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1a From Cantor’s uncountability theorem to Baire cat-
egory theorem

By the famous Cantor’s uncountability theorem, R is not countable. Here is
one of the proofs. Let a1, a2, · · · ∈ R; we need x ∈ R such that ∀n x 6= an.
To this end we first take b1 < c1 such that a1 /∈ [b1, c1]. Then we take b2 < c2
such that [b2, c2] ⊂ [b1, c1] and a2 /∈ [b2, c2]. And so on; [b1, c1] ⊃ [b2, c2] ⊃
[b3, c3] ⊃ . . . Their intersection is not empty, and contains no an.

Can we generalize it to some sets A1, A2, · · · ⊂ R proving that ∪nAn 6= R?
Yes, provided that these sets satisfy the following.

1a1 Definition. A set A ⊂ R is nowhere dense if every nonempty open
interval contains some nonempty open subinterval that does not intersect A.

1a2 Exercise. A set A ⊂ R is nowhere dense if and only if Int(Cl(A)) = ∅.
Prove it. (Here “Int” stands for interior, and “Cl” for closure.)

1a3 Theorem (Baire). IfA1, A2, · · · ⊂ R are nowhere dense then Int(∪nAn) =
∅.

1a4 Exercise. Prove the theorem.

Equivalently: R \ ∪nAn is dense; that is, Cl(R \ ∪nAn) = R.
In particular, ∪nAn 6= R.
Clearly, a singleton is nowhere dense; therefore Cantor’s uncountability

theorem follows from Baire category theorem.
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1b From Cantor’s uncountability theorem to null sets

Here is another proof of Cantor’s uncountability theorem. Let a1, a2, · · · ∈ R;
we need x ∈ R such that ∀n x 6= an. To this end we take ε1, ε2, · · · > 0 such
that

∑
n εn < 1/2 and consider open intervals (an − εn, an + εn). A finite

number of these intervals cannot cover [0, 1] since their total length is less
than 1. (Take the Riemann integral of the sum of indicators. . . ) By the
Heine-Borel theorem, the infinite sequence of these intervals still does not
cover [0, 1].

1b1 Definition. A set A ⊂ R is a null set if for every ε > 0 there exist
ε1, ε2, · · · > 0 and a1, a2, · · · ∈ R such that A ⊂ ∪n(an − εn, an + εn) and
2
∑

n εn ≤ ε.

1b2 Theorem. If A1, A2, · · · ⊂ R are null sets then Int(∪nAn) = ∅.

1b3 Exercise. (a) Prove that ∪nAn is also a null set.
(b) Prove the theorem.

1c Two approaches to small sets and typical objects

1c1 Definition. Given a set X, a set N of subsets of X is called
(a) an ideal1 (on X), if

(A ⊂ B ∧ B ∈ N ) =⇒ A ∈ N ;

A,B ∈ N =⇒ A ∪B ∈ N ;

∅ ∈ N .

(b) a σ-ideal (on X), if it is an ideal and

A1, A2, · · · ∈ N =⇒ ∪nAn ∈ N .

An ideal (or σ-ideal) N on X is proper if X /∈ N .

Clearly, null sets are a proper σ-ideal on R.
The complement of a null set is called a set of full measure.

1c2 Definition. A set A ⊂ R is meager 2 if A ⊂ ∪nAn for some nowhere
dense sets A1, A2, · · · ⊂ R.

1This notion of set theory is different from (but related to) ideals in ring theory, order
theory etc.

2Or of the first category.
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Clearly, meager sets are a proper σ-ideal on R.
The complement of a meager set is called comeager.1

When a property holds off a null set (in other words, on a set of full
measure), one says that it holds almost everywhere or for almost all elements.
Dealing with a probability measure one also says almost sure(ly).

When a property holds off a meager set (in other words, on a comea-
ger set), one says that it holds quasi-everywhere or for quasi all elements.
One also says that this property holds generically, for a generic element,
or for most of elements. Sometimes the word “typical” is used rather than
“generic”.

1d Compact metrizable spaces; sequence spaces

1d1 Definition. (a) A metric space is a pair (X, ρ) of a set X and a metric ρ
onX, that is, a function ρ : X×X → [0,∞) such that ρ(x, y) = 0 ⇐⇒ x = y,
ρ(x, y) = ρ(y, x), ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z ∈ X.

(b) Let ρ1, ρ2 be two metrics on X; ρ2 is stronger than ρ1 if
ρ2(xn, x)→ 0 =⇒ ρ1(xn, x)→ 0 for all x, x1, x2, · · · ∈ X;2 further, ρ1, ρ2
are equivalent, if ρ1(xn, x)→ 0 ⇐⇒ ρ2(xn, x)→ 0 for all x, x1, x2, · · · ∈ X.

(c) A metrizable space3 is a pair (X,R) where X is a set and R is an
equivalence class of metrics on X (metrizable topology ; metrics of R are
called compatible).

(d) A metrizable space (as well as its metrizable topology) is compact4 if
every sequence has a convergent subsequence.

Every subset of R is a metric space with the metric ρ(x, y) = |x − y|.
This space is compact if and only if the set is closed and bounded.

The Cantor set C ⊂ [0, 1] may be defined as consisting of all numbers of
the form

ϕ(x) =
∞∑
k=1

2x(k)

3k

for x ∈ {0, 1}∞, that is x : {1, 2, . . . } → {0, 1}.

1d2 Exercise. (a) ϕ : {0, 1}∞ → C is a bijection;

1Or residual.
2However, a Cauchy sequence in (X, ρ2) need not be Cauchy in (X, ρ1).
3Equivalently, and usually, a metrizable space is defined as a special case of a topological

space; but here we do not need the notion of general (not just metrizable) topological space.
4Equivalently (for metrizable spaces), and usually, a compact space is defined by the

Heine-Borel property: every open cover has a finite subcover.
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(b) if x, x1, x2, · · · ∈ {0, 1}∞ then

ϕ(xn) −−−→
n→∞

ϕ(x) ⇐⇒ ∀k
(
xn(k) −−−→

n→∞
x(k)

)
.

Prove it.

The metric ρ(x, y) = |ϕ(x) − ϕ(y)| is not invariant under permutations
of coordinates on {0, 1}∞, but its equivalence class R is (see 1d2(b)). Thus,
we have a compact metrizable space {0, 1}∞, and moreover, the compact
metrizable space {0, 1}S is well-defined for an arbitrary countable set S (ir-
respective of its enumeration). The space {0, 1}S may also be thought of as
the space of all subsets of S.

1d3 Definition. A set A in a metrizable space X is nowhere dense if ev-
ery nonempty open set contains some nonempty open subset that does not
intersect A.

Still, A is nowhere dense if and only if Int(Cl(A)) = ∅.

1d4 Exercise. (a) Prove that nowhere dense sets are an ideal (on a metriz-
able space).

(b) On R, prove that they are not a σ-ideal.

1d5 Exercise. A set A ⊂ {0, 1}∞ is nowhere dense if and only if for all m
and t1, . . . , tm ∈ {0, 1} there exist n > m and tm+1, . . . , tn ∈ {0, 1} such that
all sequences that start with t1, . . . , tn do not belong to A.

Prove it.

1d6 Theorem (Baire). LetX be a compact metrizable space. IfA1, A2, · · · ⊂
X are nowhere dense then Int(∪nAn) = ∅.

1d7 Exercise. (a) Prove the theorem.
(b) Find an example of a non-compact metrizable space such that the

σ-ideal of meager sets is not proper.

Thus, the proper σ-ideal of meager sets is well-defined on every compact
metrizable space, in particular, on {0, 1}∞, and we may speak about generic
elements, quasi-everywhere etc. Now, what about null sets? Can we transfer
Lebesgue measure from R to {0, 1}∞ by ϕ−1? No, we cannot, since the
Cantor set is itself a null set. But on the other hand, endless coin tossing
should provide a useful probability measure on {0, 1}∞; and binary digits
can be thought of as endless coin tossing over Lebesgue measure!

We consider the map ψ : [0, 1)→ {0, 1}∞,

ψ(u) =
(
b1(u), b2(u), . . .

)
,



Tel Aviv University, 2013 Measure and category 5

where bk(u) are the binary digits of u, that is,

bk(u) ∈ {0, 1} ,
∞∑
k=1

bk(u)

2k
= u , lim inf

k
bk(u) = 0 .

True, ψ is not a bijection, but do not bother: the countable set {x : lim infk x(k) =
1} is anyway a null set, and outside it ψ is a bijection,

ψ−1(x) =
∞∑
k=1

x(k)

2k
.

We transfer Lebesgue measure to {0, 1}∞ by ψ. That is, a set A ⊂ {0, 1}∞ is
measurable if ψ−1(A) is Lebesgue measurable, and then µ(A) is equal to the
Lebesgue measure of ψ−1(A). This probability measure µ is sometimes called
Lebesgue measure on {0, 1}∞.1 It is invariant under permutations of coordi-
nates on {0, 1}∞. Thus, we have a probability space {0, 1}∞, and moreover,
the probability space {0, 1}S is well-defined for an arbitrary countable set S
(irrespective of its enumeration). It gives us the proper σ-ideal of null sets
on such space, and we may speak about almost all elements etc.

1e “Almost all” versus “quasi all”: first examples

1e1 Example. The famous strong law of large numbers (SLLN) states that

(a) lim
n

1

n

n∑
k=1

x(k) =
1

2
for almost all x ∈ {0, 1}∞ .

In contrast,
(b)

lim inf
n

1

n

n∑
k=1

x(k) = 0 , lim sup
n

1

n

n∑
k=1

x(k) = 1 for quasi all x ∈ {0, 1}∞ ,

as we will see soon.

1e2 Example. Consider sets

An =
{
x : x(1) = x(n+ 1), x(2) = x(n+ 2), . . . , x(n) = x(2n)

}
⊂ {0, 1}∞ .

Clearly, µ(An) = 2−n, thus
∑

n µ(An) < ∞; by the first Borel-Cantelli
lemma,

(a1) µ
(
lim sup

n
An

)
= 0 .

1It is in fact the Haar measure on the topological group (Z2)∞.
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In other words, almost every x belongs to An only for finitely many n. Equiv-
alently,1

(a2)
∑
n

1An(x) <∞ for almost all x ∈ {0, 1}∞

(1A being the indicator of A). In contrast,

(b)
∑
n

1An(x) =∞ for quasi all x ∈ {0, 1}∞ ,

as we will see soon. That is, quasi every x belongs to An for infinitely many
n. (Of course, the infinite set of n depends on x.)

1e3 Exercise. Denote by Bn the complement of An, and by Cn the set
Bn ∩Bn+1 ∩ . . . Prove that

(a) Cn is closed;
(b) Cn is nowhere dense.

Thus, C = ∪nCn is meager, and its complement ∩n(An ∪ An+1 ∪ . . . ) =
lim supnAn is comeager, which proves 1e2(b).

1e4 Exercise. Now consider sets An = {x : x(n) = x(n+1) = · · · = x(n2) =
0}. Prove that

(a) the set lim supnAn is comeager;
(b) lim infn

1
n

∑n
k=1 x(k) = 0 for all x ∈ lim supnAn.

A half of 1e1(b) is thus proved; the other half is similar.

1f Digits of a typical number

We return to the map ψ : [0, 1) → {0, 1}∞, ψ(u) =
(
b1(u), b2(u), . . .

)
where

bk(u) are the binary digits of u. Of course, ψ is discontinuous; and neverthe-
less. . .

1f1 Exercise. Prove that
(a) If A ⊂ {0, 1}∞ is nowhere dense then ψ−1(A) ⊂ [0, 1) is nowhere

dense.
(b) If A ⊂ {0, 1}∞ is meager then ψ−1(A) ⊂ [0, 1) is meager.
(c) If A ⊂ {0, 1}∞ is comeager then ψ−1(A) ⊂ [0, 1) is comeager.

1The sum of the indicators is integrable, therefore, finite almost everywhere. (This is
the proof of the first Borel-Cantelli lemma.)
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1f2 Exercise. Let A ⊂ {0, 1}∞. Prove or disprove:
(a) If ψ−1(A) is nowhere dense then A is nowhere dense.
(b) If ψ−1(A) is meager then A is meager.

1f3 Remark. A map satisfying the equivalent conditions 1f1(b,c) (but not
necessarily (a)) may be called genericity preserving.1 Informally, such map
transforms a generic element of the first space into a generic element of the
second space.

Combining 1f1 with 1e1(b) and 1e2(b) we see that quasi all u ∈ [0, 1)
satisfy

lim inf
n

1

n

n∑
k=1

bk(u) = 0 , lim sup
n

1

n

n∑
k=1

bk(u) = 1 ,

and the relation
b1(u) = bn+1(u), . . . , bn(u) = b2n(u)

holds for infinitely many n.
All said about {0, 1}∞ and binary digits generalizes readily to {0, 1, . . . , 9}∞

and decimal digits, as well as any other basis. Given comeager sets Ap ⊂
{0, . . . , p − 1}∞, we observe for a generic number u ∈ [0, 1) the following
property: for every basis p = 2, 3, . . . the corresponding digits of u are a
sequence that belongs to Ap.

Hints to exercises

1a4: [b1, c1] ⊃ [b2, c2] ⊃ . . .

1d2: if x(1) = y(1), . . . , x(n) = y(n) then |ϕ(x)− ϕ(y)| ≤ 2
3n+1 + 2

3n+2 + . . . ;
otherwise |ϕ(x)− ϕ(y)| ≥ 2

3n
− 2

3n+1 − 2
3n+2 − . . .

1d4: (a) [b1, c1] ⊃ [b2, c2] ⊃ [b3, c3]; (b) the union can be dense.

1d7: (a) similar to 1a4 with balls rather than intervals; (b) try a dense
countable set.

1e3: (b) use 1d5.

1e4: (b) try n ∈ {1, 4, 9, 16, . . . }
1f1: (a) by 1d5 every binary interval [ k

2n
, k+1

2n
) contains a binary subinterval

such that. . . (b), (c) follow from (a).

1f2: consider {0, 1}∞ \ ψ([0, 1)).

1According to Melleray and Tsankov, a continuous map with this property is called
category-preserving; see arXiv:1201.4447, Def. 2.7.

http://arxiv.org/abs/1201.4447
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