5 Random connected components

5a Connected sets among closed sets 76
5b Connected components 78
5c Counting the connected components 80
5d Classifying the connected components: random knots 80
Hints to exercises 85
Index ${ }_{85}$

5a Connected sets among closed sets

Recall some topological notions and facts.
A metrizable space X is connected, if Clopen $(X)=\{0, X\}$.
A subset $Y \subset X$ is connected if it is itself a connected space. Note that

$$
\begin{equation*}
\operatorname{Clopen}(Y) \supset\{A \cap Y: A \in \operatorname{Clopen}(X)\} ; \tag{5a1}
\end{equation*}
$$

in general, these are not equal (indeed, it happens routinely that X is connected while Y is not). For a connected Y,

$$
\begin{equation*}
\forall A \in \operatorname{Clopen}(X)(Y \subset A \vee Y \subset X \backslash A) \tag{5a2}
\end{equation*}
$$

For arbitrary Y, choosing a compatible metric ρ on X and denoting as before $\operatorname{dist}(x, A)=\inf \{\rho(x, a): a \in A\}$, we have

$$
\begin{aligned}
& \operatorname{Clopen}(Y)=\{A \subset Y: \bar{A} \cap(Y \backslash A)=\emptyset \wedge \overline{(Y \backslash A)} \cap A=\emptyset\}= \\
= & \{A \subset Y:(\forall a \in A \operatorname{dist}(a, Y \backslash A)>0) \wedge(\forall b \in Y \backslash A \operatorname{dist}(b, A)>0)\} .
\end{aligned}
$$

For every $A \in \operatorname{Clopen}(Y)$ there exist open sets $U, V \subset X$ such that $U \cap V=\emptyset$, $U \cap Y=A$ and $V \cap Y=Y \backslash A$; namely, we may take

$$
U=\bigcup_{a \in A} B^{\circ}(a, 0.5 \rho(a, Y \backslash A)), \quad V=\bigcup_{b \in Y \backslash A} B^{\circ}(b, 0.5 \rho(b, A))
$$

(Here $B^{\circ}(a, r)=\{x: \rho(x, a)<r\}$.) Thus,
(5a3) $\operatorname{Clopen}(Y)=$

$$
=\{Y \cap U: U, V \text { are open in } X \wedge U \cap V=\emptyset \wedge U \cup V \supset Y\}
$$

5a4 Proposition. For every compact metrizable space X the set

$$
\{F \in \mathbf{F}(X): F \text { is connected }\}
$$

is Borel measurable.
From now on (till 5a9) X is compact, and $\left(U_{n}\right)_{n}$ is a sequence ${ }^{1}$ of open subsets of X such that for all $E, F \in \mathbf{F}(X)$,

$$
\begin{equation*}
E \cap F=\emptyset \Longrightarrow \exists m, n\left(U_{m} \cap U_{n}=\emptyset \wedge E \subset U_{m} \wedge F \subset U_{n}\right) \tag{5a5}
\end{equation*}
$$

5 a 6 Core exercise. Prove existence of such $\left(U_{n}\right)_{n}$.
Note that $\operatorname{Clopen}(X) \subset\left\{U_{1}, U_{2}, \ldots\right\}$; and by the way, it shows that Clopen (X) is at most countable (provided that X is compact). ${ }^{2}$
5a7 Core exercise. For every $F \in \mathbf{F}(X)$,

$$
\operatorname{Clopen}(F)=\left\{F \cap U_{m}: U_{m} \cap U_{n}=\emptyset \wedge U_{m} \cup U_{n} \supset F\right\} .
$$

Prove it.
5a8 Core exercise. A closed set $F \subset X$ is connected if and only if
$\forall m, n\left(\left(U_{m} \cap U_{n}=\emptyset \wedge U_{m} \cup U_{n} \supset F\right) \Longrightarrow\left(U_{m} \cap F=\emptyset \vee U_{n} \cap F=\emptyset\right)\right)$.
Prove it.
5a9 Core exercise. Prove Prop. 5a4.
Prop. 5 Fa 4 fails for Polish (not just compact) spaces. In particular, it fails if X is an infinite-dimensional separable Hilbert space. ${ }^{3}$

Does 5a4 hold for $X=\mathbb{R}^{d}$? I do not know! ${ }^{4}$ If you feel enthusiastic to reduce connectedness of a closed set to some property of its compact subsets, take into account the following instructive example of a connected closed subset of \mathbb{R}^{2} :

[^0]5a10 Remark. As a palliative we may treat a random closed subset of \mathbb{R}^{d} via the one-point compactification $\mathbb{R}^{d} \cup\{\infty\}$ (including ∞ into each unbounded closed set). Then all unbounded connected components (if any) are glued together.

5b Connected components

Consider two equivalence relations on a metrizable space X : points $x, y \in X$ are equivalent, when

$$
\begin{gather*}
x, y \in Y \text { for some connected } Y \subset X ; \tag{5b1}\\
\forall A \in \operatorname{Clopen}(X) \quad(x \in A \Longleftrightarrow y \in A) \tag{5b2}
\end{gather*}
$$

Clearly, (5b1) implies (5b2) (recall (5a2)). In general they are not equivalent; an example:

Equivalence classes for (5b1) are called connected components (of X); for (5b2) - quasiconnected components. In general, every quasiconnected component decomposes into connected components. But a compact X is simpler.

5 b 3 Lemma. For a compact X, (5b1) and (5b2) are equivalent.
Proof. Let Y be an equivalence class for (5b2); we'll prove that Y is connected. By (5a3) it is sufficient to prove $Y \subset U$ or $Y \subset V$ whenever open $U, V \subset X$ satisfy $U \cap V=\emptyset$ and $U \cup V \supset Y$. Compactness gives us $A \in \operatorname{Clopen}(X)$ such that $Y \subset A \subset U \cup V$. Thus, $A \cap U=A \backslash V \in \operatorname{Clopen}(X)$. All points of Y being (5b2)-equivalent, we get $Y \subset A \cap U$ or $Y \subset X \backslash(A \cap U)$; accordingly, $Y \subset U$ or $Y \subset V$.

Note that a compact X can have uncountably many connected components (try the Cantor set).

5b4 Proposition. The following subset of $\mathbf{F}(X) \times \mathbf{F}(X)$ is Borel measurable, provided that X is compact:

$$
\{(E, F): E \text { is a connected component of } F\} .
$$

Choosing a compatible metric ρ on X we define for $E, F \in \mathbf{F}(X)$

$$
\begin{gathered}
d_{\not \subset}(E, F)=\sup _{x \in E} \operatorname{dist}(x, F)=\sup _{x \in E} \inf _{y \in F} \rho(x, y)=\inf \left\{r>0: E \subset F_{+r}\right\}, \\
d_{H}(E, F)=\max \left(d_{\not \subset}(E, F), d_{\not \subset}(F, E)\right)=\inf \left\{r>0: E \subset F_{+r} \wedge F \subset E_{+r}\right\}
\end{gathered}
$$

(as usual, $\inf \emptyset=+\infty$); d_{H} is a metric on $\mathbf{F}(X) \backslash\{\emptyset\}$, - the well-known Hausdorff metric. ${ }^{1}$

5b5 Lemma. $d_{\not \subset}: \mathbf{F}(X) \times \mathbf{F}(X) \rightarrow[0, \infty]$ is a Borel function.
Proof. We take a sequence $\left(x_{n}\right)_{n}$ dense in X and note that

$$
d_{\not \subset}(E, F)=\inf _{r>0} \sup _{n: \operatorname{dist}\left(x_{n}, E\right) \leq \varepsilon} \operatorname{dist}\left(x_{n}, F\right)
$$

and $\operatorname{dist}\left(x_{n}, \cdot\right)$ is a Borel function by $4 \mathrm{~d} 8(\mathrm{a})$.
Proof of Prop. 564. For $E, F \in \mathbf{F}(X)$, by 5b3, E is a connected component of F if and only if
(a) E is connected, and
(b) $E \subset F$, and E is the intersection of all $A \in \operatorname{Clopen}(F)$ such that $A \supset E$.
Condition (a) leads to a Borel set by Prop. 5a4t; we'll prove the same for (b). By compactness, (b) is equivalent to
(b1) for every $\varepsilon>0$ there exists $A \in \operatorname{Clopen}(F)$ such that $A \supset E$ and $d_{\not \subset}(A, E) \leq \varepsilon$.
We choose $\left(U_{n}\right)_{n}$ satisfying (5a5). By (5a7), (b1) is equivalent to
(b2) for every $\varepsilon>0$ there exist m, n such that $U_{m} \cap U_{n}=\emptyset, U_{m} \cup U_{n} \supset F$, $F \cap U_{m} \supset E$ and $d_{\not \subset}\left(F \cap U_{m}, E\right) \leq \varepsilon$.
It remains to check, for given m, n satisfying $U_{m} \cap U_{n}=\emptyset$, that each of the following three conditions leads to a Borel set:
(c) $F \subset U_{m} \cup U_{n}$,
(d) $E \subset F \backslash U_{n}$,
(e) $d_{\not \subset}\left(F \backslash U_{n}, E\right) \leq \varepsilon$.

We rewrite (c), (d) as
(c1) $F \cap\left(X \backslash\left(U_{m} \cup U_{n}\right)\right)=\emptyset$,
(d1) $d_{\not \subset}\left(E, F \backslash U_{n}\right)=0$.
For (c1) we use $4 \mathrm{~d} 12(\mathrm{~b})$. For (d1) and (e) we use 5b5, taking into account that the map $F \mapsto F \backslash U_{n}=F \cap\left(X \backslash U_{n}\right)$ is Borel measurable by 4 d 14 .

We conclude.

[^1]5b6 Theorem. Let X be a compact metrizable space and S a random closed subset of X. Then the set of all connected components of S^{1} is a random Borel subset of the standard ${ }^{2}$ Borel space $\mathbf{F}(X)$.

5c Counting the connected components

5c1 Core exercise. Let S be a random measurable subset of a standard Borel space. Then $\{\omega:|S(\omega)| \leq n\}$ is measurable for every n. (Here $|S(\omega)|$ is the number of points in $S(\omega)$.)

Prove it.
By 5c1 (and Theorem 5b6), given a random closed set in a compact metrizable X, the number of its connected components is a random variable (with values in $\{0,1,2, \ldots\} \cup\{\infty\}$). In this sense we may count the connected components. ${ }^{3}$ Given a Borel set $B \subset \mathbf{F}(X)$, we may count the connected components belonging to B (think, why). For example we may count the connected components contained in a given ball, or intersecting a given ball, etc.
$5 \mathbf{c} 2$ Core exercise. Let S be a random closed subset of \mathbb{R}^{d}. Then the set of all bounded connected components of S is a random Borel subset of $\mathbf{F}\left(\mathbb{R}^{d}\right)$.

Prove it.

5d Classifying the connected components: random knots

A knot is a subset of \mathbb{R}^{3} homeomorphic to a circle.

[^2]Knots K_{1}, K_{2} are of the same type (in other words, equivalent) if $h\left(K_{1}\right)=K_{2}$ for some homeomorphism $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. ${ }^{1}$ A knot is tame if it is equivalent to a polygonal knot. Or, equivalently, to a smooth knot (continuously differentiable). Otherwise it is a wild knot. ${ }^{2}$ All knots that lie in a plane are of the same type (the trivial type; the unknot). ${ }^{3}$ This is a deep theorem in general, but relatively simple for tame knots.

All tame knot types are a countable set. ${ }^{4}$
5d1 Proposition. Each knot type is a universally measurable ${ }^{5}$ subset of $\mathrm{F}\left(\mathbb{R}^{3}\right)$.

Thus, all tame knots are also a universally measurable set.
By 5c2 and 5d1, given a random closed set in \mathbb{R}^{3}, we may count its connected components that are (a) tame knots; (b) tame knots of a given type; (c) tame knots of a given type that are contained in a given ball; etc.

You may think about a random smooth map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}\left(\right.$ or $\left.\mathbb{R}^{3} \rightarrow \mathbb{C}\right)$ such that almost surely, f is regular (that is, $\operatorname{rank} \mathrm{d} f(\cdot)=2$) at all x satisfying $f(x)=0$. Then all bounded connected components of the random closed set $f^{-1}(0)$ are tame knots (almost surely).

The group Homeo $\left(\mathbb{R}^{3}\right)$ of all homeomorphisms $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ acts on the standard Borel space $\mathbf{F}\left(\mathbb{R}^{3}\right)$.

Here is a generalization of Prop. 5d1.
5d2 Proposition. For every $F \in \mathbf{F}\left(\mathbb{R}^{3}\right)$ its orbit $\left\{h(F): h \in \operatorname{Homeo}\left(\mathbb{R}^{3}\right)\right\}$ is a universally measurable subset of $\mathbf{F}\left(\mathbb{R}^{3}\right)$.

5d3 Core exercise. The set $C\left(\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\right)$ of all continuous maps $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ endowed with the σ-algebra generated by evaluations $f \mapsto f(x)$ is a standard Borel space.

Prove it.
5d4 Core exercise. $f(x)$ is jointly measurable in $f \in C\left(\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\right)$ and $x \in \mathbb{R}^{3}$.

Prove it.

[^3]5d5 Core exercise. The composition $g \circ f \in C\left(\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\right)$ is jointly measurable in $f, g \in C\left(\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\right)$.

Prove it.
We embed the set Homeo($\left(\mathbb{R}^{3}\right)$ into $C\left(\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\right) \times C\left(\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\right)$ as follows:

$$
h \mapsto\left(h, h^{-1}\right) .
$$

By 5 d 5 the image $\{(f, g): f \circ g=\mathrm{id} \wedge g \circ f=\mathrm{id}\}$ is a Borel set, therefore a standard Borel space. We endow Homeo $\left(\mathbb{R}^{3}\right)$ with the corresponding σ-algebra and observe that

$$
\begin{equation*}
\operatorname{Homeo}\left(\mathbb{R}^{3}\right) \text { is a standard Borel space. }{ }^{1} \tag{5d6}
\end{equation*}
$$

5 d 7 Extra exercise. Homeo $\left(\mathbb{R}^{3}\right)$ is both a Borel subset and a measurable subspace of $C\left(\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\right)$.

Prove it. ${ }^{2}$
(By the way, it follows that the map $f \mapsto f^{-1}$ is Borel measurable on Homeo $\left(\mathbb{R}^{3}\right)$ treated as a subset of $C\left(\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\right)$.)

5d8 Core exercise. Let $F \subset \mathbb{R}^{3}$ be a closed set, then the map

$$
C\left(\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\right) \ni f \mapsto f(F) \in \mathbf{F}\left(\mathbb{R}^{3}\right)
$$

is Borel measurable.
Prove it.
Thus, the orbit $\left\{h(F): h \in \operatorname{Homeo}\left(\mathbb{R}^{3}\right)\right\}$ is the image of the standard Borel space Homeo $\left(\mathbb{R}^{3}\right)$ under the Borel map $h \mapsto h(F)$.

Here is a topology-free counterpart of Def. 3e1.
5d9 Definition. A subset of a countably separated measurable space is analytic if it is the image of some standard Borel space under some measurable map.

Does 5 d 9 conflict with 3 e 1 ? No, it does not.
5d10 Lemma. For every subset A of a separable metrizable space, the following two conditions are equivalent:
(a) A is the image of some Polish space under some continuous map;
(b) A is the image of some standard Borel space under some Borel map.

[^4]Proof. $(\mathrm{a}) \Longrightarrow(\mathrm{b})$: the Polish space is a standard Borel space by 4 d 7 , and the continuous map is Borel measurable.
$(\mathrm{b}) \Longrightarrow(\mathrm{a})$: we may assume that the standard Borel space is a Borel subset of the Cantor set, or even the whole Cantor set (extend the map by a constant...); it remains to use Prop. 3d1.

And here is a counterpart of Theorem $3 f 22$.
5d11 Theorem. Analytic sets in countably separated measurable spaces are universally measurable.

Proof. Let (X, \mathcal{A}) be a standard Borel space, (Y, \mathcal{B}) a countably separated measurable space, $f: X \rightarrow Y$ a measurable map, and μ a probability measure on (Y, \mathcal{B}); we have to prove that $f(X)$ is μ-measurable.

Without loss of generality we may assume that (Y, \mathcal{B}) is a Borel space. Proof: first, by $1 \mathrm{~d} 35,\left(Y, \mathcal{B}_{1}\right)$ is a Borel space for some $\mathcal{B}_{1} \subset \mathcal{B}$; second, f is measurable from (X, \mathcal{A}) to $\left(Y, \mathcal{B}_{1}\right)$; third, every $\left(\left.\mu\right|_{\mathcal{B}_{1}}\right)$-measurable set is μ-measurable.

By 1 d 40 we may assume that $Y \subset \mathbb{R}$. Moreover, we may assume that $Y=\mathbb{R}$. Proof: we define a probability measure ν on \mathbb{R} by $\nu(B)=\mu(B \cap Y)$ for $B \in \mathcal{B}(\mathbb{R})$ and observe that every ν-measurable subset of Y is μ-measurable.

It remains to use Lemma 5 d10 and Theorem 3 f22.
Propositions 5 d 2 and 5 d 1 follow.
Proposition 5d2 (and its proof) generalizes readily to arbitrary locally compact separable metrizable spaces (in place of \mathbb{R}^{3}).

So, we may count tame knots. What about wild knots?
5 d 12 Proposition. All knots are a universally measurable subset of $\mathbf{F}\left(\mathbb{R}^{3}\right)$.
Thus, wild knots are also a universally measurable set.
The circle is a compact metrizable space; knots are its homeomorphic images in \mathbb{R}^{3}.

5 d 13 Core exercise. Let K be a compact metrizable space, and (similarly to 5d3) $C\left(K \rightarrow \mathbb{R}^{3}\right)$ the standard Borel space of continuous maps. Then the set of all homeomorphisms $f: K \rightarrow f(K) \subset \mathbb{R}^{3}$ is a Borel subset of $C\left(K \rightarrow \mathbb{R}^{3}\right)$.

Prove it.
Similarly to 5d8, the map

$$
C\left(K \rightarrow \mathbb{R}^{3}\right) \ni f \mapsto f(K) \in \mathbf{F}\left(\mathbb{R}^{3}\right)
$$

is Borel measurable. Its image

$$
\{F: F \text { is homeomorphic to } K\} \subset \mathbf{F}\left(\mathbb{R}^{3}\right)
$$

is analytic, thus, universally measurable. Prop. 5 d12 follows.
In fact, the set of all knots is Borel measurable. ${ }^{1}$
You may think also about random links, and a lot of other random geometric objects.

[^5]
Hints to exercises

5a6: consider a countable base and all finite unions of its sets.
5c1: use 3f24, taking into account that the Borel space is countably separated.
5c2; recall 5a10.
5 d 3 recall 2c10(c).
5d4 similar to (4b4).
5 d 5 use 5 d 4.
5 d 8 use a dense sequence.

Index

analytic, 82
components
connected, 78
quasiconnected, 78
connected, 76
Hausdorff metric, 79
knot, 80
orbit, 81
tame knot, 81
type of knot, 81
wild knot, 81
$d_{H}, 78$
$d_{\not \subset,} 78$
Homeo(•), 81

[^0]: 1 "Countable superbase", if you like.
 ${ }^{2}$ For Polish $X, \operatorname{Clopen}(X)$ need not be countable (try a discrete space).
 ${ }^{3}$ This is basically the phenomenon mentioned before 4 d 10 .
 ${ }^{4}$ I only know that $\left\{F \in \mathbf{F}\left(\mathbb{R}^{d}\right): F\right.$ is connected $\}$ is coanalytic, since its complement is the image of the Borel set $\left\{\left(F_{1}, F_{2}\right): F_{1} \cap F_{2}=\emptyset, F_{1} \neq \emptyset, F_{2} \neq \emptyset\right\}$ (recall 4d15) under the Borel map $\left(F_{1}, F_{2}\right) \mapsto F_{1} \cup F_{2}$.

[^1]: ${ }^{1}$ In fact, the Hausdorff metric on a compact X turns $\mathbf{F}(X)$ into a compact metric space whose Borel σ-algebra coincides with that of (4d2). The set of connected components of X need not be closed in $\left(\mathbf{F}(X), d_{H}\right)$; an example: $[-1,0] \cup\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$. For a Polish X, the metric space $\left(\mathbf{F}(X), d_{H}\right)$ is complete but generally nonseparable (try a discrete X). See also Sect. 2 in Beer's article (cited in footnote 5 on page 71).

[^2]: ${ }^{1}$ I mean the set of all connected components of $S(\omega)$ as a function of ω.
 ${ }^{2}$ Recall 4d5.
 ${ }^{3}$ The set of ω such that $S(\omega)$ is uncountable (and therefore of cardinality continuum, see Kechris, Th. (13.6) or Srivastava, Th. 4.3.5) is also measurable, see Kechris, Th. (29.19).

[^3]: ${ }^{1}$ See for instance Sect. 1.1 in: R.H. Crowell, R.H. Fox, "Introduction to knot theory", Springer 1963.
 ${ }^{2}$ Crowell and Fox, Sect. 1.2.
 ${ }^{3}$ Crowell and Fox, Sect. 1.2.
 ${ }^{4}$ Crowell and Fox, Chapter I, Exercise 5. In fact, they are a semigroup isomorphic to $\{1,2,3, \ldots\}$ with multiplication. By the way, some wild knots are infinite products of tame knots.
 ${ }^{5}$ In fact, Borel measurable, but this is harder to prove.

[^4]: ${ }^{1}$ It is in fact a Polish group (and therefore, by 4d7, a standard Borel space).
 ${ }^{2}$ In fact, this follows from standardness by a general theorem; but you are asked to prove it explicitly.

[^5]: ${ }^{1}$ The same holds for subsets of a given σ-compact separable metrizable space X, that are homeomorphic to a given compact metrizable space K; see: C. Ryll-Nardzewski, "On a Freedman's problem", Fund. Math. 57 (1965), 273-274. The corresponding Borel complexity is not bounded in K even if $X=[0,1] \times[0,1]$; see Fact 3.12 in: A. Marcone, "Complexity of sets and binary relations in continuum theory: a survey" (2005). For $K=\mathbb{S}^{1}$ this Borel set is $F_{\sigma \delta}$ and not $G_{\delta \sigma}$; see Lemma 6.2 and Theorem 8.5 in: R. Camerlo, U.B. Darji, A. Marcone, "Classification problems in continuum theory", Trans. AMS 357:11, 43014328 (2005).

