5 Joint distributions and independence

5a Distributions in dimension 2 (and more)

We know from Introduction to Probability, that a random variable has its distribution, but two random variables have not just two distributions; rather, they have a two-dimensional distribution.

A pair (X, Y) of random variables ${ }^{56} X, Y: \Omega \rightarrow \mathbb{R}$ may be treated as a two-dimensional random variable, $(X, Y): \Omega \rightarrow \mathbb{R}^{2}$. The condition $\forall x \in \mathbb{R}\{\omega \in \Omega: X(\omega) \leq x\} \in$ \mathcal{F} stipulated for one-dimensional random variables (recall 2a3) implies its two-dimensional counterpart,

$$
\begin{equation*}
\forall(x, y) \in \mathbb{R}^{2} \quad\{\omega \in \Omega: X(\omega) \leq x, Y(\omega) \leq y\} \in \mathcal{F} \tag{5a1}
\end{equation*}
$$

(think, why). Similarly to 2b3, the joint (cumulative) distribution function of X, Y is the function $F_{X, Y}: \mathbb{R}^{2} \rightarrow[0,1]$ defined by

$$
\begin{equation*}
F_{X, Y}(x, y)=\mathbb{P}(X \leq x, Y \leq y) \tag{5a2}
\end{equation*}
$$

5a3 Exercise. Let $X \sim \mathrm{U}(0,1)$ and $Y=X$. Calculate $F_{X, Y}$ (that is, $F_{X, X}$). Is it continuous? Is $F_{X, Y}(x, y)$ equal to $F_{X}(x) F_{Y}(y)$?

Unfortunately, distribution functions are less illuminating in dim 2 than these in dim 1. Say, continuity of $F_{X, Y}$ is not a natural property of X, Y. Also, $F_{X, Y}$ does not lead to something like a 2 -dim quantile function.

Two-dim counterparts of Conditions 2d8(a-e) and Theorem 2e10, being well-known, are of little use. ${ }^{57}$ Distributions (and densities) are more useful.

Propositions 2d1, 2d2 have 2-dim counterparts.
5a4 Proposition. Let $X, Y: \Omega \rightarrow \mathbb{R}$ be random variables and $B \in \mathcal{B}_{2}$ (that is, $B \subset \mathbb{R}^{2}$ is a Borel set). Then the set $\{\omega \in \Omega:(X(\omega), Y(\omega)) \in B\}$ is an event.
(About 2-dim Borel sets, recall 1f9, 1f10)
5a5 Proposition. Let $X, Y: \Omega \rightarrow \mathbb{R}$ be random variables. Then the function $P_{X, Y}: \mathcal{B}_{2} \rightarrow$ [0,1] defined by

$$
\begin{equation*}
P_{X, Y}(B)=\mathbb{P}((X, Y) \in B) \tag{5a6}
\end{equation*}
$$

is a probability measure on $\left(\mathbb{R}^{2}, \mathcal{B}_{2}\right)$.
$5 a 7$ Definition. The probability measure $P_{X, Y}$ defined by (5a6) is called the joint distribution of random variables X, Y (or the distribution of the two-dimensional random variable $(X, Y))$.

[^0]That is similar to 2d4. Note that $\left(\mathbb{R}^{2}, \mathcal{B}_{2}, P_{X, Y}\right)$ is another probability space. Similarly to (2d5), 2d6 we have

$$
\begin{gather*}
F_{X, Y}(x, y)=P_{X, Y}((-\infty, x] \times(-\infty, y]), \tag{5a8}\\
F_{X, Y}=F_{U, V} \quad \Longleftrightarrow \quad P_{X, Y}=P_{U, V} . \tag{5a9}
\end{gather*}
$$

5 a10 Exercise. Do two equalities $P_{X}=P_{U}$ and $P_{Y}=P_{V}$ imply $P_{X, Y}=P_{U, V}$? Hint. Return to 5 a 3 and consider also $F_{X,-X}$.

Any probability measure P on $\left(\mathbb{R}^{2}, \mathcal{B}_{2}\right)$ corresponds to some random variables X, Y on some probability space. Namely, consider the probability space $\left(\mathbb{R}^{2}, \mathcal{B}_{2}, P_{X, Y}\right)$. The identical map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ may be treated as a 2 -dim random variable on that probability space, or as a pair (X, Y) of (1-dim) random variables $X, Y: \mathbb{R}^{2} \rightarrow \mathbb{R}, X(x, y)=x, Y(x, y)=y$. Then $P_{X, Y}=P$ (think, why).

Here are 2-dim counterparts of 2d14 and 2d15
5 a11 Definition. A point $(x, y) \in \mathbb{R}^{2}$ is called an atom of (the distribution of) a twodimensional random variable (X, Y), if

$$
\mathbb{P}((X, Y)=(x, y))>0 .
$$

5 a12 Definition. The support of (the distribution of) a two-dimensional random variable (X, Y) is the set of all points $(x, y) \in \mathbb{R}^{2}$ such that

$$
\forall \varepsilon>0 \quad \mathbb{P}(x-\varepsilon<X<x+\varepsilon, y-\varepsilon<Y<y+\varepsilon)>0 .
$$

Still, the support is the least closed set of probability 1.
By the way (in contrast to dimension one), if $F_{X, Y}$ is strictly increasing in a neighborhood of a given point, it does not mean that the point belongs to the support.

All said (in Sect. 5a) about dimension 2 holds for all dimensions $d=1,2,3, \ldots$ You can easily formulate such generalizations.

Do we need two-dimensional probability spaces? A discussion follows.
Y: If we restrict ourselves to a 1-dim probability space, say $(0,1)$, then any 2 -dim random variable $(X, Y):(0,1) \rightarrow \mathbb{R}^{2}$ is concentrated on a line. Its distribution is not really 2 -dim.
\mathbf{N} : Recall Example $2 \mathrm{~b} 8(Y=\sin X, X=0,1,2, \ldots)$. There, X is discrete, it may be defined on a discrete (0 -dim) probability space. Nevertheless, the support of Y is $[-1,+1]$, a 1-dim set. Similarly, consider $Y=\sin \alpha X, Z=\sin \beta X, X=0,1,2, \ldots$ for 'generic' α, β (I mean, $\alpha / \pi, \beta / \pi$ and α / β are irrational). The support of (Y, Z) is the whole square $[-1,+1] \times[-1,+1]$. This way we produce $\operatorname{dim} 2$ out of $\operatorname{dim} 0$. Of course, we may also produce $\operatorname{dim} 2$ out of $\operatorname{dim} 1$. Say, $Y=\sin \alpha X, Z=\sin \beta X$, where the support of X is the whole \mathbb{R} (and again, α / β is irrational).

Y: If a countable set is dense in a square, it does not mean that it is really 2-dim. It is still 0-dim. Similarly, a line dense in the square is still 1-dim.
\mathbf{N} : What is really 2-dim?
\mathbf{Y} : The uniform distribution on the square. You cannot reach it by X, Y on $(0,1)$.
\mathbf{N} : However, I can! Recall 2b6] I use the same idea:

$$
(0,1) \ni \omega=\left(0 . \beta_{1} \beta_{2} \beta_{3} \ldots\right)_{2} ; \quad \begin{align*}
& X(\omega)=\left(0 . \beta_{1} \beta_{3} \beta_{5} \ldots\right)_{2} \tag{5a13}\\
& Y(\omega)=\left(0 . \beta_{2} \beta_{4} \beta_{6} \ldots\right)_{2} .
\end{align*}
$$

The distribution of (X, Y) is uniform on the square $(0,1) \times(0,1)$.
Y: Why?
\mathbf{N} : Since the sequence $\left(\beta_{1}, \beta_{2}, \ldots\right)$ is just infinite coin tossing; therefore $\left(\beta_{1}, \beta_{3}, \ldots\right)$ is also infinite coin tossing, as well as $\left(\beta_{2}, \beta_{4}, \ldots\right)$, and the two sequences are independent.

Y: Does it mean that the evident distinction between dimensions is an illusion?
\mathbf{N} : The interval and the square are different (non-isomorphic) as topological spaces, but identical (isomorphic) as probability spaces.

Here are 2-dim counterparts of 3d1, 3d3,
5a14 Definition. A function $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is called a Borel function, if

$$
\forall z \in \mathbb{R} \quad\left\{(x, y) \in \mathbb{R}^{2}: \varphi(x, y) \leq z\right\} \in \mathcal{B}_{2}
$$

or equivalently, if for every one-dimensional Borel set $B \subset \mathbb{R}$ its inverse image $\varphi^{-1}(B)=$ $\left\{(x, y) \in \mathbb{R}^{2}: \varphi(x, y) \in B\right\}$ is a two-dimensional Borel set. ${ }^{58}$
5a15 Exercise. If $X, Y: \Omega \rightarrow \mathbb{R}$ are random variables and $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a Borel function then the function $Z: \Omega \rightarrow \mathbb{R}$ defined by $\forall \omega Z(\omega)=\varphi(X(\omega), Y(\omega))$ is also a random variable. Prove it. (Hint: recall 3d4 use 5a4 instead of 2d1.)
5 a16 Exercise. Every continuous function $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a Borel function. Prove it. (Hint: similar to 3d5, $)^{59}$ Apply it to functions

$$
\begin{array}{ll}
\varphi(x, y)=x & \varphi(x, y)=x+y \\
\varphi(x, y)=y & \varphi(x, y)=x y
\end{array}
$$

and others. Reconsider Proposition 3d9,
5a17 Exercise. Generalize 3d9, 3d10 and 3d11 for dimension 2.
Here are 2-dim counterparts of 3d14 and (4e5).
5 a18 Exercise. Let $P_{X, Y}=P_{U, V}$, and $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a Borel function. Then random variables $\varphi(X, Y)$ and $\varphi(U, V)$ are identically distributed. Prove it. (Hint: find $P_{\varphi(X, Y)}$ in terms of $P_{X, Y}$.)
5a19 Exercise. For any Borel function $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
\mathbb{E} \varphi(X, Y)=\iint_{\mathbb{R}^{2}} \varphi d P_{X, Y}
$$

(a number, or $-\infty$, or $+\infty$, or $\infty-\infty$). Prove it. (Hint: similar to (4e5).)

[^1]
5b Densities in dimension 2 (and more)

As was said in Sect. [2d, a density is defined in terms of integration. You surely guess that a 2 -dim density will be defined in terms of 2-dim integration. Fortunately, we are now acquainted with Lebesgue integration; being fairly general, it works also on the plane \mathbb{R}^{2}. Namely, according to (4d5),

$$
\begin{equation*}
\iint_{B} f(x, y) d x d y=\int_{0}^{\infty} \operatorname{mes}_{2}\{(x, y) \in B: f(x, y)>z\} d z \in[0,+\infty] \tag{5b1}
\end{equation*}
$$

for any Borel set $B \subset \mathbb{R}^{2}$ and any Borel function $f: B \rightarrow[0, \infty)$.

5b2 Exercise.

$$
\iint_{B} f(x, y) d x d y=\iint_{\mathbb{R}^{2}} f(x, y) \mathbf{1}_{B}(x, y) d x d y
$$

where $\mathbf{1}_{B}$ is the indicator of B. Prove it.
5b3 Definition. A Borel function $f: \mathbb{R}^{2} \rightarrow[0, \infty)$ is called a density of (the distribution of) a two-dimensional random variable (X, Y), or a joint density of X, Y, if

$$
P_{X, Y}(B)=\iint_{B} f(x, y) d x d y
$$

for all Borel sets $B \subset \mathbb{R}^{2}$.
Here are 2-dim counterparts of 4d14, 4d15 and (4c4).
5b4 Proposition. If a 2-dim distribution P has a density f then

$$
\iint_{\mathbb{R}^{2}} \varphi d P=\iint_{\mathbb{R}^{2}} \varphi(x, y) f(x, y) d x d y
$$

for any Borel function $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Both integrals are Lebesgue integrals. The four cases (a number, $-\infty,+\infty, \infty-\infty$) for the former integral correspond to the four cases for the latter integral. ${ }^{60}$
5b5 Corollary. If X, Y have a joint density $f_{X, Y}$ then

$$
\mathbb{E}(X Y)=\iint_{\mathbb{R}^{2}} x y f_{X, Y}(x, y) d x d y
$$

(the four cases correspond...)
5b6 Proposition. Let $f: \mathbb{R}^{2} \rightarrow[0, \infty)$ be a Borel function such that $\iint_{\mathbb{R}^{2}} f(x, y) d x d y=1$. Then the function $P_{f}: \mathcal{B}_{2} \rightarrow[0,1]$ defined by

$$
P_{f}(B)=\iint_{B} f(x, y) d x d y
$$

is a probability measure on $\left(\mathbb{R}^{2}, \mathcal{B}_{2}\right)$.

[^2]5b7 Corollary. For every Borel function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying

$$
\begin{gathered}
\forall(x, y) \in \mathbb{R}^{2} \quad f(x, y) \geq 0 \\
\iint_{\mathbb{R}^{2}} f(x, y) d x d y=1
\end{gathered}
$$

there is one and only one two-dimensional distribution P such that f is a density of P.
5b8 Exercise. (a) Explain, why 5b7 being formulated as a 2-dim counterpart of 2e12 results from quite different arguments. (You see, 5 b 6 is not at all parallel to 2e11 or 2e10].
(b) Reconsider 2c1] and 2e12 in the light of 5b3 and 5b7, (Be informed that Proposition 5 b 6 holds not only for the dimension $d=2$, but also for $d=1$, and in fact for all $d=$ $1,2,3, \ldots$)

5b9 Exercise. P_{f} (defined in 5b6) determines f uniquely up to (a change on) a set of measure 0. That is, if $\iint_{B} f_{1}(x, y) d x d y=\iint_{B} f_{2}(x, y) d x d y$ for all $B \in \mathcal{B}_{2}$ then $f_{1}(x, y)=$ $f_{2}(x, y)$ for all $(x, y) \in \mathbb{R}^{2}$ except (maybe) for a set of measure 0 . Prove it. (Hint: consider $B=\left\{(x, y): f_{1}(x, y)>f_{2}(x, y)\right\}$ and show that mes $_{2} B=0$; the same for $f_{1}(x, y)<f_{2}(x, y)$.)
5b10 Exercise. Let $f_{X, Y}$ be a density for $(X, Y), B \subset \mathbb{R}^{2}$ a Borel set, $0 \leq a \leq b<\infty$ and

$$
\forall(x, y) \in B \quad a \leq f_{X, Y}(x, y) \leq b
$$

Then

$$
a \operatorname{mes}_{2} B \leq \mathbb{P}((X, Y) \in B) \leq b \operatorname{mes}_{2} B .
$$

Prove it. (Hint: use monotonicity of Lebesgue integral, stated in Sect. 4d)
5b11 Exercise. Let $f_{X, Y}$ be a density of (X, Y). Assume that $f_{X, Y}$ is continuous at a point (x, y). Then

$$
f_{X, Y}(x, y)=\lim _{\varepsilon \rightarrow 0} \frac{1}{4 \varepsilon^{2}} \mathbb{P}(x-\varepsilon<X<x+\varepsilon, y-\varepsilon<Y<y+\varepsilon) .
$$

Prove it. (Hint: use 5b10.) What about disks instead of squares?
5b12 Exercise. Formulate and prove one-dimensional counterparts to 5 b10 and 5 b11.
All said (in Sect. 5b) about dimension 2 holds for all dimensions $d=1,2,3, \ldots$ You can easily formulate such generalizations.

5c Relations between dimensions 1 and 2 (and more)

These relations will be considered for Borel sets and functions, for distributions, Lebesgue integrals, and densities.
$\mathbf{5 c} \mathbf{1}$ Exercise. If $B_{1}, B_{2} \subset \mathbb{R}$ are (1-dim) Borel sets then their product

$$
B=B_{1} \times B_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x \in B_{1}, y \in B_{2}\right\}
$$

is a (2-dim) Borel set. Prove it. (Hint: note that $B_{1} \times B_{2}=\left(B_{1} \times \mathbb{R}\right) \cap\left(\mathbb{R} \times B_{2}\right)$; recall 5a16 for $\varphi(x, y)=x$ and $\varphi(x, y)=y$.)

5 c 2 Exercise. If $B \subset \mathbb{R}^{2}$ is a (2-dim) Borel set then for every $x \in \mathbb{R}$ the section

$$
B_{x}=\{y \in \mathbb{R}:(x, y) \in B\}
$$

is a (1-dim) Borel set. ${ }^{61}$ Prove it. (Hint: define Borel functions $\mathbb{R} \rightarrow \mathbb{R}^{2}$; show that the (continuous) embedding $\mathbb{R} \ni y \mapsto(x, y) \in \mathbb{R}^{2}$ is a Borel function.)

5c3 Exercise. If $\varphi_{1}, \varphi_{2}: \mathbb{R} \rightarrow \mathbb{R}$ are Borel functions, then functions

$$
\begin{array}{rlrl}
(x, y) & \mapsto \varphi_{1}(x), & & (x, y) \mapsto \varphi_{1}(x)+\varphi_{2}(y) \\
(x, y) \mapsto \varphi_{2}(y), & & (x, y) \mapsto \varphi_{1}(x) \varphi_{2}(y)
\end{array}
$$

are Borel functions $\mathbb{R}^{2} \rightarrow \mathbb{R}$. Prove it.
5c4 Exercise. If $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a Borel function then for every $x \in \mathbb{R}$ the section

$$
\varphi_{x}: \mathbb{R} \rightarrow \mathbb{R}, \quad \varphi_{x}(y)=\varphi(x, y)
$$

is a Borel function.
We turn to distributions. A 2-dim distribution $P_{X, Y}$ determines uniquely 1-dim distributions P_{X}, P_{Y} by

$$
\begin{equation*}
P_{X}(B)=P_{X, Y}(B \times \mathbb{R}), \quad P_{Y}(B)=P_{X, Y}(\mathbb{R} \times B) \tag{5c5}
\end{equation*}
$$

(think, why). Thus, P_{X}, P_{Y} are marginal distributions, as defined below.
5c6 Definition. Given a two-dimensional distribution P, its marginal distributions P_{1}, P_{2} are one-dimensional distributions defined by

$$
\forall B \in \mathcal{B} \quad P_{1}(B)=P(B \times \mathbb{R}), \quad P_{2}(B)=P(\mathbb{R} \times B)
$$

5c7 Exercise. These P_{1}, P_{2} are indeed distributions (that is, probability measures on $(\mathbb{R}, \mathcal{B})$). Prove it. (Hint: $\left(B_{1} \cup B_{2}\right) \times \mathbb{R}=\left(B_{1} \times \mathbb{R}\right) \cup\left(B_{2} \times \mathbb{R}\right)$, etc.)

5c8 Exercise. Marginal distribution functions F_{X}, F_{Y} are determined by the joint distribution function $F_{X, Y}$ as follows:

$$
\begin{aligned}
& F_{X}(x)=F_{X, Y}(x,+\infty)=\lim _{y \rightarrow \infty} F_{X, Y}(x, y), \\
& F_{Y}(y)=F_{X, Y}(+\infty, y)=\lim _{x \rightarrow \infty} F_{X, Y}(x, y)
\end{aligned}
$$

Prove it.
As was noted, a 2-dim distribution is not uniquely determined by its marginal distributions (see 5a10).

[^3]5c9 Exercise. If a marginal distribution F_{X} is non-atomic, then a joint distribution $F_{X, Y}$ is also non-atomic. Prove it. The converse is false. Find a counterexample. What about supports?

We turn now to integrals. Formula (5b1) is not a practical way of calculating 2-dim integrals; the integrand $\operatorname{mes}_{2}\{\ldots\}$, usually the area of a domain, is not easy to calculate. Fortunately, 2-dim integration can be reduced to 1-dim integration (applied twice) by an important theorem (due to Fubini).

First, note a traditional notation for the integral of a section $f_{x}: \mathbb{R} \rightarrow \mathbb{R}$ of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ (you know, $\left.f_{x}(y)=f(x, y)\right)$:

$$
\int_{-\infty}^{+\infty} f_{x}(y) d y=\int_{-\infty}^{+\infty} f(x, y) d y
$$

the integral is a function of x only. Note that

$$
\begin{equation*}
\int_{-\infty}^{+\infty} f(x, y) g(x) d y=g(x) \int_{-\infty}^{+\infty} f(x, y) d y \tag{5c10}
\end{equation*}
$$

indeed, the section $f(x, \cdot) g(x)$ is the number $g(x)$ times the function $f(x, \cdot)$.
5 c 11 Theorem. (Fubini) For every Borel function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$,
(a)

$$
\iint_{\mathbb{R}^{2}}|f(x, y)| d x d y=\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty}|f(x, y)| d y\right) d x \in[0, \infty]
$$

the internal integral being a Borel function $\mathbb{R} \rightarrow[0,+\infty]$ (of x); if the integral (a) is finite, then

$$
\begin{equation*}
\iint_{\mathbb{R}^{2}} f(x, y) d x d y=\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d y\right) d x \in \mathbb{R} \tag{b}
\end{equation*}
$$

the internal integral coinciding almost everywhere with a Borel function $\mathbb{R} \rightarrow \mathbb{R}$ (of $x)$.
Think about the area under a graph...
5c12 Exercise. Consider the disk $B=\left\{(x, y): x^{2}+y^{2} \leq 1\right\} \subset \mathbb{R}^{2}$. For any Borel function $f: \mathbb{R}^{2} \rightarrow[0, \infty)$,

$$
\iint_{B} f(x, y) d x d y=\int_{-1}^{+1}\left(\int_{-\sqrt{1-x^{2}}}^{+\sqrt{1-x^{2}}} f(x, y) d y\right) d x
$$

Prove it. (Hint: apply Fubini theorem to the function $f \mathbf{1}_{B}$, where $\mathbf{1}_{B}$ is the indicator of B.) What about $f: \mathbb{R}^{2} \rightarrow \mathbb{R}($ rather than $[0, \infty)$)?

5 c 13 Exercise. Let $-\infty \leq a<b \leq \infty$. For every Borel function $f:(a, b) \rightarrow[0, \infty)$,

$$
\int_{a}^{b} f(x) d x=\operatorname{mes}_{2}\{(x, y): x \in(a, b), 0 \leq y \leq f(x)\}
$$

Prove it. (Hint: apply Fubini theorem to the indicator of the two-dimensional set.)

5c14 Theorem. Let random variables X, Y have a joint density $f_{X, Y}$. Then X and Y have densities f_{X}, f_{Y}, and

$$
f_{X}(x)=\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d y, \quad f_{Y}(y)=\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d x
$$

almost everywhere.
Proof. We have to prove that $P_{X}(B)=\int_{B} f_{X}(x) d x$, and the same for Y. We use (5c5), 5b2 Fubini theorem and (5c10):

$$
\begin{aligned}
& P_{X}(B)=P_{X, Y}(B \times \mathbb{R})=\iint_{B \times \mathbb{R}} f_{X, Y}(x, y) d x d y= \\
& \quad=\iint_{\mathbb{R}^{2}} \mathbf{1}_{B \times \mathbb{R}}(x, y) f_{X, Y}(x, y) d x d y=\iint_{\mathbb{R}^{2}} \mathbf{1}_{B}(x) f_{X, Y}(x, y) d x d y= \\
& =\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} \mathbf{1}_{B}(x) f_{X, Y}(x, y) d y\right) d x=\int_{-\infty}^{+\infty} \mathbf{1}_{B}(x)\left(\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d y\right) d x= \\
& =\int_{B} f_{X}(x) d x
\end{aligned}
$$

and the same for Y.
All said (in Sect. 5c) about dimensions 1 and 2 holds also for other dimensions. You can easily formulate such generalizations.

5d Independence

5d1 Definition. Random variables $X, Y: \Omega \rightarrow \mathbb{R}$ are independent, if

$$
\mathbb{P}(X \in A, Y \in B)=\mathbb{P}(X \in A) \mathbb{P}(Y \in B)
$$

for all Borel sets $A, B \subset \mathbb{R}$.
For discrete X, Y independence is evidently possible. For continuous X, Y, say, $X, Y \sim$ $\mathrm{U}(0,1)$, independence can be reached on the 'one-dimensional' probability space $(0,1)$ (recall the end of Sect. 5a). However, the 'two-dimensional' probability space $(0,1) \times(0,1)$ is much more natural here. (And do not think that X^{*}, Y^{*} are independent!)

Given any two increasing functions $X^{*}, Y^{*}:(0,1) \rightarrow \mathbb{R}$, we may construct

$$
\begin{align*}
& X(\omega)=X\left(\omega_{1}, \omega_{2}\right)=X^{*}\left(\omega_{1}\right), \\
& Y(\omega)=Y\left(\omega_{1}, \omega_{2}\right)=Y^{*}\left(\omega_{2}\right), \tag{5~d2}
\end{align*}
$$

then X, Y are random variables on $\Omega=(0,1) \times(0,1)$ (with 2-dim Lebesgue measure, of course).

5d3 Exercise. Prove that X^{*} is a quantile function for X defined by (5d2). The same for Y. Prove that $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$. (Hint: $\{\omega: X(\omega) \leq x\}$ is of the form $\left(0, p_{1}\right) \times(0,1)$ or $\left(0, p_{1}\right] \times(0,1)$. $)$

We see that X, Y of (5d2) satisfy 5 d 1 for the special case of $A=(-\infty, x], B=(-\infty, y]$. The general case needs a lemma. (Note that in general, the product of two integrable functions need not be integrable.)
5d4 Lemma. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be integrable Borel functions. Then

$$
\iint_{\mathbb{R}^{2}} f(x) g(y) d x d y=\left(\int_{\mathbb{R}} f(x) d x\right)\left(\int_{\mathbb{R}} g(y) d y\right) .
$$

Proof. We apply Fubini theorem and (5c10): ${ }^{62}$

$$
\begin{aligned}
& \iint_{\mathbb{R}^{2}} f(x) g(y) d x d y=\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(x) g(y) d y\right) d x= \\
&=\int_{\mathbb{R}}(f(x) \underbrace{\int_{\mathbb{R}} g(y) d y}_{=\text {const }}) d x=\left(\int_{\mathbb{R}} g(y) d y\right) \int_{\mathbb{R}} f(x) d x .
\end{aligned}
$$

5d5 Exercise. Prove that $\operatorname{mes}_{2}(A \times B)=(\operatorname{mes} A)(\operatorname{mes} B)$ for all Borel sets $A, B \subset \mathbb{R}$. (Hint: use 5d4 and 4d6)
5d6 Exercise. Prove that X, Y of (5d2) are independent. (Hint: use 5d5.)
5d7 Definition. The tensor product $P=P_{1} \otimes P_{2}$ of one-dimensional probability distributions P_{1}, P_{2} is the two-dimensional distribution P satisfying

$$
P(A \times B)=P_{1}(A) P_{2}(B)
$$

for all Borel sets $A, B \subset \mathbb{R}$.
5d8 Exercise. Prove that the definition is correct, that is, such P exists and is unique. (Hint: for the existence use (5d2) -5d6 for the uniqueness use (5a91).)
5 d 9 . So, the following conditions are equivalent:

- X, Y are independent;
- $P_{X, Y}=P_{X} \otimes P_{Y}$;
- $\forall x, y \quad F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$.

5d10 Exercise. Prove that random variables X, Y of (5a13) are independent. (Hint: $F_{X, Y}(x, y)=x y$ for all $x, y \in[0,1]$ of the form $k / 2^{n}$, therefore for all $x, y \in[0,1]$.)
5d11 Theorem. (a) Let random variables $X, Y: \Omega \rightarrow \mathbb{R}$ have densities f_{X}, f_{Y}. If X, Y are independent, then the joint density $f_{X, Y}$ exists, and

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \quad \text { almost everywhere. }
$$

(b) Let random variables $X, Y: \Omega \rightarrow \mathbb{R}$ have a joint density $f_{X, Y}$. If $f_{X, Y}(x, y)$ can be written in the form $g(x) h(y)$ for some $g, h: \mathbb{R} \rightarrow \mathbb{R}$ then X, Y are independent.

[^4]Proof. (a) The function $f(x, y)=f_{X}(x) f_{Y}(y)$ is a 2-dim density, since $\int f(x, y) d x d y=$ $\left(\int f_{X}(x) d x\right)\left(\int f_{Y}(y) d y\right)=1$ (recall 5d4). The corresponding 2-dim distribution P_{f} satisfies

$$
\begin{aligned}
P_{f}(A \times B)=\iint_{A \times B} f(x, y) d x d y=\iint_{\mathbb{R}^{2}} \mathbf{1}_{A}(x) \mathbf{1}_{B}(y) f_{X}(x) f_{Y}(y) d x d y= \\
=\left(\int_{\mathbb{R}} \mathbf{1}_{A}(x) f_{X}(x) d x\right)\left(\int_{\mathbb{R}} \mathbf{1}_{B}(y) f_{Y}(y) d y\right)=P_{X}(A) P_{Y}(B),
\end{aligned}
$$

which means that $P_{f}=P_{X} \otimes P_{Y}$. However, $P_{X} \otimes P_{Y}=P_{X, Y}$ due to independence. So, $P_{X, Y}=P_{f}$, which means that f is a joint density of X, Y.
(b) By 5c14 X and Y have densities f_{X}, f_{Y}, and ${ }^{63}$

$$
f_{X}(x)=\int f_{X, Y}(x, y) d y=\int g(x) h(y) d y=g(x) \int h(y) d y
$$

similarly, $f_{Y}(y)=h(y) \int g(x) d x$. It follows that $\left(\int g(x) d x\right)\left(\int h(y) d y\right)=1$. Therefore $f_{X}(x) f_{Y}(y)=g(x) h(y)=f_{X, Y}(x, y)$. It follows (as was seen in the proof of (a)) that

$$
\underbrace{\iint_{A \times B} f_{X, Y}(x, y) d x d y}_{P_{X, Y}(A \times B)}=P_{X}(A) P_{Y}(B)
$$

which means that X, Y are independent.
5d12 Theorem. $\mathbb{E}(X Y)=(\mathbb{E} X)(\mathbb{E} Y)$ for any independent integrable random variables X, Y.

Proof. Due to 5a18 we may restrict ourselves to the model of (5d2):

$$
\begin{gathered}
(\Omega, \mathcal{F}, P)=\left((0,1) \times(0,1),\left.\mathcal{B}_{2}\right|_{(0,1) \times(0,1)},\left.\operatorname{mes}_{2}\right|_{(0,1) \times(0,1)}\right) \\
X(\omega)=X\left(\omega_{1}, \omega_{2}\right)=X^{*}\left(\omega_{1}\right) \\
Y(\omega)=Y\left(\omega_{1}, \omega_{2}\right)=Y^{*}\left(\omega_{2}\right)
\end{gathered}
$$

We apply 5d4

$$
\begin{aligned}
& \mathbb{E}(X Y)=\int_{\Omega} X Y d P=\iint_{(0,1) \times(0,1)} X\left(\omega_{1}, \omega_{2}\right) Y\left(\omega_{1}, \omega_{2}\right) d \omega_{1} d \omega_{2}= \\
& \iint_{(0,1) \times(0,1)} X^{*}\left(\omega_{1}\right) Y^{*}\left(\omega_{2}\right) d \omega_{1} d \omega_{2}=\left(\int_{0}^{1} X^{*}\left(\omega_{1}\right) d \omega_{1}\right)\left(\int_{0}^{1} Y^{*}\left(\omega_{2}\right) d \omega_{2}\right)=(\mathbb{E} X)(\mathbb{E} Y) .
\end{aligned}
$$

In terms of distributions,

$$
\iint x y d\left(P_{X} \otimes P_{Y}\right)=\left(\int x d P_{X}\right)\left(\int y d P_{Y}\right) .
$$

[^5]In terms of densities, if they exist,

$$
\iint x y \underbrace{f_{X, Y}(x, y)}_{=f_{X}(x) f_{Y}(y)} d x d y=\left(\int x f_{X}(x) d x\right)\left(\int y f_{Y}(y) d y\right)
$$

compare it with 5d4
5d13 Lemma. Let X, Y be random variables, and $\varphi, \psi: \mathbb{R} \rightarrow \mathbb{R}$ Borel functions. If X and Y are independent then $\varphi(X)$ and $\psi(Y)$ are independent.
Proof.

$$
\begin{aligned}
& \mathbb{P}(\varphi(X) \in A, \psi(Y) \in B)=\mathbb{P}\left(X \in \varphi^{-1}(A), Y \in \psi^{-1}(B)\right)= \\
& \quad=\mathbb{P}\left(X \in \varphi^{-1}(A)\right) \mathbb{P}\left(Y \in \psi^{-1}(B)\right)=\mathbb{P}(\varphi(X) \in A) \mathbb{P}(\psi(Y) \in B)
\end{aligned}
$$

5d14 Corollary. $\mathbb{E}(\varphi(X) \psi(Y))=(\mathbb{E} \varphi(X))(\mathbb{E} \psi(Y))$ for any independent random variables X, Y and Borel functions φ, ψ such that $\varphi(X)$ and $\psi(Y)$ are integrable.
5 d 15 Note. If they are not integrable, the formula still holds under appropriate conventions: $(+\infty) \cdot(+\infty)=+\infty,(-\infty) \cdot(+\infty)=-\infty$, (a positive number) $\cdot(+\infty)=+\infty$, (a positive number) $\cdot(\infty-\infty)=\infty-\infty$, etc. (Think, however: what about $0 \cdot \infty$?)

All said (in Sect. 5d) about dimension 2 holds for all dimensions $d=2,3, \ldots$ You can easily formulate such generalizations. (Do not confuse independence of X_{1}, \ldots, X_{n} with their pairwise independence.)

5e Independence of infinite sequences

5e1 Definition. (a) Random variables $X_{1}, X_{2}, \cdots: \Omega \rightarrow \mathbb{R}$ are independent, if X_{1}, \ldots, X_{n} are independent for each n.
(b) Events $A_{1}, A_{2}, \cdots \subset \Omega$ are independent, if their indicators $\mathbf{1}_{A_{1}}, \mathbf{1}_{A_{2}}, \ldots$ are independent random variables.

That is, (a) means

$$
\mathbb{P}\left(X_{1} \in B_{1}, \ldots, X_{n} \in B_{n}\right)=\mathbb{P}\left(X_{1} \in B_{1}\right) \ldots \mathbb{P}\left(X_{n} \in B_{n}\right)
$$

for all n and all Borel sets $B_{1}, \ldots, B_{n} \subset \mathbb{R}$.
Do not think that (b) requires just $\mathbb{P}\left(A_{1} \cap \cdots \cap A_{n}\right)=\mathbb{P}\left(A_{1}\right) \ldots \mathbb{P}\left(A_{n}\right)$ for all n. It requires also, say, $\mathbb{P}\left(A_{1} \cap \overline{A_{2}} \cap A_{3}\right)=\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(\overline{A_{2}}\right) \mathbb{P}\left(A_{3}\right)$, etc. (Of course, $\bar{A}=\Omega \backslash A$ and $\mathbb{P}(\bar{A})=1-\mathbb{P}(A)$.)

Infinite random sequences often are defined on infinite-dimensional probability spaces, but they can be defined on $(0,1)$ by a trick that generalizes (5a13)):

$$
\begin{equation*}
(0,1) \ni \omega=\left(0 . \beta_{1} \beta_{2} \beta_{3} \ldots\right)_{2} ; \tag{5e2}
\end{equation*}
$$

$$
\begin{aligned}
& X_{1}(\omega)=\left(0 . \beta_{1} \beta_{3} \beta_{5} \ldots\right)_{2} \\
& X_{2}(\omega)=\left(0 . \beta_{2} \beta_{6} \beta_{10} \ldots\right)_{2} \\
& X_{3}(\omega)=\left(0 . \beta_{4} \beta_{12} \beta_{20} \ldots\right)_{2}
\end{aligned}
$$

[^0]: ${ }^{56}$ Both are defined on the same probability space (Ω, \mathcal{F}, P).
 ${ }^{57}$ You may think about $F_{X, Y}(x, y)=x y$ and $F_{X, Y}(x, y)=1-(1-x)(1-y)$ for $x, y \in(0,1)$. The former is possible, but the latter is not. Do you understand, why?

[^1]: ${ }^{58}$ Thus, 5 a14 is not only a definition but also a statement (generalizing 3d2).
 ${ }^{59}$ It was stated in $1 f 10$ without proof, that all open sets (and all closed sets) in \mathbb{R}^{2} (and \mathbb{R}^{d}) are Borel sets. Here is a hint toward a proof. Let $U \subset \mathbb{R}^{2}$ be open. Consider all rectangles $(a, b) \times(c, d)$ such that a, b, c, d are rational numbers, and $(a, b) \times(c, d) \subset U$. The set of such rectangles is countable, and their union is equal to U.

[^2]: ${ }^{60} \mathrm{~A}$ hint toward a proof (if you are curious). First, check the equality for 'simple' φ (that is, taking on only a finite number of values). Second, a 'sandwich argument' extends the equality to bounded φ. Last, use a limiting procedure for unbounded φ.

[^3]: ${ }^{61}$ The converse is wrong. Say, for an arbitrary one-to-one function $\mathbb{R} \rightarrow \mathbb{R}$ its graph has single-point sections (in both variables) but need not be a Borel set.

[^4]: ${ }^{62}$ First, we apply Fubini theorem to $|f(x)|$ and $|g(y)|$, in order to check integrability. After that, we apply it again, to $f(x)$ and $g(y)$.

[^5]: ${ }^{63}$ Equalities for densities hold almost everywhere, as usual. Note that g, h are Borel functions, by [5c4]

