < · · · < yd < 1 .

Here is an orthonormal basis in the d-dimensional space spanned by g1, . . . , gd:

h1 =
1
√
y1

1l(0,y1), h2 =
1√

y2 − y1
1l(y1,y2), . . . , hd =

1√
yd − yd−1

1l(yd−1,yd) .

Naturally, we let 〈f ′, hi〉 = 1√
yi−yi−1

(
f(yi) − f(yi−1)

)
(where y0 = 0). We

introduce linear operators Td : C0[0, 1]→ Rd by

Tdf =
(
〈f ′, h1〉, . . . , 〈f ′, hd〉

)
;

they are continuous.
Similarly to An, we define operator Ãd : C0[0, 1] → C0[0, 1]; Ãdf is the

function linear on [0, y1], [y1, y2], . . . , [yd−1, yd], equal to f at 0, y1, . . . , yd,
and constant on [yd, 1]. Thus, (Ãdf)′ = 〈f ′, h1〉h1 + · · · + 〈f ′, hd〉hd and
〈f ′, (Ãdg)′〉 = 〈(Ãdf)′, (Ãdg)′〉 = 〈(Ãdf)′, g′〉 (like the orthogonal projection,
but f ′, g′ are ill-defined). Note that ‖(Ãdf)′‖2 = ‖Tdf‖2 and 〈(Ãdf)′, (Ãdg)′〉 =
〈Tdf, Tdg〉.

Now we have three “incarnations” of the d-dimensional Euclidean vector
space:
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∗ Rd;

∗ subspace of L2[0, 1] spanned by g1, . . . , gd or, equivalently, by h1, . . . , hd,
with the norm ‖ · ‖2 (step functions);

∗ subspace {f : Ãdf = f} of C0[0, 1], with the norm f 7→ ‖f ′‖2 (polygo-
nal functions).

They are intertwined by a commutative diagram of linear isometries:

polygonal oo //
ee

%%

step==

}}
Rd

f oo //
``

  

f ′>>

~~
Tdf

We turn to d→∞. Clearly,

fn → f in C0[0, 1] ⇐⇒ ∀d Tdfn −−−→
n→∞

Tdf

for all f, f1, f2, · · · ∈ Bα.
If d1 ≤ d2, then Ãd1Ãd2 = Ãd1 = Ãd2Ãd1 , and (Ãd1f)′ is the orthogonal

projection of (Ãd2f)′. Thus, ‖(Ãdf)′‖2 is increasing (in d).

5d3 Lemma. ‖(Ãdf)′‖2 ↑ ‖f ′‖2 (be it finite or infinite) as d→∞.

Proof. On one hand, if f ′ ∈ L2, then (Ãdf)′ is the orthogonal projection
of f ′ to the subspace spanned by g1, . . . , gd; the union of these subspaces is
dense in L2, thus, ‖(Ãdf)′‖2 ↑ ‖f ′‖2.

On the other hand, assume that limd ‖(Ãdf)′‖2 < ∞; we have to prove
that f ′ ∈ L2. The series

(Ã1f)′ + (Ã2f − Ã1f)′ + (Ã3f − Ã2f)′ + . . .

consists of orthogonal summands, and its partial sums are bounded. It fol-
lows easily that these partial sums are a Cauchy sequence. Thus, the series
converges:

(Ãdf)′ → ϕ for some ϕ ∈ L2 .

We note that 〈(Ãkf)′, gd〉 = 〈f ′, gd〉 when k ≥ d; thus, it equals 〈ϕ, gd〉; that
is,
∫ xd
0
ϕ(u) du = f(xd) for all d; this shows that ϕ = f ′.

Denote by νd,n the distribution of TdSn. By 5a1,

1

nε2
Λνd,n(εt1, . . . , εtd)→

1

2
(t21 + · · ·+ t2d) as n→∞

for all (t1, . . . , td) ∈ Rd, since Λνd,n(t1, . . . , td) = lnE exp
(
εt1〈Sn, h1〉 + · · · +

εtd〈Sn, hd〉
)

= lnE exp〈Sn, εt1h1 + · · · + εtdhd〉 = Λn(εt1h1 + · · · + εtdhd).
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Thus, Theorem 5b7 (as well as 5b8–(5b12)) applies to νd,n for given d. That
theorem is formulated for Rd, but may be transferred readily to the “step”
or “polygonal” space. In all cases, the rate function is 1

2
‖ · ‖2.

5d4 Exercise. Let g ∈ C0[0, 1] satisfy g = Ãdg (for a given d), and H =
{f ∈ C0[0, 1] : 〈f ′, g′〉 ≥ ‖g′‖22} (even though f ′ is ill-defined. . . ). Then

(a) H = {f ∈ C0[0, 1] : 〈Tdf, Tdg〉 ≥ |Tdg|2};
(b) P

(
Sn ∈ nεH

)
≤ exp

(
−1

2
‖g′‖22nε2 + o(nε2)

)
.

Prove it.

Our space C0[0, 1] is not a finite-dimensional Euclidean space, nor a
Hilbert space, and still, every f 6= 0 belongs to an open half-space that
satisfies the upper bound with rate arbitrarily close to Λ∗∞(f). Indeed, if
c < Λ∗∞(f) (being the latter finite or infinite), then 1

2
‖(Ãdf)′‖22 > c for d

large enough; we take such d, and introduce g = (1− δ)Ãdf with δ > 0 small
enough, then 1

2
‖g′‖22 ≥ c and g = Ãdg; the half-space H = {f1 ∈ C0[0, 1] :

〈f ′1, g′〉 > ‖g′‖22} is open in C0[0, 1] (think, why), f ∈ H (think, why), and
P
(
Sn ∈ nεH

)
≤ exp

(
−cnε2 + o(nε2)

)
by 5d4(b).

5d5 Exercise. Prove Theorem 5d1(a).

5d6 Exercise. Let U ⊂ C0[0, 1] be open, and f0 ∈ U ∩Bα. Then there exist
d and δ > 0 such that

∀f ∈ Bα

(
|Tdf − Tdf0| ≤ δ =⇒ f ∈ U

)
.

Prove it.1

5d7 Exercise. ‖f‖1/2 ≤ ‖f ′‖2 for all f ∈ C0[0, 1] (be the norms finite or
infinite). (Here ‖ · ‖1/2 is the Hölder norm for α = 1/2, while ‖ · ‖2 is the L2

norm.)
Prove it.

Also, α ≤ 1
q

and p ≤ 2 ≤ q, thus, ‖f‖α ≤ ‖f‖1/2 ≤ ‖f ′‖2.

Proof of Theorem 5d1(b). 2 Let f0 ∈ U ; we’ll prove that lim inf 1
nε2

lnP
(
Sn ∈

nεU
)
≥ −1

2
‖f ′0‖22, assuming ‖f ′0‖2 < ∞ (otherwise the claim is void). We

take R > ‖f ′0‖2, then f0 ∈ RBα by 5d7, and lim sup 1
nε2

lnP
(
‖Sn‖α ≥

Rnε
)
< −1

2
‖f ′0‖22 by 5c1. Exercise 5d6 gives d and δ > 0 such that ∀f ∈

RBα

(
|Tdf − Tdf0| ≤ δ =⇒ f ∈ U

)
. It is sufficient to prove that

lim inf
1

nε2
lnP

(∥∥∥TdSn
nε
− Tdf0

∥∥∥ < δ
)
≥ − inf

x:‖x−Tdf0‖<δ

1

2
|x|2 ,

1Hint: similar to 4e7.
2Quite similar to the proof of Theorem 4e1(b).



Tel Aviv University, 2015 Large and moderate deviations 60

since infx:|x−Tdf0|<δ
1
2
|x|2 ≤ 1

2
|Tdf0|2 = 1

2
‖(Ãdf0)′‖22 ≤ 1

2
‖f ′0‖2. Theorem

5b7(b) gives the needed inequality, since νd,n
(
{nεx : |x − Tdf0| < δ}

)
=

P
(
|Td Snnε − Tdf0| < δ

)
.

5d8 Exercise. A fair coin is tossed n times, giving (β1, . . . , βn) ∈ {0, 1}n.
Given a continuous ϕ : [0, 1]→ (0,∞), consider

pn = P
(
∀k = 1, . . . , n

2(β1 + · · ·+ βk)− k
n2/3

≤ ϕ
(
k
n

))
.

(a) Prove that

pn = 1− exp
(
−an1/3(1 + o(1))

)
for n→∞

for some a > 0;
(b) find a when ϕ(x) = 1 + vx for a given v > 0;
(c) find a when ϕ(x) = max(1 + vx, y) for given v > 0 and y > 1;
(d) find a when ϕ(x) = 1 + cx2 for a given c > 0;
(e) find a when ϕ(x) = 1 + c

√
x for a given c > 0.
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