1 Basic ideas

1a From Cantor’s uncountability theorem to Baire category theorem

By the famous Cantor’s uncountability theorem, \mathbb{R} is not countable. Here is one of the proofs. Let $a_1, a_2, \cdots \in \mathbb{R}$; we need $x \in \mathbb{R}$ such that $\forall n \ x \neq a_n$. To this end we first take $b_1 < c_1$ such that $a_1 \notin [b_1, c_1]$. Then we take $b_2 < c_2$ such that $[b_2, c_2] \subset [b_1, c_1]$ and $a_2 \notin [b_2, c_2]$. And so on; $[b_1, c_1] \supset [b_2, c_2] \supset [b_3, c_3] \supset \cdots$ Their intersection is not empty, and contains no a_n.

Can we generalize it to some sets $A_1, A_2, \cdots \subset \mathbb{R}$ proving that $\bigcup n A_n \neq \mathbb{R}$? Yes, provided that these sets satisfy the following.

1a1 Definition. A set $A \subset \mathbb{R}$ is nowhere dense if every nonempty open interval contains some nonempty open subinterval that does not intersect A.

1a2 Exercise. A set $A \subset \mathbb{R}$ is nowhere dense if and only if $\text{Int}(\text{Cl}(A)) = \emptyset$. Prove it. (Here “Int” stands for interior, and “Cl” for closure.)

1a3 Theorem (Baire). If $A_1, A_2, \cdots \subset \mathbb{R}$ are nowhere dense then $\text{Int}(\bigcup n A_n) = \emptyset$.

1a4 Exercise. Prove the theorem.

Equivalently: $\mathbb{R} \setminus \bigcup n A_n$ is dense; that is, $\text{Cl}(\mathbb{R} \setminus \bigcup n A_n) = \mathbb{R}$.

In particular, $\bigcup n A_n \neq \mathbb{R}$.

Clearly, a singleton is nowhere dense; therefore Cantor’s uncountability theorem follows from Baire category theorem.
1b From Cantor’s uncountability theorem to null sets

Here is another proof of Cantor’s uncountability theorem. Let \(a_1, a_2, \cdots \in \mathbb{R} \); we need \(x \in \mathbb{R} \) such that \(\forall n \ x \neq a_n \). To this end we take \(\varepsilon_1, \varepsilon_2, \cdots > 0 \) such that \(\sum_n \varepsilon_n < 1/2 \) and consider open intervals \((a_n - \varepsilon_n, a_n + \varepsilon_n)\). A finite number of these intervals cannot cover \([0, 1]\) since their total length is less than 1. (Take the Riemann integral of the sum of indicators...) By the Heine-Borel theorem, the infinite sequence of these intervals still does not cover \([0, 1]\).

1b1 Definition. A set \(A \subset \mathbb{R} \) is a null set if for every \(\varepsilon > 0 \) there exist \(\varepsilon_1, \varepsilon_2, \cdots > 0 \) and \(a_1, a_2, \cdots \in \mathbb{R} \) such that \(A \subset \bigcup_n (a_n - \varepsilon_n, a_n + \varepsilon_n) \) and \(2 \sum_n \varepsilon_n \leq \varepsilon \).

1b2 Theorem. If \(A_1, A_2, \cdots \subset \mathbb{R} \) are null sets then \(\text{Int}(\bigcup_n A_n) = \emptyset \).

1b3 Exercise. (a) Prove that \(\bigcup_n A_n \) is also a null set.
(b) Prove the theorem.

1c Two approaches to small sets and typical objects

1c1 Definition. Given a set \(X \), a set \(\mathcal{N} \) of subsets of \(X \) is called
(a) an ideal\(^1\) (on \(X \)), if

\[
(A \subset B \land B \in \mathcal{N}) \implies A \in \mathcal{N}; \\
A, B \in \mathcal{N} \implies A \cup B \in \mathcal{N}; \\
\emptyset \in \mathcal{N}.
\]

(b) a \(\sigma \)-ideal (on \(X \)), if it is an ideal and

\[
A_1, A_2, \cdots \in \mathcal{N} \implies \bigcup_n A_n \in \mathcal{N}.
\]

An ideal (or \(\sigma \)-ideal) \(\mathcal{N} \) on \(X \) is proper if \(X / \notin \mathcal{N} \).

Clearly, null sets are a proper \(\sigma \)-ideal on \(\mathbb{R} \).

The complement of a null set is called a set of full measure.

1c2 Definition. A set \(A \subset \mathbb{R} \) is meager\(^2\) if \(A \subset \bigcup_n A_n \) for some nowhere dense sets \(A_1, A_2, \cdots \subset \mathbb{R} \).

\(^1\)This notion of set theory is different from (but related to) ideals in ring theory, order theory etc.

\(^2\)Or of the first category.
Clearly, meager sets are a proper σ-ideal on \mathbb{R}.
The complement of a meager set is called comeager.1

When a property holds off a null set (in other words, on a set of full
measure), one says that it holds almost everywhere or for almost all elements.
Dealing with a probability measure one also says almost sure(ly).

When a property holds off a meager set (in other words, on a comea-
ger set), one says that it holds quasi-everywhere or for quasi all elements.2
One also says that this property holds generically, for a generic element,
or for most of elements. Sometimes the word “typical” is used rather than
“generic”.

1d Compact metrizable spaces; sequence spaces

1d1 Definition. (a) A metric space is a pair (X, ρ) of a set X and a metric ρ
on X, that is, a function $\rho: X \times X \to [0, \infty)$ such that $\rho(x, y) = 0 \iff x = y$,$\rho(x, y) = \rho(y, x)$, $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$ for all $x, y, z \in X$.

(b) Let ρ_1, ρ_2 be two metrics on X; ρ_2 is stronger than ρ_1 if $\rho_2(x_n, x) \to 0 \implies \rho_1(x_n, x) \to 0$ for all $x, x_1, x_2, \cdots \in X$;3 further, ρ_1, ρ_2 are equivalent, if $\rho_1(x_n, x) \to 0 \iff \rho_2(x_n, x) \to 0$ for all $x, x_1, x_2, \cdots \in X$.

(c) A metrizable space4 is a pair (X, R) where X is a set and R is an
equivalence class of metrics on X (metrizable topology; metrics of R are
called compatible).

(d) A metrizable space (as well as its metrizable topology) is compact5 if
every sequence has a convergent subsequence.

Every subset of \mathbb{R} is a metric space with the metric $\rho(x, y) = |x - y|$.
This space is compact if and only if the set is closed and bounded.

The Cantor set $C \subset [0, 1]$ may be defined as consisting of all numbers of
the form

$$\varphi(x) = \sum_{k=1}^{\infty} \frac{2x(k)}{3^k}$$

for $x \in \{0, 1\}^\infty$, that is $x: \{1, 2, \ldots\} \to \{0, 1\}$.

1d2 Exercise. (a) $\varphi: \{0, 1\}^\infty \to C$ is a bijection;

1 Or residual.
2 However, “quasi” is also used in potential theory (in relation to capacity).
3 However, a Cauchy sequence in (X, ρ_2) need not be Cauchy in (X, ρ_1).
4 Equivalently, and usually, a metrizable space is defined as a special case of a topological
space; but here we do not need the notion of general (not just metrizable) topological space.
5 Equivalently (for metrizable spaces), and usually, a compact space is defined by the
Heine-Borel property: every open cover has a finite subcover.
(b) if \(x, x_1, x_2, \ldots \in \{0, 1\}^\infty \) then
\[
\varphi(x_n) \xrightarrow{n \to \infty} \varphi(x) \iff \forall k \left(x_n(k) \xrightarrow{n \to \infty} x(k) \right).
\]
Prove it.

The metric \(\rho(x, y) = |\varphi(x) - \varphi(y)| \) is not invariant under permutations of coordinates on \(\{0, 1\}^\infty \), but its equivalence class \(R \) is (see 1d2(b)). Thus, we have a compact metrizable space \(\{0, 1\}^\infty \), and moreover, the compact metrizable space \(\{0, 1\}^S \) is well-defined for an arbitrary countable set \(S \) (irrespective of its enumeration). The space \(\{0, 1\}^S \) may also be thought of as the space of all subsets of \(S \).

1d3 Definition. A set \(A \) in a metrizable space \(X \) is nowhere dense if every nonempty open set contains some nonempty open subset that does not intersect \(A \).

Still, \(A \) is nowhere dense if and only if \(\text{Int}(\text{Cl}(A)) = \emptyset \).

1d4 Exercise. (a) Prove that nowhere dense sets are an ideal (on a metrizable space).

(b) On \(\mathbb{R} \), prove that they are not a \(\sigma \)-ideal.

1d5 Exercise. A set \(A \subset \{0, 1\}^\infty \) is nowhere dense if and only if for all \(m \) and \(t_1, \ldots, t_m \in \{0, 1\} \) there exist \(n > m \) and \(t_{m+1}, \ldots, t_n \in \{0, 1\} \) such that all sequences that start with \(t_1, \ldots, t_n \) do not belong to \(A \).

Prove it.

1d6 Theorem (Baire). Let \(X \) be a compact metrizable space. If \(A_1, A_2, \ldots \subset X \) are nowhere dense then \(\text{Int}(\bigcup_n A_n) = \emptyset \).

1d7 Exercise. (a) Prove the theorem.

(b) Find an example of a non-compact metrizable space such that the \(\sigma \)-ideal of meager sets is not proper.

Thus, the proper \(\sigma \)-ideal of meager sets is well-defined on every compact metrizable space, in particular, on \(\{0, 1\}^\infty \), and we may speak about generic elements, quasi-everywhere etc. Now, what about null sets? Can we transfer Lebesgue measure from \(\mathbb{R} \) to \(\{0, 1\}^\infty \) by \(\varphi^{-1} \)? No, we cannot, since the Cantor set is itself a null set. But on the other hand, endless coin tossing should provide a useful probability measure on \(\{0, 1\}^\infty \); and binary digits can be thought of as endless coin tossing over Lebesgue measure!

We consider the map \(\psi : [0, 1) \to \{0, 1\}^\infty \),
\[
\psi(u) = (b_1(u), b_2(u), \ldots),
\]
where $b_k(u)$ are the binary digits of u, that is,

$$b_k(u) \in \{0, 1\}, \quad \sum_{k=1}^{\infty} \frac{b_k(u)}{2^k} = u, \quad \liminf_k b_k(u) = 0.$$

True, ψ is not a bijection, but do not bother: the countable set $\{x : \liminf_k x(k) = 1\}$ is anyway a null set, and outside it ψ is a bijection,

$$\psi^{-1}(x) = \sum_{k=1}^{\infty} \frac{x(k)}{2^k}.$$

We transfer Lebesgue measure to $\{0, 1\}^\infty$ by ψ. That is, a set $A \subset \{0, 1\}^\infty$ is measurable if $\psi^{-1}(A)$ is Lebesgue measurable, and then $\mu(A)$ is equal to the Lebesgue measure of $\psi^{-1}(A)$. This probability measure μ is sometimes called Lebesgue measure on $\{0, 1\}^\infty$. It is invariant under permutations of coordinates on $\{0, 1\}^\infty$. Thus, we have a probability space $\{0, 1\}^\infty$, and moreover, the probability space $\{0, 1\}^S$ is well-defined for an arbitrary countable set S (irrespective of its enumeration). It gives us the proper σ-ideal of null sets on such space, and we may speak about almost all elements etc.

1e “Almost all” versus “quasi all”: first examples

1e1 Example. The famous strong law of large numbers (SLLN) states that

(a) $$\lim_{n} \frac{1}{n} \sum_{k=1}^{n} x(k) = \frac{1}{2} \quad \text{for almost all } x \in \{0, 1\}^\infty.$$

In contrast,

(b) $$\liminf_{n} \frac{1}{n} \sum_{k=1}^{n} x(k) = 0, \quad \limsup_{n} \frac{1}{n} \sum_{k=1}^{n} x(k) = 1 \quad \text{for quasi all } x \in \{0, 1\}^\infty,$$

as we will see soon.

1e2 Example. Consider sets

$$A_n = \{x : x(1) = x(n+1), x(2) = x(n+2), \ldots, x(n) = x(2n)\} \subset \{0, 1\}^\infty.$$

Clearly, $\mu(A_n) = 2^{-n}$, thus $\sum_n \mu(A_n) < \infty$; by the first Borel-Cantelli lemma,

(a1) $$\mu(\limsup_n A_n) = 0.$$

\footnote{It is in fact the Haar measure on the topological group $(\mathbb{Z}_2)^\infty$.}
In other words, almost every \(x \) belongs to \(A_n \) only for finitely many \(n \). Equivalently,\(^1\)

\[
\sum_n \mathbb{1}_{A_n}(x) < \infty \quad \text{for almost all } x \in \{0,1\}^\infty
\]

(\(\mathbb{1}_A \) being the indicator of \(A \)). In contrast,

\[
\sum_n \mathbb{1}_{A_n}(x) = \infty \quad \text{for quasi all } x \in \{0,1\}^\infty,
\]

as we will see soon. That is, quasi every \(x \) belongs to \(A_n \) for infinitely many \(n \). (Of course, the infinite set of \(n \) depends on \(x \).)

1e3 Exercise. Denote by \(B_n \) the complement of \(A_n \), and by \(C_n \) the set \(B_n \cap B_{n+1} \cap \ldots \) Prove that

(a) \(C_n \) is closed;

(b) \(C_n \) is nowhere dense.

Thus, \(C = \cup_n C_n \) is meager, and its complement \(\cap_n (A_n \cup A_{n+1} \cup \ldots) = \limsup_n A_n \) is comeager, which proves **1e2(b)**.

1e4 Exercise. Now consider sets \(A_n = \{ x : x(n) = x(n+1) = \cdots = x(n^2) = 0 \} \). Prove that

(a) the set \(\limsup_n A_n \) is comeager;

(b) \(\liminf_n \frac{1}{n} \sum_{k=1}^n x(k) = 0 \) for all \(x \in \limsup_n A_n \).

A half of **1e1(b)** is thus proved; the other half is similar.

1f Digits of a typical number

We return to the map \(\psi : [0,1) \to \{0,1\}^\infty, \psi(u) = (b_1(u), b_2(u), \ldots) \) where \(b_k(u) \) are the binary digits of \(u \). Of course, \(\psi \) is discontinuous; and nevertheless...

1f1 Exercise. Prove that

(a) If \(A \subset \{0,1\}^\infty \) is nowhere dense then \(\psi^{-1}(A) \subset [0,1) \) is nowhere dense.

(b) If \(A \subset \{0,1\}^\infty \) is meager then \(\psi^{-1}(A) \subset [0,1) \) is meager.

(c) If \(A \subset \{0,1\}^\infty \) is comeager then \(\psi^{-1}(A) \subset [0,1) \) is comeager.

\(^1\)The sum of the indicators is integrable, therefore, finite almost everywhere. (This is the proof of the first Borel-Cantelli lemma.)
Exercise. Let $A \subset \{0,1\}^\infty$. Prove or disprove:
(a) If $\psi^{-1}(A)$ is nowhere dense then A is nowhere dense.
(b) If $\psi^{-1}(A)$ is meager then A is meager.

Remark. A map satisfying the equivalent conditions $1f1(b,c)$ (but not necessarily (a)) may be called genericity preserving. Informally, such map transforms a generic element of the first space into a generic element of the second space.

Combining $1f1$ with $1e1(b)$ and $1e2(b)$ we see that quasi all $u \in [0,1)$ satisfy
\[\liminf_n \frac{1}{n} \sum_{k=1}^n b_k(u) = 0, \quad \limsup_n \frac{1}{n} \sum_{k=1}^n b_k(u) = 1, \]
and the relation
\[b_1(u) = b_{n+1}(u), \ldots, b_n(u) = b_{2n}(u) \]
holds for infinitely many n.

All said about $\{0,1\}^\infty$ and binary digits generalizes readily to $\{0,1,\ldots,9\}^\infty$ and decimal digits, as well as any other basis. Given comeager sets $A_p \subset \{0,\ldots,p-1\}^\infty$, we observe for a generic number $u \in [0,1)$ the following property: for every basis $p = 2,3,\ldots$ the corresponding digits of u are a sequence that belongs to A_p.

Hints to exercises

1a4: $[b_1,c_1] \supset [b_2,c_2] \supset \ldots$
1d2: if $x(1) = y(1), \ldots, x(n) = y(n)$ then $|\varphi(x) - \varphi(y)| \leq \frac{2}{3^n+1} + \frac{2}{3^n+2} + \ldots$
otherwise $|\varphi(x) - \varphi(y)| \geq \frac{2}{3^n} - \frac{2}{3^n+1} - \frac{2}{3^n+2} - \ldots$
1d4: (a) $[b_1,c_1] \supset [b_2,c_2] \supset [b_3,c_3]$; (b) the union can be dense.
1d7: (a) similar to 1a4 with balls rather than intervals; (b) try a dense countable set.
1e3 (b) use 1d5
1e4 (b) try $n \in \{1,4,9,16,\ldots\}$
1f1 (a) by 1d5 every binary interval $[\frac{k}{2^n}, \frac{k+1}{2^n})$ contains a binary subinterval such that... (b), (c) follow from (a).
1f2 consider $\{0,1\}^\infty \setminus \psi([0,1))$.

1According to Melleray and Tsankov, a continuous map with this property is called category-preserving; see arXiv:1201.4447, Def. 2.7.
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ-ideal</td>
<td>2</td>
</tr>
<tr>
<td>almost</td>
<td>3, 5</td>
</tr>
<tr>
<td>Baire theorem</td>
<td>1, 4</td>
</tr>
<tr>
<td>binary digits</td>
<td>5</td>
</tr>
<tr>
<td>Cantor set</td>
<td>3</td>
</tr>
<tr>
<td>comeager</td>
<td>3</td>
</tr>
<tr>
<td>compact</td>
<td>3</td>
</tr>
<tr>
<td>compatible metric</td>
<td>3</td>
</tr>
<tr>
<td>equivalent metrics</td>
<td>3</td>
</tr>
<tr>
<td>full measure</td>
<td>2</td>
</tr>
<tr>
<td>generic</td>
<td>3, 4</td>
</tr>
<tr>
<td>genericity preserving</td>
<td>7</td>
</tr>
<tr>
<td>ideal</td>
<td>2</td>
</tr>
<tr>
<td>Lebesgue measure on {0,1}^\infty</td>
<td>5</td>
</tr>
<tr>
<td>meager</td>
<td>2</td>
</tr>
<tr>
<td>metric</td>
<td>3</td>
</tr>
<tr>
<td>metric space</td>
<td>3</td>
</tr>
<tr>
<td>metrizable space</td>
<td>3</td>
</tr>
<tr>
<td>metrizable topology</td>
<td>3</td>
</tr>
<tr>
<td>nowhere dense</td>
<td>1, 4</td>
</tr>
<tr>
<td>null set</td>
<td>2</td>
</tr>
<tr>
<td>proper</td>
<td>2</td>
</tr>
<tr>
<td>quasi</td>
<td>3, 4</td>
</tr>
<tr>
<td>stronger metric</td>
<td>3</td>
</tr>
<tr>
<td>typical</td>
<td>3</td>
</tr>
<tr>
<td>{0,1}^S</td>
<td>1</td>
</tr>
<tr>
<td>{0,1}^\infty</td>
<td>3</td>
</tr>
<tr>
<td>I_A</td>
<td>9</td>
</tr>
<tr>
<td>b_k(·)</td>
<td>5</td>
</tr>
<tr>
<td>Cl</td>
<td>1</td>
</tr>
<tr>
<td>Int</td>
<td>1</td>
</tr>
<tr>
<td>ϕ(·)</td>
<td>3</td>
</tr>
<tr>
<td>ψ(·)</td>
<td>4</td>
</tr>
</tbody>
</table>