Exam of 27.06.2006 - Solutions

1

$1 a$

For $x \in(-0.5,0.5)$ the corresponding section $\left\{y:(x, y) \in B_{\varphi}\right\}$ of B_{φ} is the interval $\left(\frac{-0.5-x \cos \varphi}{\sin \varphi}, \frac{0.5-x \cos \varphi}{\sin \varphi}\right)$ of length $1 / \sin \varphi$. The length does not depend on x, therefore the distribution of X is uniform, $X \sim \mathrm{U}(-0.5,0.5)$.

For a given y the corresponding section $\left\{x:(x, y) \in B_{\varphi}\right\}$ of B_{φ} is either empty or an interval. The length of the interval depends on y (which is evident on the picture), therefore the distribution of Y is not uniform.

1b

$f_{X}(x)=\mathbf{1}_{(-0.5,0.5)}(x)$, since $X \sim \mathrm{U}(-0.5,0.5)$.
$f_{Y \mid X=x}(y)=\sin \varphi \cdot \mathbf{1}_{\left(\frac{-0.5-x \cos \varphi}{\sin \varphi}, \frac{0.5-x \cos \varphi}{\sin \varphi}\right)}(y)$, since the conditional distribution is uniform on the section.
$f_{X, Y}(x, y)=f_{X}(x) f_{Y \mid X=x}(y)=\sin \varphi \cdot \mathbf{1}_{(-0.5,0.5)}(x) \mathbf{1}_{\left(\frac{-0.5-5 \cos \varphi,}{\sin \varphi}, \frac{0.5-x \cos \varphi)}{\sin \varphi}\right)}(y)$. That is, $f_{X, Y}(x, y)=\sin \varphi$ for $(x, y) \in B_{\varphi}$.

However, $f_{X, Y}=\left(1 / S_{\varphi}\right) \mathbf{1}_{B_{\varphi}}$. Therefore $S_{\varphi}=1 / \sin \varphi$.

1c

$\mathbb{E}(Y \mid X=x)=\frac{-x \cos \varphi}{\sin \varphi}=-x \cot \varphi$, the center of the corresponding (conditional) uniform distribution. Thus, $\mathbb{E}(Y \mid X)=-X \cot \varphi$.

1d

Given $X=x, x \in(-0.5,0.5)$, the conditional distribution of $Y-\mathbb{E}(Y \mid X)=Y+X \cot \varphi$ is uniform on $\left(\frac{-0.5}{\sin \varphi}, \frac{0.5}{\sin \varphi}\right)$. The conditional distribution does not depend on x, therefore the random variable is independent of X.

1e

$\mathbb{E} X=0$, the center of the uniform distribution.
$\mathbb{E} Y=0$, since the distribution of Y is symmetric around 0 (according to the central symmetry of $\left.B_{\varphi}\right)$. Another way (if you want): $\mathbb{E} Y=\mathbb{E}(\mathbb{E}(Y \mid X))=\mathbb{E}(-X \cot \varphi)=0$.
$\operatorname{Var} X=1 / 12$, the variance of the uniform distribution (can be calculated by a simple integration).

By the independence (and using again the variance of a uniform distribution), $\operatorname{Var} Y=$ $\operatorname{Var}(Y+X \cot \varphi)+\operatorname{Var}(-X \cot \varphi)=\frac{1}{12} \frac{1}{\sin ^{2} \varphi}+\frac{1}{12} \cot ^{2} \varphi=\frac{1}{12} \frac{1+\cos ^{2} \varphi}{\sin ^{2} \varphi}$.

2a

$B=B_{1} \cap B_{2} \cap \ldots$ where $B_{k}=\left\{\omega \in(0,1): \alpha_{k+1} \leq 1+\alpha_{k}\right\}$.
For each k the set B_{k} is a finite union of intervals (some of the 10^{k} intervals indexed by $\left.\alpha_{1}, \ldots, \alpha_{k}\right)$.

Thus, each B_{k} is a Borel set, and therefore B is a Borel set.

2b

Yes, it can happen that $p<1$. In particular, it happens for any two independent, identically distributed random variables X, Y, except for degenerate (constant) cases. For example, $X \sim U(0,1), Y \sim U(0,1)$, independent; here $F_{X}=F_{Y}$ but $p=1 / 2$.

No, it cannot happen that $p=0$. Proof. Assume that $p=0$, then $X>Y$ a.s. (almost surely), which implies $F_{X} \leq F_{Y}$ everywhere. [Warning: it does not imply $F_{X}<F_{Y}$ everywhere.] Thus, $F_{X}=F_{Y}$, that is, X and Y are identically distributed.

A contradiction follows easily if we assume in addition that X, Y are integrable. In this case, $\mathbb{E} X=\mathbb{E} Y$ (since they are identically distributed), but on the other hand, $\mathbb{E} X>\mathbb{E} Y$ (since $X>Y$ a.s).

The general case may be reduced to the integrable case by a strictly monotone transformation of \mathbb{R} into a bounded interval. We may use (for instance) the arctan function: $\mathbb{E} \arctan X=\mathbb{E} \arctan Y$ (since they are identically distributed), but on the other hand, $\mathbb{E} \arctan X>\mathbb{E} \arctan Y$ (since $\arctan X>\arctan Y$ a.s).

2c

Yes, it can happen that $\lim \sup A_{n^{2}} \neq \lim \sup A_{n}$. Example. Let $A_{n}=\emptyset$ if n is a square, otherwise $A_{n}=\Omega$. Then $\lim \sup A_{n^{2}}=\emptyset$, but $\limsup A_{n}=\Omega$. Another example (if you want): let A_{n} be independent events such that $\mathbb{P}\left(A_{n}\right)=1 / n$, then by Borel-Cantelli Lemma(s), $\lim \sup A_{n^{2}}$ is of probability 0 , while $\lim \sup A_{n}$ is of probability 1 .

No, this cannot happen for an increasing sequence. Proof. Any increasing sequence (of sets) converges; and any its subsequence converges to the same limit. Thus, $\lim \sup A_{n^{2}}=$ $\lim A_{n^{2}}=\lim A_{n}=\lim \sup A_{n}$.

2d

Yes, it can happen that $f_{X, Y}$ is bounded but $f_{X, Y^{2}}$ is unbounded. Example. Let $X \sim U(0,1)$, $Y \sim U(0,1)$, and X, Y be independent. Then $f_{X, Y}(x, y)=1$ for $x \in(0,1), y \in(0,1)$. However, $f_{Y^{2}}(t)=1 /(2 \sqrt{t})$ for $t \in(0,1)$, therefore $f_{X, Y^{2}}(x, t)=1 /(2 \sqrt{t})$ for $x \in(0,1)$, $t \in(0,1)$.

Yes, it can happen that $f_{X, Y}$ is unbounded but $f_{X, Y^{2}}$ is bounded. Example. Let $X \sim U(0,1)$ again, and Y be such that $Y>0$ a.s. and Y^{2} is distrubuted uniformly on an unbounded set $B \subset(1, \infty)$ of finite measure. (For instance, $B=\left(1,1+2^{-1}\right) \cup(2,2+$
$\left.\left.2^{-2}\right) \cup\left(3,3+2^{-3}\right) \cup \ldots\right)$ Then $f_{Y^{2}}(t)=$ const for $t \in B$ and $f_{Y}(y)=$ const $\cdot 2 y$ for y such that $y^{2} \in B$. Thus f_{Y} is unbounded, and $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ is also unbounded.

3

3a

We have $f_{X, Y}=\mathbb{E} f_{X, Y \mid \Phi}$, the expectation of the conditional density. Thus, $f_{X, Y}(x, y)=$ $\frac{2}{\pi} \int_{0}^{\pi / 2} \sin \varphi \cdot \mathbf{1}_{B_{\varphi}}(x, y) \mathrm{d} \varphi$.

If $\sqrt{x^{2}+y^{2}}<0.5$ then $\mathbf{1}_{B_{\varphi}}(x, y)=1$ for all φ (since A_{φ} results from A_{0} by rotation), and we get $f_{X, Y}(x, y)=\frac{2}{\pi} \int_{0}^{\pi / 2} \sin \varphi \mathrm{~d} \varphi=\frac{2}{\pi}$.

If $\sqrt{x^{2}+y^{2}}>0.5$ then $\mathbf{1}_{B_{\varphi}}(x, y)=0$ for φ of some interval (since A_{φ} results from A_{0} by rotation), and we get $f_{X, Y}(x, y)<\frac{2}{\pi} \int_{0}^{\pi / 2} \sin \varphi \mathrm{~d} \varphi=\frac{2}{\pi}$.

3b

Every given n belongs to the set with the probability $1 / 2$ (the integral of the density $2 / \pi$ over the disk of the area $\pi / 4)$. The expected number of these events is equal to the sum of their probabilities, $100 \cdot 0.5=50$.

3c

We have an infinite sequence of independent events, each of probability $1 / 2$. The sum of the probabilities is infinite; by the second Borel-Cantelli Lemma, infinitely many events occur, a.s. That is, the considered set is infinite with probability 1.

3d

We have an infinite sequence of events; the probability of the n-th event (except for $n=1$) is equal to $2 / n^{2}$ (the integral of the density $2 / \pi$ over the disk of the area π / n^{2}). The sum of the probabilities is finite; by the first Borel-Cantelli Lemma, only finitely many events occur, a.s. That is, the considered set is infinite with probability 0 .

3 e

The countable set is an infinite sample from a two-dimensional distribution; almost surely, its closure is equal to the support of the distribution. The distribution is a mixture of the uniform distributions on the diamonds B_{φ}. Its support is equal to the closed unbounded strip $\{(x, y):-0.5 \leq x \leq 0.5\}$. (I do not prove these claims.)

