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la From Cantor’s uncountability theorem to Baire cat-
egory theorem

By the famous Cantor’s uncountability theorem, R is not countable. Here is
one of the proofs. Let aj,as,--- € R; we need z € R such that Vn x # a,.
To this end we first take b; < ¢; such that a; € [by, ¢1]. Then we take by < ¢z
such that [bg, co] C [b1,c1] and ay ¢ [be, ca]. And so on; [by, 1] D [be,ca] D
[bs, c3] D ... Their intersection is not empty, and contains no a,.

Can we generalize it to some sets Ay, Ay, - -+ C R proving that U, A,, # R?
Yes, provided that these sets satisfy the following.

lal Definition. A set A C R is nowhere dense if every nonempty open
interval contains some nonempty open subinterval that does not intersect A.

1a2 Exercise. A set A C R is nowhere dense if and only if Int(CIl(A)) = 0.
Prove it. (Here “Int” stands for interior, and “Cl” for closure.)

1a3 Theorem (Baire). If Ay, Ay, - -+ C R are nowhere dense then Int(U,A,,) =
0.

la4 Exercise. Prove the theorem.

Equivalently: R\ U, A, is dense; that is, CI(R \ U,A4,) = R.

In particular, U, A, # R.

Clearly, a singleton is nowhere dense; therefore Cantor’s uncountability
theorem follows from Baire category theorem.
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1b From Cantor’s uncountability theorem to null sets

Here is another proof of Cantor’s uncountability theorem. Let aq, as, - -- € R;
we need = € R such that Vn x # a,. To this end we take €1, 9, -+ > 0 such
that > e, < 1/2 and consider open intervals (a, — €,,a, + €,). A finite
number of these intervals cannot cover [0, 1] since their total length is less
than 1. (Take the Riemann integral of the sum of indicators...) By the
Heine-Borel theorem, the infinite sequence of these intervals still does not
cover [0, 1].

1b1l Definition. A set A C R is a null set if for every € > 0 there exist
£1,€9,+-+ > 0 and aj,as,--- € R such that A C U,(a, — €, a, + &,) and

2) . en<e
1b2 Theorem. If A;, Ay, --- C R are null sets then Int(U,A,) = 0.
1b3 Exercise. (a) Prove that U, A, is also a null set.

(b) Prove the theorem.

1c Two approaches to small sets and typical objects

1cl Definition. Given a set X, a set N of subsets of X is called
(a) an ideal® (on X), if

(ACBABeN) = AeN;
ABeN = AUBcN;
DeN.

(b) a o-ideal (on X), if it is an ideal and
A Ay, e N = UA,eN.
An ideal (or o-ideal) N on X is proper if X ¢ N.

Clearly, null sets are a proper o-ideal on R.
The complement of a null set is called a set of full measure.

1c2 Definition. A set A C R is meager? if A C U, A, for some nowhere
dense sets Aj, Ag,--- C R.

IThis notion of set theory is different from (but related to) ideals in ring theory, order
theory etc.
20r of the first category.
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Clearly, meager sets are a proper g-ideal on R.

The complement of a meager set is called comeager.!

When a property holds off a null set (in other words, on a set of full
measure), one says that it holds almost everywhere or for almost all elements.
Dealing with a probability measure one also says almost sure(ly).

When a property holds off a meager set (in other words, on a comea-
ger set), one says that it holds quasi-everywhere or for quasi all elements.
One also says that this property holds generically, for a generic element,
or for most of elements. Sometimes the word “typical” is used rather than
“generic”.

1d Compact metrizable spaces; sequence spaces

1d1 Definition. (a) A metric space is a pair (X, p) of a set X and a metric p
on X, that is, a function p : X xX — [0, 00) such that p(z,y) =0 <= z =y,
p(x,y) = p(y, x), p(z,2) < p(x,y) + p(y, 2) for all z,y, 2 € X.

(b) Let p1,pa be two metrics on X; po is stronger than p; if
po(Tn, ) = 0 = pi(an,2) = 0 for all x,21,20,--- € X;? further, pi, po
are equivalent, if py(z,,zr) = 0 <= pa(x,,z) — 0 for all z,zq, 29, € X.

(c) A metrizable space® is a pair (X, R) where X is a set and R is an
equivalence class of metrics on X (metrizable topology; metrics of R are
called compatible).

(d) A metrizable space (as well as its metrizable topology) is compact? if
every sequence has a convergent subsequence.

Every subset of R is a metric space with the metric p(x,y) = |z — y|.
This space is compact if and only if the set is closed and bounded.

The Cantor set C' C [0, 1] may be defined as consisting of all numbers of
the form

ol = 3 2

k=1
for x € {0,1}*°, that is z : {1,2,...} — {0,1}.

[e.9]

1d2 Exercise. (a) ¢ : {0,1}>* — C is a bijection;

LOr residual.

2However, a Cauchy sequence in (X, p2) need not be Cauchy in (X, p1).

3Equivalently, and usually, a metrizable space is defined as a special case of a topological
space; but here we do not need the notion of general (not just metrizable) topological space.

4Equivalently (for metrizable spaces), and usually, a compact space is defined by the
Heine-Borel property: every open cover has a finite subcover.
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(b) if z, xq, xg, - -+ € {0,1}* then

o(zn) — p(z) <= Yk (xn(k)—>x(k)>.

n—o0 n—oo

Prove it.

The metric p(x,y) = |p(z) — ¢(y)| is not invariant under permutations
of coordinates on {0,1}°, but its equivalence class R is (see [1d2|(b)). Thus,
we have a compact metrizable space {0,1}*, and moreover, the compact
metrizable space {0, 1}° is well-defined for an arbitrary countable set S (ir-
respective of its enumeration). The space {0, 1}* may also be thought of as
the space of all subsets of S.

1d3 Definition. A set A in a metrizable space X is nowhere dense if ev-
ery nonempty open set contains some nonempty open subset that does not
intersect A.

Still, A is nowhere dense if and only if Int(Cl(A)) = 0.

1d4 Exercise. (a) Prove that nowhere dense sets are an ideal (on a metriz-
able space).
(b) On R, prove that they are not a o-ideal.

1d5 Exercise. A set A C {0,1}> is nowhere dense if and only if for all m
and ty,...,t, € {0,1} there exist n > m and t,,41,...,t, € {0,1} such that
all sequences that start with ¢1,...,%, do not belong to A.

Prove it.

1d6 Theorem (Baire). Let X be a compact metrizable space. If Ay, Ay, -+ C
X are nowhere dense then Int(U,A,) = 0.

1d7 Exercise. (a) Prove the theorem.
(b) Find an example of a non-compact metrizable space such that the
o-ideal of meager sets is not proper.

Thus, the proper o-ideal of meager sets is well-defined on every compact
metrizable space, in particular, on {0,1}°°, and we may speak about generic
elements, quasi-everywhere etc. Now, what about null sets? Can we transfer
Lebesgue measure from R to {0,1}>* by ¢~'? No, we cannot, since the
Cantor set is itself a null set. But on the other hand, endless coin tossing
should provide a useful probability measure on {0,1}°°; and binary digits
can be thought of as endless coin tossing over Lebesgue measure!

We consider the map v : [0,1) — {0, 1},

Y(u) = (br(u), ba(u), ..)
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where by (u) are the binary digits of u, that is,

bi(u) € {0,1}, Z ka(:)

k=1

=u, limkinf be(u) =0.

True, 9 is not a bijection, but do not bother: the countable set {z : liminf; z(k) =
1} is anyway a null set, and outside it 1 is a bijection,

= x(k
M) =) % :

k=1
We transfer Lebesgue measure to {0, 1}* by ¢. That is, a set A C {0,1}* is
measurable if )71 (A) is Lebesgue measurable, and then p(A) is equal to the
Lebesgue measure of 107! (A). This probability measure y is sometimes called
Lebesgue measure on {0,1}>. It is invariant under permutations of coordi-
nates on {0,1}°°. Thus, we have a probability space {0,1}°, and moreover,
the probability space {0, 1}° is well-defined for an arbitrary countable set S
(irrespective of its enumeration). It gives us the proper o-ideal of null sets
on such space, and we may speak about almost all elements etc.

le “Almost all” versus “quasi all”: first examples

lel Example. The famous strong law of large numbers (SLLN) states that

1 o 1
lim — k) = = for almost all 0,1}°°.
(a) 17?”;:6() 5 for almost a z €{0,1}

In contrast,

(b)
1 O 1 ¢
lim inf — g z(k) =0, limsup — g xz(k) =1 for quasi all z € {0,1}*,
n n
k=1

n n
k=1

as we will see soon.

le2 Example. Consider sets
Ay={z:z(l)=z(n+1),22) =z(n+2),...,z(n) =z(2n)} C {0,1}*.

Clearly, pu(A,) = 27", thus > pu(A,) < oo; by the first Borel-Cantelli
lemma,

(al) p(limsup A,) = 0.

n

Tt is in fact the Haar measure on the topological group (Zs)>°.
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In other words, almost every x belongs to A,, only for finitely many n. Equiv-
alently,’

(a2) Z 14,(7) < oo for almost all z € {0,1}*

(14 being the indicator of A). In contrast,

(b) Z 14,(x) =00 for quasi all z € {0,1}>,

as we will see soon. That is, quasi every = belongs to A, for infinitely many
n. (Of course, the infinite set of n depends on z.)

le3 Exercise. Denote by B, the complement of A,, and by C, the set
B, N B,y1N... Prove that

(a) C, is closed;

(b) C,, is nowhere dense.

Thus, C' = U, C, is meager, and its complement N, (A, U A, 1 U...) =
limsup,, 4,, is comeager, which proves [Le2|(b).

le4 Exercise. Now consider sets A, = {x : x(n) = x(n+1) = --- = z(n?) =
0}. Prove that

(a) the set lim sup,, A, is comeager;

(b) liminf, + >/, 2(k) = 0 for all z € limsup,, 4,.

A half of [leI|(b) is thus proved; the other half is similar.

1f Digits of a typical number

We return to the map ¢ : [0,1) — {0, 1}, ¥(u) = (b1(u), ba(u),...) where
br(u) are the binary digits of u. Of course, 1 is discontinuous; and neverthe-
less. ..

1f1 Exercise. Prove that

(a) If A C {0,1}* is nowhere dense then ¢~'(A) C [0,1) is nowhere
dense.

(b) If A C {0,1}> is meager then ¢"}(A) C [0,1) is meager.

(c) If A C {0,1}°° is comeager then ¢y"1(A) C [0,1) is comeager.

!The sum of the indicators is integrable, therefore, finite almost everywhere. (This is
the proof of the first Borel-Cantelli lemma.)
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1f2 Exercise. Let A C {0,1}>. Prove or disprove:
(a) If ¢p=1(A) is nowhere dense then A is nowhere dense.
(b) If 1p~1(A) is meager then A is meager.

1f3 Remark. A map satisfying the equivalent conditions [IfI[(b,c) (but not
necessarily (a)) may be called genericity preserving.! Informally, such map
transforms a generic element of the first space into a generic element of the
second space.

Combining with [Lel|(b) and [Le2|b) we see that quasi all u € [0,1)
satisfy

1 ¢ 1 ¢
lim inf — E bp(u) =0, limsup— E bp(u) =1,
noon non
k=1 k=1

and the relation
bi(u) = bpyr(u), ..., by(u) = bop(u)
holds for infinitely many n.

All said about {0, 1}* and binary digits generalizes readily to {0, 1,...,9}*>
and decimal digits, as well as any other basis. Given comeager sets A, C
{0,...,p — 1}*°, we observe for a generic number u € [0,1) the following
property: for every basis p = 2,3,... the corresponding digits of u are a
sequence that belongs to A,.

Hints to exercises

MZ [bl,Cl] D) [bQ,CQ] DN

1d2t if z(1) = y(1),. .., 2(n) = y(n) then |p(z) — p(y)| < gorr g T

otherwise [p(z) — ©(y)| > 57 — 351 — Fir2

1d4} (a) [b1, 1] D [be, ca] D [bs, cs); (b) the union can be dense.

1d7; (a) similar to with balls rather than intervals; (b) try a dense
countable set.

Lledt (b) use[ld5

[Ledt (b) try n € {1,4,9,16,...}

m: (a) by every binary interval [2%, £t1) contains a binary subinterval
such that. .. (b), (c) follow from (a).

[1f2} consider {0,1}> \ 1([0,1)).

!According to Melleray and Tsankov, a continuous map with this property is called
category-preserving; see arXiv:1201.4447, Def. 2.7.


http://arxiv.org/abs/1201.4447
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