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7 Joint distributions: conditioning, correlation, and

transformations

7a Conditioning in terms of densities

Discrete probability states that

P
(
Y = y

∣
∣X = x

)
=

P
(
Y = y,X = x

)

P
(
X = x

) ,(7a1)

P
(
X = x

)
=

∑

y

P
(
X = x, Y = y

)
,(7a2)

that is,

pY |X=x(y) =
pX,Y (x, y)

pX(x)
,(7a3)

pX(x) =
∑

y

pX,Y (x, y) .(7a4)

Continuous probability, assuming existence of fX,Y (2-dim density), states that
fX(x) =

∫
fX,Y (x, y) dy (recall 5c14), which is a continuous counterpart of (7a4). The

following definition is a natural continuous counterpart of (7a3).

7a5 Definition. Let random variables X, Y have a joint density fX,Y . The conditional

density of Y given X = x is

fY |X=x(y) =
fX,Y (x, y)

fX(x)

whenever fX(x) 6= 0.98

7a6 Exercise. Let fX,Y be continuous at (x0, y0), and fX be continuous at x0, and fX(x0) >
0. Then

fY |X=x0
(y0) = lim

ε→0,δ→0

1

2δ
P

(
y0 − δ < Y < y0 + δ

∣
∣ x0 − ε < X < x0 + ε

)
.

Prove it. (Hint: recall 5b11.)

7a7 Example. Let (X, Y ) be distributed uniformly on the disk {(x, y) ∈ R2 : x2 + y2 ≤ 1}.
Then the conditional density of Y given X = x is the density of the uniform distribution on
(−

√
1 − x2,+

√
1 − x2) whenever x ∈ (−1,+1).

The conditional density fY |X=x satisfies the two conditions, ∀y fY |X=x(y) ≥ 0 and
∫ +∞
−∞ fY |X=x(y) dy = 1; by 2e12, it is a density of a one-dimensional distribution; the lat-

ter is denoted by PY |X=x and called the conditional distribution of Y given X = x. As

98Existence of fX is ensured by 5c14; fX(x) =
∫

fX,Y (x, y) dy.
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any other 1-dim distribution, it has a (cumulative) distribution function — the conditional

distribution function

(7a8) FY |X=x(y) =

∫ y

−∞
fY |X=x(y1) dy1 ,

a quantile function — the conditional quantile function

(7a9) Y ∗ ( p |X = x ) ,

an expectation (if exists) — the conditional expectation

(7a10) E
(
Y

∣
∣X = x

)
=

∫ +∞

−∞
yfY |X=x(y) dy =

∫ +∞

−∞
y dFY |X=x(y) =

∫ 1

0

Y ∗(p|X = x) dp .

Some of them are functions of y, others are not, but anyway, they all are functions of x.
Substituting X for x, we get random variables (functions of X), namely, the conditional
density

(7a11) fY |X(y) =
fX,Y (X, y)

fX(X)

(note that the denominator is non-zero with probability 1), the conditional distribution
function

(7a12) FY |X(y) =

∫ y

−∞
fY |X(y1) dy1 ,

the conditional quantile function

(7a13) Y ∗ ( p |X ) ,

the conditional expectation

(7a14) E
(
Y

∣
∣X

)
=

∫ +∞

−∞
yfY |X(y) dy =

∫ +∞

−∞
y dFY |X(y) =

∫ 1

0

Y ∗(p|X) dp .

7a15 Exercise. For X, Y as in 7a7 show that

fY |X(0) =
1

2
√

1 −X2
; fY |X

(√
3

2

)

=
1

2
√

1 −X2
1(−1/2,1/2)(X) ;

FY |X(0) =
1

2
; FY |X

(√
3

2

)

=

{√
3/2+

√
1−X2

2
√

1−X2
when X ∈ (−1/2, 1/2),

1 otherwise;

Y ∗(1
2
|X) = 0 ; Y ∗(3

4
|X) = 1

2

√
1 −X2 ;

E
(
Y

∣
∣X

)
= 0 .

Find the support for each of these 7 random variables.
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Bayes formula,

P
(
A

∣
∣B

)
=

P
(
B

∣
∣A

)
P

(
A

)

P
(
B

) ,

well-known in discrete probability, has a continuous counterpart:

(7a16) fX|Y =y(x) =
fY |X=x(y)fX(x)

fY (y)

(follows immediately from 7a5).
All said (in Sect. 7a) about dimensions 1 and 2 holds also for other dimensions. You can

easily formulate such generalizations. (However, Y ∗ works only for one-dimensional Y .)

7b Conditioning in general

For now, conditioning is defined for two cases separately: discrete two-dimensional distri-
butions, and distributions having two-dimensional densities. It would be more satisfactory
to treat these two cases as special cases of a general definition. Also, some important two-
dimensional distributions are intractable for now. Namely, let X have a density but Y be
discrete. Then their joint distribution cannot be discrete (since X is not discrete), and
cannot have a two-dimensional density (since Y has no density, recall 5c14).

A general approach to conditioning is based on the following idea. Given two random
variables X, Y , we try to find another random variable U such that X,U are independent
and Y is a function of X,U . Then, given X = x, the conditional distribution of Y is
obtained from the (conditional = unconditional) distribution of U by a (one-dimensional)
transformation.

How to find the needed representation Y = ϕ(X,U) ? It may be done via the conditional
quantile function.

We try it first on a very simple discrete case,

X 0 0 1 1
Y 0 1 0 1

probability p00 p01 p10 p11

with some positive probabilities pkl. Discrete probability gives us the conditional distribution
of Y given X = 0,

P
(
Y = 0

∣
∣X = 0

)
=
p00

p0
,

P
(
Y = 1

∣
∣X = 0

)
=
p01

p0
,

p0 = p00 + p01 = P
(
X = 0

)
.

The corresponding quantile function is

Y ∗ ( p |X = 0 ) =

{

0 if p < p00/p0,

1 if p > p00/p0.
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Similarly,

Y ∗ ( p |X = 1 ) =

{

0 if p < p10/p1,

1 if p > p10/p1,

p1 = p10 + p11 = P
(
X = 1

)
. We introduce U ∼ U(0, 1) independent of X and

Ỹ = ϕ(X,U) = Y ∗ (U |X ) ,

that is, ϕ(0, u) = Y ∗ ( u |X = 0 ) and ϕ(1, u) = Y ∗ ( u |X = 1 ). The joint distribution
of X, Ỹ is equal to the joint distribution of X, Y . For example, P

(
X = 0, Ỹ = 0

)
=

P
(
X = 0

)
P

(
U < p00/p0

)
= p0 · p00/p0 = p00 = P

(
X = 0, Y = 0

)
. The (unconditional)

distribution of ϕ(0, U) is equal to the conditional distribution of Y givenX = 0. For example,
P

(
ϕ(0, U) = 0

)
= P

(
U < p00/p0

)
= P

(
Y = 0

∣
∣X = 0

)
. And the (unconditional)

distribution of ϕ(1, U) is equal to the conditional distribution of Y given X = 1.
Similarly, the general approach conforms to the elementary (discrete) approach for every

discrete two-dimensional distribution. You may say: no real progress here, we still used
our old good discrete conditioning. Yes, we did, but it is also possible to do from scratch.
Namely, we may seek two thresholds a, b such that, defining Ỹ by

Ỹ = ϕ(X,U) ,

ϕ(0, u) =

{

0 if u < a,

1 if u > a,

ϕ(1, u) =

{

0 if u < b,

1 if u > b,

we get the joint distribution of (X, Ỹ ) the same as of (X, Y ).

7b1 Exercise. Prove that the two joint distributions are equal if and only if a = p00/p0,
b = p10/p1.

The general approach will give us new results soon (in 7c). Before that, however, we try
it on the second old case. Let X, Y have a two-dimensional density

fX,Y (·, ·) ,

then we have the conditional density 7a5 and the conditional quantile function (7a9),

Y ∗ ( p |X = x ) .

As before, we introduce U ∼ U(0, 1) independent of X and

Ỹ = ϕ(X,U) = Y ∗ (U |X ) .

In order to prove that (X, Ỹ ) is distributed like (X, Y ) it is sufficient to check that FX,Ỹ =
FX,Y . The probability

FX,Ỹ (x, y) = P
(
X ≤ x, Ỹ ≤ y

)
= P

(
X ≤ x, Y ∗(U |X) ≤ y

)
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may be calculated by means of the joint density of X and U ,

fX,U(x, u) = fX(x)fU(u) , fU(u) = 1 for u ∈ (0, 1) .

We integrate fX,U on the set

B = {(x1, u) : x1 ≤ x, Y ∗(u|X = x1) ≤ y} .
First, we keep x1 ∈ (−∞, x] fixed and integrate in u,

∫

Bx1

fU(u) du = P
(
Y ∗(·|X = x1) ≤ y

)
= FY |X=x1

(y) =

∫ y

−∞ fX,Y (x1, y1) dy1

fX(x1)
.

Second, we integrate it in x1,

FX,Ỹ (x, y) =

∫∫

B

fX,U(x1, u) dx1du =

∫ x

−∞

( ∫

Bx1

fU(u) du

)

fX(x1) dx1 =

∫ x

−∞

( ∫ y

−∞
fX,Y (x1, y1) dy1

)

dx1 = FX,Y (x, y) .

We see that (X, Ỹ ) is distributed like (X, Y ). The (unconditional) distribution of ϕ(x, U)
has the density fY |X=x, it is the conditional distribution of Y given X = x. Thus, the general
approach conforms to the approach of 7a whenever a two-dimensional density exists.

We see that the general approach is consistent with the two special cases. The following
result shows self-consistency of the general approach: conditional distributions do not depend
on the choice of the representation Ỹ = ϕ(X,U).

7b2 Proposition. Let Y1 = ϕ1(X1, U1) and Y2 = ϕ2(X2, U2), where ϕ1, ϕ2 : R2 → R are
Borel functions, X1, U1 : Ω1 → R are independent random variables, and X2, U2 : Ω2 → R

are independent random variables. If the two pairs (X1, Y1) and (X2, Y2) are identically
distributed, then

ϕ1(x, U1) and ϕ2(x, U2) are identically distributed

for almost all x w.r.t. the distribution PX1
= PX2

.

Universal applicability of the general approach is ensured by the following result.

7b3 Proposition. For every two-dimensional distribution P there exist independent random
variablesX,U and a Borel function ϕ : R2 → R such that the pair

(
X,ϕ(X,U)

)
is distributed

P .

Moreover, it is always possible to choose U ∼ U(0, 1) and ϕ(x, u) increasing in u (for
every x); then ϕ(x, u) = Y ∗ ( u |X = x ).

Taking 7b2 and 7b3 into account we may define conditioning as follows.

7b4 Definition. (a) Let P be a two-dimensional distribution. Its conditional distribution
Px is the distribution of ϕ(x, U) where a Borel function ϕ : R2 → R and independent random
variables X,U are chosen such that the pair

(
X,ϕ(X,U)

)
is distributed P .

(b) Let X, Y : Ω → R be random variables. The conditional distribution PY |X=x is Px

where P = PX,Y .

Similarly to densities, conditional distributions are defined up to an arbitrary change on
a negligible set (of x).
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7c Combining discrete and continuous

We consider a pairX, Y of random variables, X (continuous) and Y (discrete). For simplicity
we assume that Y takes on two values 0, 1 only, equiprobably,

P
(
Y = 0

)
=

1

2
= P

(
Y = 1

)
.

Conditioning on Y is elementary,

FX|Y =0(x) = P
(
X ≤ x

∣
∣Y = 0

)
=

P
(
X ≤ x, Y = 0

)

P
(
Y = 0

) = 2P
(
X ≤ x, Y = 0

)
;

FX|Y =1(x) = 2P
(
X ≤ x, Y = 1

)
.

We assume that these two distributions have densities,99

FX|Y =0(x) =

∫ x

−∞
fX|Y =0(x1) dx1 ,

FX|Y =1(x) =

∫ x

−∞
fX|Y =1(x1) dx1 .

Then X has (unconditional) density

fX(x) =
1

2
fX|Y =0(x) +

1

2
fX|Y =1(x) ;

indeed, FX(x) = P
(
X ≤ x

)
= P

(
Y = 0

)
P

(
X ≤ x

∣
∣Y = 0

)
+ P

(
Y = 1

)
P

(
X ≤ x

∣
∣Y =

1
)

=
∫ x

−∞ fX(x1) dx1 for fX as above.
What about conditional probabilities

P
(
Y = 0

∣
∣X = x

)
, P

(
Y = 1

∣
∣X = x

)
,

are they well-defined? How to calculate them? The elementary approach cannot answer,
since P

(
X = x

)
= 0 for all x.

We try the general approach of 7b:

Ỹ = ϕ(X,U) =

{

0 if U < g(X),

1 if U > g(X);

can we find g such that (X, Ỹ ) is distributed like (X, Y ) ?
We have (similarly to the second part of 7b)

FX,Y (x, 0) = P
(
X ≤ x, Y = 0

)
= P

(
Y = 0

)
P

(
X ≤ x

∣
∣Y = 0

)
=

1

2

∫ x

−∞
fX|Y =0(x1) dx1 ;

99It is sufficient that X has a (unconditional) density.
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FX,Ỹ (x, 0) = P
(
X ≤ x, Ỹ = 0

)
= P

(
X ≤ x, U < g(X)

)
=

=

∫ x

−∞

( ∫ g(x1)

0

fU(u) du

)

fX(x1) dx1 =

∫ x

−∞
g(x1)fX(x1) dx1 ;

they became equall (for all x) when

g(x) =
1

2

fX|Y =0(x)

fX(x)
.

The (unconditional) distribution of ϕ(x, U) gives us the conditional distribution of Y given
X = x:

P
(
Y = 0

∣
∣X = x

)
= P

(
ϕ(x, U) = 0

)
= P

(
U < g(x)

)
= g(x) .

So,

P
(
Y = 0

∣
∣X = x

)
=
fX|Y =0(x)P

(
Y = 0

)

fX(x)
,

which is another case of Bayes formula; compare it with (7a16).
The same holds for any discrete Y (taking on a finite or countable set of values):

fX(x) =
∑

y

P
(
Y = y

)
fX|Y =y(x) ;(7c1)

P
(
Y = y

∣
∣X = x

)
=
fX|Y =y(x)P

(
Y = y

)

fX(x)
.(7c2)

All said (in Sect. 7c) about dimensions 1 and 2 holds also for other dimensions. You can
easily formulate such generalizations. (However, Y ∗ works only for one-dimensional Y .)

7d Back to unconditional: total probability, expectation, density

Discrete probability states that

E
(
E

(
Y

∣
∣X

) )
= E (Y ) ,

that is, the expectation of Y may be calculated in two stages: first E
(
Y

∣
∣X

)
, second,

expectation of the first. Continuous probability states the same.

7d1 Theorem. Let X, Y be random variables, Y being integrable. Then the conditional
expectation E

(
Y

∣
∣X

)
exists with probability 1, is an integrable random variable, and

E
(
E

(
Y

∣
∣X

) )
= E (Y ) .

It follows immediately that

(7d2) E
(
E

(
ϕ(X, Y )

∣
∣X

) )
= E

(
ϕ(X, Y )

)

whenever ϕ(X, Y ) is integrable.
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On the other hand, let Y = 1A be the indicator of an event A ⊂ Ω; then E (Y ) = P
(
A

)
,

E
(
Y

∣
∣X

)
= P

(
A

∣
∣X

)
, and we get

(7d3) P
(
A

)
= E

(
P

(
A

∣
∣X

) )
;

expectation of the conditional probability is the unconditional probability. That is a contin-
uous counterpart of the total probability formula of discrete probability:

P
(
A

)
= P

(
A

∣
∣B1

)
P

(
B1

)
+ · · ·+ P

(
A

∣
∣Bn

)
P

(
Bn

)
;

P
(
A

)
= P

(
A

∣
∣X = x1

)
P

(
X = x1

)
+ · · ·+ P

(
A

∣
∣X = xn

)
P

(
X = xn

)
.

For proving Theorem 7d1 we need a fact close to the Fubini theorem.

7d4 Lemma. Let X, Y be independent random variables and ϕ : R2 → R a Borel function
such that ϕ(X, Y ) is integrable. Then

Eϕ(X, Y ) = Eψ(X) where ψ(x) = Eϕ(x, Y ) .

Proof. Similarly to the proof of 5d12, we restrict ourselves to the model of (5d2),

(Ω,F , P ) =
(
(0, 1) × (0, 1),B2

∣
∣
(0,1)×(0,1)

,mes2

∣
∣
(0,1)×(0,1)

)
;

X(ω) = X(ω1, ω2) = X∗(ω1) ,

Y (ω) = Y (ω1, ω2) = Y ∗(ω2) ,

and apply Fubini theorem 5c11:

Eϕ(X, Y ) =

∫∫

(0,1)×(0,1)

ϕ
(
X(ω1, ω2), Y (ω1, ω2)

)
dω1dω2 =

=

∫∫

(0,1)×(0,1)

ϕ
(
X∗(ω1), Y

∗(ω2)
)
dω1dω2 =

∫ 1

0

( ∫ 1

0

ϕ
(
X∗(ω1), Y

∗(ω2)
)
dω2

)

dω1 =

=

∫ 1

0

ψ
(
X∗(ω1)

)
dω1 = Eψ(X) ,

since

ψ(x) = Eϕ(x, Y ) =

∫ 1

0

ϕ
(
x, Y ∗(ω2)

)
dω2 .

Proof of Theorem 7d1. We may assume that Y = ϕ(X,U) where X,U are independent. We
apply 7d4 to X,U (rather than X, Y ):

ψ(x) = Eϕ(x, U) = E
(
Y

∣
∣X = x

)
;

EY = Eϕ(X,U) = Eψ(X) = E
(
E

(
Y

∣
∣X

) )
.
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7d5 Exercise. Give a more elementary proof (using 7a but not 7b) of Theorem 7d1 for the
case of X, Y having a joint density.

Hint: use the conditional density, and apply Fubini theorem 5c11.

7d6 Example. Let X ∼ U(0, 1), and the conditional distribution of Y given X = x be
U(0, x). Then

E
(
Y

∣
∣X = x

)
=

1

2
x ; E

(
Y

∣
∣X

)
=

1

2
X ; E (Y ) = E

(1

2
X

)

=
1

4
.

Also,

fX,Y (x, y) = fX(x)fY |X=x(y) = 1(0,1)(x) ·
1

x
1(0,x)(y) =

{
1
x

if 0 < y < x < 1,

0 otherwise,

and we may calculate E (Y ) without 7d1;

E (Y ) =

∫∫

yfX,Y (x, y) dxdy =

∫∫

0<y<x<1

y

x
dxdy =

{

=
∫ 1

0

(∫ x

0
y
x
dy

)
dx =

∫ 1

0
x
2
dx = 1

4
;

=
∫ 1

0

(∫ 1

y
y
x
dx

)
dy =

∫ 1

0
y · (− ln y) dy =

(
−y2

2
ln y + y2

4

)∣
∣1

0
= 1

4
.

7d7 Exercise. Let random variables X, Y have a joint density fX,Y . Then

fY (y) = E fY |X(y) .

Prove it. (Hint: recall (7a11) and 5c14.)

7d8 Example. Let X, Y be as in 7d6. Then

fY |X(y) =
1

X
1(0,X)(y) =

1

X
1(y,∞)(X) ;

fY (y) = E fY |X(y) = E
( 1

X
1(y,∞)(X)

)

=

∫ 1

y

1

x
dx = ln x

∣
∣1

y
= − ln y

for y ∈ (0, 1); otherwise fY (y) = 0. Another way to fY :

fY (y) =

∫ +∞

−∞
fX,Y (x, y) dx =

∫ 1

y

1

x
dx = − ln y .

Having fY , we may use it for calculating E (Y ) once again:

E (Y ) =

∫ +∞

−∞
yfY (y) dy =

∫ 1

0

y · (− ln y) dy =
1

4
.

(Do you understand, why the last integral here is the same as the last integral in 7d6?)

All said (in Sect. 7d) about dimensions 1 and 2 holds also for other dimensions. You can
easily formulate such generalizations.
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7e Correlation

Distributions are quite diverse; instead of describing them in detail, we may sometimes prefer
a rough description via two parameters, the expectation E (X) and the variance Var(X) =
σ2

X . It may be called the second-order (or quadratic) description, since first and second
moments ofX are used. The second-order description is insensitive to the distinction between
discrete and continuous. For 1-dim case recall (4f1), (4f2).

A dependence between X and Y cannot influence Var(X), Var(Y ) (these involve marginal
distributions only), but influences Var(X + Y ), Var(X − Y ) and, more generally, Var(aX +
bY ).

7e1 Exercise. Let X, Y have second moments.100 Then aX + bY has second moment for
any a, b ∈ R. Prove it. (Hint: (u+ v)2 ≤ (u+ v)2 + (u− v)2 = 2(u2 + v2).)

Treated as a function of the coefficients a, b, the variance Var(aX + bY ) is a quadratic
form, which is well-known from discrete probability:

E
(
(aX+ bY )2

)
−

(
E (aX + bY )

)
2 = a2E (X2)+2abE (XY )+ b2E (Y 2)− (aEX + bEY )2 =

= a2
(
E (X2) − (EX)2

)
+ 2ab

(
E (XY ) − (EX)(EY )

)
+ b2

(
E (Y 2) − (EY )2

)
,

that is,

(7e2) Var(aX + bY ) = a2 Var(X) + 2abCov(X, Y ) + b2 Var(Y ) ,

where the covariance is defined by

(7e3) Cov(X, Y ) = E (XY ) − (EX)(EY )

whenever X, Y have second moments.

7e4 Exercise. Cov(X, Y ) = E
(
(X − EX)(Y − EY )

)
. Prove it. (Hint: just open the

brackets.)

7e5 Exercise. Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y, Z). Prove it. What about
Cov(X, aY + bZ) ? What about Cov(aX + bY, cU + dV ) ?

Geometrically, a quadratic form corresponds to an ellipse. In order to simplify the situ-
ation, we turn to standardized random variables X̃, Ỹ :

(7e6)
X̃ =

X − E (X)

σX
, X = σx · X̃ + EX ,

E (X̃) = 0 , Var(X̃) = 1 ,

100That is, E (X2) < ∞, or equivalently Var(X) < ∞ (and the same for Y ). It follows that X, Y have first
moments, that is, E |X | < ∞ (and the same for Y ).
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and the same for Y .101 Of course, we assume that σX 6= 0, σY 6= 0.102 The covariance
between X̃ and Ỹ is called the correlation coefficient:

(7e7) ρ(X, Y ) = Cov(X̃, Ỹ ) =
Cov(X, Y )

σXσY
.

Random variables X, Y are called uncorrelated, if ρ(X, Y ) = 0.

7e8 Exercise. Let random variables X, Y have second moments. If X, Y are independent
then they are uncorrelated. Prove it. The converse is wrong. Find a counterexample.

Remark. Being uncorrelated means a single equality Cov(X, Y ) = 0. Being independent
means a continuum of equalities, FX,Y (x, y) = FX(x)FY (y) for all x, y ∈ R. You see, the
latter is much stronger than the former.

So,

(7e9) Var(aX + bY ) = a2σ2
X + 2abσXσY ρ(X, Y ) + b2σ2

Y .

We’ll investigate (in the second order) dependence between X̃, Ỹ ; afterwards we’ll return to
X, Y easily.

Note that

(7e10) Var(X̃ + Ỹ ) = 2
(
1 + ρ(X, Y )

)
, Var(X̃ − Ỹ ) = 2

(
1 − ρ(X, Y )

)
,

therefore

(7e11) − 1 ≤ ρ(X, Y ) ≤ 1 .

Extremal cases ρ(X, Y ) = ±1 are simple. If ρ(X, Y ) = 1 then Var(X̃ − Ỹ ) = 0, therefore
X̃ = Ỹ (think, why), which means a linear functional dependence between X and Y ;

(7e12)
Y =

σY

σX
(X − EX) + EY if ρ(X, Y ) = +1 ;

Y = −σY

σX

(X − EX) + EY if ρ(X, Y ) = −1

(the latter case is similar to the former).
Now assume that ρ(X, Y ) 6= ±1, that is, −1 < ρ(X, Y ) < 1. Note that X̃+ Ỹ and X̃− Ỹ

are uncorrelated, that is, Cov(X̃ + Ỹ , X̃ − Ỹ ) = 0 (why?). Introduce

(7e13) U = ˜̃X + Ỹ =
X̃ + Ỹ

√

2(1 + ρ)
, V = ˜̃X − Ỹ =

X̃ − Ỹ
√

2(1 − ρ)

(of course, ρ = ρ(X, Y )); then

(7e14)
X̃ =

√

1 + ρ

2
U +

√

1 − ρ

2
V , Ỹ =

√

1 + ρ

2
U −

√

1 − ρ

2
V ;

Var(U) = 1 , Var(V ) = 1 , Cov(U, V ) = 0 .

101Often, the standardized random variable is denoted by X̂ rather than X̃. However, X̂ is widely used for
denoting an estimator (predictor) of X .

102Is it possible that σX = 0 ? What does it mean?
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Random variables of the form aX + bY + c are the same as random variables of the form
aU + bV + c (with a, b, c changed appropriately).

First, consider the case a = cosϕ, b = sinϕ, c = 0. The random variable Z = U cosϕ+
V sinϕ satisfies EZ = 0, σZ = 1. On the other hand, the function (u, v) 7→ u cosϕ+ v sinϕ
on the plane vanishes at the origin, and its maximal value on the unit disk u2 + v2 ≤ 1 is
equal to 1, thus to σZ .

Second, consider the case c = 0; arbitrary a, b may be represented as a = r cosϕ, b =
r sinϕ where r =

√
a2 + b2. The random variable Z = aU+bV = r(U cosϕ+V sinϕ) satisfies

EZ = 0, σZ = r. On the other hand, the function (u, v) 7→ au+ bv = r(u cosϕ+ v sinϕ) on
the plane vanishes at the origin, and its maximal value on the unit disk u2 + v2 ≤ 1 is equal
to r, thus to σZ .

Third, consider the general case, Z = aU + bV + c. Here EZ = c and EZ + σZ =
c +

√
a2 + b2. On the other hand, the function (u, v) 7→ au + bv + c is equal to c = EZ at

the origin, and its maximal value on the unit disk u2 + v2 ≤ 1 is equal to EZ + σZ . Also,
its minimal value on the disk is equal to EZ − σZ .

Now we return from U, V to X, Y . The disk u2 + v2 ≤ 1 on the u, v-plane turns into an
ellipse on the x, y-plane, call it the concentration ellipse of X, Y . Its explicit form is rather
frightening,

(7e15)

(
x− EX

σX
+
y − EY

σY

)2

2(1 + ρ)
+

(
x− EX

σX
− y − EY

σY

)2

2(1 − ρ)
≤ 1 ,

but its property is easy to understand.

x

y

z

E Z

E Z−σZ

E Z+σZ

b

7e16. Consider the random variable Z = aX + bY + c and the function (x, y) 7→ ax+ by+ c
on the plane.

(a) E (Z) is equal to the value of the function at the center of the concentration ellipse.
(b) E (Z)+σZ is equal to the maximal value of the function on the concentration ellipse.
(c) E (Z)− σZ is equal to the minimal value of the function on the concentration ellipse.

In fact, 7e16 holds also in the extremal cases ρ = ±1, however, the concentration ellipse
degenerates into a straight segment connecting two points, (EX−σX ,EY −σY ) and (EX+
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σX ,EY + σY ) if ρ = +1, or (EX − σX ,EY + σY ) and (EX + σX ,EY − σY ) if ρ = −1.

b

E X

E Y

E X−σX E X+σX

E Y −σY

E Y +σY

ρ = −1

b

ρ = −0.5

b

ρ = 0

b

ρ = 0.5

b

ρ = 1

7e17 Exercise. The following three conditions are equivalent:
(a) Two random variables Z1 = a1U + b1V + c1, Z2 = a2U + b2V + c2 are uncorrelated.
(b) Two vectors (a1, b1), (a2, b2) are orthogonal.
(c) Lines a1u+ b1v = const are orthogonal to lines a2u+ b2v = const.

Prove it.

On the x, y-plane the situation is more complicated (than on the u, v-plane), since the
concentration ellipse is not just a disk. Instead of treating orthogonality as a relation between
two directions, we may treat it as a relation between the two directions and the disk,

b

which may be generalized to an ellipse,

b

Such directions are called conjugate (w.r.t. the ellipse). That relation is invariant under
linear transformations, and so, 7e17(a,c) may be transferred to the x, y-plane as follows.

7e18. Two random variables Z1 = a1X + b1Y + c1, Z2 = a2X + b2Y + c2 are uncorrelated
if and only if two directions a1x + b1y = const, a2x + b2y = const are conjugate w.r.t. the
concentration ellipse.

The optimal linear predictor Ŷ for Y from X is, by definition, a random variable of the
form Ŷ = aX + b that minimizes (over a, b ∈ R) the mean square error E (Ŷ − Y )2.

First, we’ll find the optimal linear predictor ˆ̃Y for Ỹ from X̃; afterwards we’ll return to
X, Y easily. We have

E (aX̃ + b − Ỹ )2 = Var(aX̃ + b − Ỹ ) +
(
E (aX̃ + b − Ỹ )

)
2 = Var(aX̃ − Ỹ ) + b2 ;
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the optimal value of b is evidently 0. Further,

Var(aX̃ − Ỹ ) = a2 Var(X̃)− 2aCov(X̃, Ỹ ) + Var(Ỹ ) = a2 − 2ρa+ 1 = (a− ρ)2 + 1− ρ2 ;

the optimal value of a is evidently ρ = ρ(X, Y ). So,

(7e19) ˆ̃Y = ρX̃ ; E
( ˆ̃Y − Ỹ

)
2 = 1 − ρ2 .

Note that the prediction error ˆ̃Y − Ỹ is uncorrelated with the predictor ˆ̃Y , as well as with
X̃:

Cov( ˆ̃Y − Ỹ , X̃) = Cov(ρX̃ − Ỹ , X̃) = ρVar(X̃) − Cov(Ỹ , X̃) = 0 .

Now we return from X̃, Ỹ to X, Y :

Ŷ = σY
ˆ̃Y + EY = σY ρX̃ + EY = σY ρ

X − EX

σX
+ EY ,

so, the optimal linear predictor is

(7e20) Ŷ = ρ(X, Y )
σY

σX
(X − EX) + EY ,

and the mean square error is

(7e21) E (Ŷ − Y )2 = (1 − ρ2)σ2
Y .

b

x

y

y=ρ
σY
σX

(X−E X)+E Y

b

x = const

b

error = const

Note that the optimal linear predictor X̂ for X from Y is another line (unless ρ = ±1).

b

x

y
x=ρ

σX
σY

(Y −E Y )+E X

Generalizations (of Sect. 7e) for higher dimensions are well-known, but involve multidi-
mensional ellipsoids, matrices etc.
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7f Transformations

Recall the simplest case, a linear 1-dim transformation Y = aX + b, studied in Sect. 3a. In
the smooth case we have (see (3a6))

(7f1) |a|fY (y) = fX(x) (y = ax+ b, a 6= 0) .

The same holds in full generality. Namely, Y has a density if and only if X has a density, in
which case (7f1) holds almost everywhere.

The coefficient |a| appears because Lebesgue measure is not preserved by the transfor-
mation:

(7f2) mes
(
T (B)

)
= |a|mes(B)

for all Borel sets B ⊂ R; here T (x) = ax+b and, of course, T (B) = {T (x) : x ∈ B}. Formula
(7f2) evidently holds for intervals. Its validity for Borel sets follows from 1f11.

Turn to a linear 2-dim transformation T : R2 → R2,

(7f3) T (x, y) =
(
ax+ by, cx+ dy

)
.

If B = (0, 1) × (0, 1) is the unit square, then T (B) is a parallelepiped of the area |ad− bc|.
In general,

(7f4) mes2

(
T (B)

)
= |J |mes2(B)

for all Borel sets B ⊂ R2; here T is given by (7f3), and

(7f5) J =

∣
∣
∣
∣

a b
c d

∣
∣
∣
∣
= ad− bc

is the so-called Jacobian of T ; we assume that J 6= 0 (which is equivalent to existence of
the inverse transformation T−1). Formula (7f4) is a simple geometric fact for polygons B;
therefore it holds (again by 1f11) for all Borel sets. It can be deduced that103

(7f6) |J | · fU,V (u, v) = fX,Y (x, y) when (u, v) = T (x, y)

almost everywhere. Here (X, Y ) is a 2-dim random variable, (U, V ) is another 2-dim ran-
dom variable, and (U, V ) = T (X, Y ) is assumed (with probability 1). Existence of fU,V is
equivalent to existence of fX,Y .

For nonlinear smooth 1-dim transformations we have (recall (3b1))

(7f7)

∣
∣
∣
∣

dy

dx

∣
∣
∣
∣
fY (y) = fX(x) when y = ϕ(x)

provided that the transformation is one-one (continuity of fX , fY , stipulated in Section 3,
may be discarded now). Comparing (7f1), (7f6) and (7f7) it is easy to guess that

(7f8)

∣
∣
∣
∣

∂(u, v)

∂(x, y)

∣
∣
∣
∣
fU,V (u, v) = fX,Y (x, y) when (u, v) = T (x, y)

103A sandwich argument, similar to the proof of 5b4, is used.
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for any (nonlinear) 2-dim one-one transformation T ; here

(7f9)
∂(u, v)

∂(x, y)
=

∣
∣
∣
∣

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣
∣
∣
∣

is a convenient notation for the Jacobian of T . We’ll deduce (7f8) from some results of
Analysis, formulated below (7f11, 7f12).

Let D ⊂ R2 be an open set, and T : D → R2 a map, T (x, y) =
(
u(x, y), v(x, y)

)
.

Assume that functions u, v have continuous first-order partial derivatives on D. Introduce
the Jacobian

(7f10) JT (x, y) =
∂(u, v)

∂(x, y)
=

∣
∣
∣
∣

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣
∣
∣
∣
.

Call T smooth, if it is one-one (from D onto T (D)) and JT (x, y) 6= 0 for all (x, y) ∈ D.

7f11 Lemma. If T is smooth then T (D) is an open subset of R2, and the inverse map
T−1 : T (D) → D is smooth, and

∂(u, v)

∂(x, y)
· ∂(x, y)
∂(u, v)

= 1 .

I give no proof.

7f12 Theorem. (Change of variables). Let T : D → R2 be a smooth transformation,
D1 = T (D), and f : D1 → R a Borel function. Then

∫∫

D

f
(
T (x, y)

)
|JT (x, y)| dxdy =

∫∫

D1

f(u, v) dudv

provided that f is integrable on D1 and the function (x, y) 7→ f
(
T (x, y)

)
|JT (x, y)| is inte-

grable on D. Otherwise, both functions are non-integrable.

I give no proof.

7f13 Exercise. Prove that mes2(A) = 0 ⇐⇒ mes2

(
T (A)

)
= 0 for Borel sets A ⊂ D.

Hint. Apply 7f12 to f = 1T (A).

7f14 Theorem. Let T : D → R2 be a smooth transformation, D1 = T (D). Let X, Y, U, V :
Ω → R be random variables such that (X, Y ) ∈ D and T (X, Y ) = (U, V ) almost sure.104

Then X, Y have a joint density fX,Y if and only if U, V have a joint density fU,V , and if they
have, then105

∣
∣
∣
∣

∂(u, v)

∂(x, y)

∣
∣
∣
∣
fU,V (u, v) = fX,Y (x, y) when (u, v) = T (x, y) .

104Therefore (U, V ) ∈ D1 almost sure.
105Of course, fX,Y vanishes outside D, and fU,V vanishes outside D1.
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Proof. Assume that X, Y have a joint density fX,Y .106 Define fU,V on D1 by fU,V (u, v) =

JT−1(u, v)f
(
T−1(u, v)

)
, then fU,V satisfies the equality

∣
∣∂(u,v)
∂(x,y)

∣
∣fU,V (u, v) = fX,Y (x, y) when

(u, v) = T (x, y). We have to prove that fU,V is a density for (U, V ), which means

∫∫

A

fU,V (u, v) dudv = PU,V (A)

for every Borel set A ⊂ D1. Apply 7f12 to 1AfU,V :

∫∫

D

1A

(
T (x, y)

)
fU,V

(
T (x, y)

)
|JT (x, y)|

︸ ︷︷ ︸

fX,Y (x,y)

dxdy =

∫∫

D1

1A(u, v)fU,V (u, v) dudv ;

∫∫

T−1(A)

fX,Y (x, y) dxdy =

∫∫

A

fU,V (u, v) dudv ;

the left-hand side is equal to P
(
(X, Y ) ∈ T−1(A)

)
= P

(
(U, V ) ∈ A

)
= PU,V (A).

Some examples:

U = X + Y

V = X
=⇒ fU,V (u, v) = fX,Y (x, y) ;

X = R cos Φ

Y = R sin Φ
=⇒ rfX,Y (x, y) = fR,Φ(r, ϕ) .

Some implications:

fX+Y (u) =

∫ +∞

−∞
fX,Y (x, u− x) dx ;

f√X2+Y 2(r) = r

∫ 2π

0

fX,Y (r cosϕ, r sinϕ) dϕ ;

fΦ(ϕ) =

∫ ∞

0

rfX,Y (r cosϕ, r sinϕ) dr .

Generalizations for higher dimensions d are straightforward; they involve determinants
of d× d matrices.

7g Some paradoxes, remarks etc

7g1 Exercise. There exist random variables X, Y taking on values in {1, 2, 3, . . .} such that

E
(
Y

∣
∣X

)
> X but also E

(
X

∣
∣Y

)
> Y

with probability 1 (the conditional distributions being integrable). Find an example. (Hint:
P

(
X = 2k−1, Y = 2k

)
= P

(
Y = 2k−1, X = 2k

)
= 1

2
(1 − p)pk−1.)

However, for integrable X, Y it cannot happen. Prove it. What about continuous X, Y ?

106The other case, assuming that U, V have a joint density, is similar (with T−1 instead of T ).
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7g2 Exercise. There exist random variablesX, Y, Z taking on values in {. . . ,−2,−1, 0, 1, 2, . . .}
such that

E
(
X

∣
∣Y

)
> 0 however E

(
X

∣
∣Z

)
< 0

with probability 1 (the conditional distributions being integrable). Find an example. (Hint:
P

(
X = (−2)k−1

)
= (1 − p)pk−1; Y is the integral part (“floor”) of k/2, Z — of (k − 1)/2.)

However, for integrable X it cannot happen. Prove it.

Remark. Think, what would you prefer: winning 1010 dollars with probability 10−3, or
winning 10100 dollars with probability 10−4 ?

7g3 Exercise. The conditional expectation E
(
Y

∣
∣X

)
is the optimal predictor 107 for Y from

X, that is, a random variable of the form Ŷ = ϕ(X) that minimizes (over all Borel functions
ϕ) the mean square error E (Ŷ − Y )2. Prove it under some appropriate assumptions about
X, Y . (Hint: apply Theorem 7d1 to (Ŷ − Y )2.)

Remark. A statistician often knows (with a reasonable precision) the correlation coeffi-
cient, but not the joint density.

7g4 Exercise. Let X, Y have a joint density fX,Y . Then
(a) The conditional density of X, given Y = 0, is equal to

fX,Y (x, 0)

fY (0)
=

fX,Y (x, 0)
∫
fX,Y (x1, 0) dx1

.

(b) The conditional density of X, given Y/X = 0, is equal to

|x|fX,Y (x, 0)
∫
|x1|fX,Y (x1, 0) dx1

.

(c) Conditions Y = 0 and Y/X = 0 are equivalent.
Do you agree with (a), (b), (c)? Are they consistent?

Remark. If someone told you that he observed a zero value of a nonatomic random
variable, do not believe.

7g5 Exercise. Consider the uniform distribution on the circle {(x, y) ∈ R2 : x2 + y2 = 1},
and the Borel subset B = {

(
cos(πa), sin(πa)

)
: a is rational } of the circle.

(a) The distribution is invariant under rotations (around the origin).
(b) The set B is invariant under rotations by πa for all rational a.
(c) Thus, the conditional distribution on B 108 is invariant under rotations by πa for all

rational a.
Do you agree with (a), (b), (c)? Can you use (c) for calculating the conditional distribution?

Remark. If someone told you that he observed a rational value of a nonatomic random
variable, do not believe.

107Not just linear.
108That is, the conditional distribution of a random point of the circle, given that the point belongs to B.
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