Contents

6 Martingales .. 54
 6a Basic definitions ... 54
 6b Gambling strategy, martingale transform, stopping 55
 6c Positive martingales ... 57

6 Martingales

6a Basic definitions

First, an example.

Monsters1 of type A have masses a_1, a_2, \ldots, a_m; monsters of type B — b_1, b_2, \ldots, b_n. In the first fight, a_1 eats b_1 with probability $\frac{a_1}{a_1 + b_1}$, gets the mass $a_1 + b_1$ and then fights b_2; or b_1 eats a_1 and then fights a_2; and so on.2

6a1 Proposition. The monsters of type A win with probability $\frac{A}{A + B}$ where $A = a_1 + \cdots + a_m$ and $B = b_1 + \cdots + b_n$.

Now, the basic definitions.

6a2 Definition. (a) A filtration on a probability space (Ω, \mathcal{F}, P) is an increasing sequence of sub-σ-algebras: $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}$;

(b) An adapted (to the given filtration) process is a sequence (X_0, X_1, \ldots) of random variables such that for each k, X_k is \mathcal{F}_k-measurable.

A filtered probability space is a probability space endowed with a filtration.

Assume for now that Ω is (finite or) countable (the discrete framework).

6a3 Definition. An adapted process $(X_n)_n$ such that $\forall n \; \mathbb{E}|X_n| < \infty$ is

(a) a martingale, if $\forall n \; \mathbb{E}(X_{n+1} | \mathcal{F}_n) = X_n$ a.s.;

(b) a supermartingale, if $\forall n \; \mathbb{E}(X_{n+1} | \mathcal{F}_n) \leq X_n$ a.s.;

(c) a submartingale, if $\forall n \; \mathbb{E}(X_{n+1} | \mathcal{F}_n) \geq X_n$ a.s.

We generalize it to arbitrary Ω as follows.3

1Maybe, banks…

3See also Sect. 7c.
6a4 Definition. An adapted process \((X_n)_n\) such that \(\forall n \ E|X_n| < \infty\) is
(a) a martingale, if \(\forall n \forall Y \in L_\infty(\mathcal{F}_n) \ E((X_{n+1} - X_n)Y) = 0\);
(b) a supermartingale, if \(\forall n \forall Y \in L_\infty^+(\mathcal{F}_n) \ E((X_{n+1} - X_n)Y) \leq 0\);
(c) a submartingale, if \(\forall n \forall Y \in L_\infty^+(\mathcal{F}_n) \ E((X_{n+1} - X_n)Y) \geq 0\).

6a5 Exercise. In the discrete framework, Definitions 6a3 and 6a4 are equivalent.
Prove it.

6a6 Exercise. Replacing in Definition 6a4 \(X_{n+1} - X_n\) with \(X_n + k - X_n\) for \(k = 1, 2, \ldots\) we get an equivalent definition.
Prove it.

In particular, \(Y = 1\) gives \(E X_n = E X_0\) (a necessary condition).
Assume again the discrete framework.
Every \(X \in L_1\) leads to a martingale \(M_n = E(X |\mathcal{F}_n)\). “Accumulating data”, “revising prediction”. Locally it is the general form of a martingale; globally — not.

Here is an explanation of the terms “supermartingale” and “submartingale”. Let \((X_n)_{n=1}^N\) be adapted; introduce a martingale \(M_n = E(X_N |\mathcal{F}_n)\);
then:
- if \((X_n)\) is a martingale then \(X_n = M_n\);
- if \((X_n)\) is a supermartingale then \(X_n \geq M_n\);
- if \((X_n)\) is a submartingale then \(X_n \leq M_n\).

Conditional Jensen inequality gives: if \((M_n)\) is a martingale and \(f\) is convex (“sublinear”) then \((f(M_n))\) is a submartingale.

6a7 Example. The one-dimensional simple random walk \((S_n)\) is a martingale; \((S_n^2)\) is a submartingale.

Functions on a tree...

Proof of 6a1. Denote by \(M_n\) the total mass of A-monsters at time \(n\), then \((M_n)_n\) is a martingale (\(\mathcal{F}_n\) being the whole past...) since \(b_t \cdot \frac{a_k}{a_k+b_t} + (-a_k) \cdot \frac{b_t}{a_k+b_t} = 0\). Thus, \(E M_{m+n} = E M_0 = A\); we note that \(M_{m+n}\) takes on two values only, 0 and \(A + B\).

6b Gambling strategy, martingale transform, stopping

First, an example.

Let \((S_n)_n\) be the simple random walk, and \(T = \inf\{n : |S_n| = 10\}\) (be it finite or infinite).
6b1 Proposition. \(T < \infty \) a.s., and \(\mathbb{E} T = 100. \)

Now, the theory.

6b2 Definition. (a) A previsible (with respect to the given filtration) process is a sequence \((C_1, C_2, \ldots)\) of random variables such that for each \(k \), \(C_k \) is \(\mathcal{F}_{k-1} \)-measurable.\(^1\)

(b) Given a previsible process \((C_n)\) and adapted process \((X_n)\) (on the same filtered probability space), we define an adapted process \(C \cdot X \) by\(^2\)

\[
(C \cdot X)_0 = 0, \\
(C \cdot X)_n = (C \cdot X)_{n-1} + C_n(X_n - X_{n-1}).
\]

Thus,

\[
(C \cdot X)_n = C_1(X_1 - X_0) + C_2(X_2 - X_1) + \cdots + C_n(X_n - X_{n-1}) = \\
- C_1X_0 - (C_2 - C_1)X_1 - \cdots - (C_n - C_{n-1})X_{n-1} + C_nX_n.
\]

6b3 Proposition. Let \((M_n)\) be a martingale, \((C_n)\) previsible, and \(C_n(M_n - M_{n-1}) \in L_1 \) for all \(n \). Then \(C \cdot M \) is a martingale.

Proof. Let \(Y \in L_\infty(\mathcal{F}_n) \), then \(\mathbb{E} \left((C \cdot M)_{n+1} - (C \cdot M)_n\right)Y = \mathbb{E} \left(C_{n+1}(M_{n+1} - M_n)Y\right) \), and it vanishes if \(C_{n+1}Y \in L_\infty \); otherwise apply it to \(Y_k = Y \cdot 1_{[-k,k]}(C_{n+1}) \) and note that \(\sup_{k} |C_{n+1}(M_{n+1} - M_n)Y_k| \leq |C_{n+1}(M_{n+1} - M_n)| \cdot \|Y\|_\infty \cdot |C_{n+1}(M_{n+1} - M_n)|. \)

A sufficient condition: \(\forall n \ C_n \in L_\infty. \)

An important special case:

\[
(C^\tau)_n = 1_{n \leq \tau} = \begin{cases} 1 & \text{for } n \leq \tau, \\ 0 & \text{for } n > \tau, \end{cases}
\]

where \(\tau \) is a stopping time as defined below.

6b4 Definition. A stopping time is a map \(\tau: \Omega \to \{0, 1, 2, \ldots\} \cup \{\infty\} \) such that \(\{\tau \leq n\} \in \mathcal{F}_n \) for all \(n \).

\(^1\)In discrete time it look strange, but in continuous time it does not...

\(^2\)Imagine that \(C_n \) is the number of your shares of a stock at time \(n \), and \(X_n \) is the share price at time \(n \).
Note that
\[
\{(C^\tau)_n = 0\} = \{\tau < n\} = \{\tau \leq n - 1\} \in \mathcal{F}_{n-1}.
\]

In terms of a tree, \(\{\tau > n\}\) is just a subtree.

The corresponding martingale transform is the stopped process,
\[
(C^\tau \bullet X)_n = X_{\tau \wedge n} - X_0.
\]

6b5 Corollary. If \((M_n)_n\) is a martingale and \(\tau\) a stopping time then the stopped process \((M_{\tau \wedge n})_n\) is also a martingale.

Proof of 6b1. The process \(M\) defined by \(M_n = S_n^2 - n\) is a martingale (think, why). On the other hand, \(T\) is a stopping time (think, why). Thus, the stopped process \(M_{T \wedge n}\) is a martingale. Therefore \(\mathbb{E} M_{T \wedge n} = 0\), that is, \(\mathbb{E} S_{T \wedge n}^2 = \mathbb{E} (T \wedge n)\). We get \(\mathbb{E} (T \wedge n) \leq 100\) for all \(n\), and therefore \(T < \infty\) a.s., \(\mathbb{E} T \leq 100\); thus \(S_T\) is well-defined, \(S_{T \wedge n} \to S_T\) a.s., and the bounded convergence theorem gives \(\mathbb{E} S_T^2 \to \mathbb{E} S_T^2 = 100\); therefore \(\mathbb{E} T = 100\). \(\square\)

By the way, \(\mathbb{E} S_T = 0\); \(\mathbb{P}(S_T = -10) = 0.5 = \mathbb{P}(S_T = 10)\).

Recall 3b15: from \(\sup_n |S_n| = \infty\) (a.s.) by Kolmogorov’s 0-1 law we got \(\inf_n S_n = -\infty\) and \(\sup_n S_n = \infty\) a.s.

However, do not think that \(\mathbb{E} M_{\tau}\) must vanish! Think about \(\tau = \min\{n : S_n = +10\}\).

6c Positive martingales

First, an example.

Let \(Z_n\) be the size of \(n\)-th generation (be it the number of animals, neutrons, or men of a given family). Assume that \(Z_0 = 1\) always, and each member of the \(n\)-th generation produces a random number of offsprings (members of the next generation): either 2 (with probability \(p\)) or 0 (with probability \(1 - p\)). That is, conditionally, given \(Z_0, \ldots, Z_n\), the distribution of \(Z_{n+1}/2\) is binomial,
\[
\mathbb{P}(Z_{n+1} = 2k \mid Z_0, \ldots, Z_n) = \binom{Z_n}{k} p^k (1 - p)^{Z_n - k}.
\]

This is called the simple branching, or Galton-Watson, process.

For \(p \leq 0.5\) the process extincts a.s.:

6c1 Proposition. For \(p \leq 0.5\), \(\mathbb{P}(\exists n \ Z_n = 0) = 1\).

\(^1\text{Do you like to get rich this way? :-)}\)
For \(p > 0.5 \) the process either extincts or grows exponentially:

6c2 Proposition. For \(p > 0.5 \) the limit

\[
M_\infty = \lim_{n \to \infty} \frac{Z_n}{(2p)^n}
\]

exists and is finite almost surely, and

\[
P\left(\exists n \ Z_n = 0 \right) = P\left(M_\infty = 0 \right) = \frac{1-p}{p}, \quad E M_\infty = 1.
\]

Now, the theory.

Let \((M_n)_n\) be a positive martingale, that is, \(M_n \geq 0 \) a.s. for every \(n \).

Given \(0 < a < b < \infty \), we define stopping times

\[
\sigma_1 = \inf\{ n \geq 0 : M_n \leq a \}, \quad \tau_1 = \inf\{ n > \sigma_1 : M_n \geq b \},
\]

\[
\sigma_2 = \inf\{ n > \tau_1 : M_n \leq a \}, \quad \tau_2 = \inf\{ n > \sigma_2 : M_n \geq b \},
\]

and so on. (As usual, \(\inf\emptyset = \infty \).) Now we define the (random) number of upcrossings:

\[
U = \sup\{ k : \tau_k < \infty \}; \quad U : \Omega \to \{0, 1, 2, \ldots\} \cup \{\infty\}.
\]

6c3 Proposition (Dubins’s inequality).

\[
P\left(U \geq k \right) \leq \left(\frac{a}{b} \right)^k \text{ for } k = 0, 1, 2, \ldots
\]

Proof. It is sufficient to prove that \(P\left(\tau_k < \infty \right) \leq \frac{a}{b} P\left(\sigma_k < \infty \right) \). We have

\[
E M_{\sigma_k \wedge n} = E M_{\tau_k \wedge n} = E M_0;
\]

\[
E M_{\sigma_k \wedge n} = E (M_{\sigma_k}; \sigma_k \leq n) + E (M_n; \sigma_k > n);
\]

\[
E M_{\tau_k \wedge n} = E (M_{\tau_k}; \tau_k \leq n) + E (M_n; \tau_k > n);
\]

\[
E (M_n; \tau_k > n) - E (M_n; \sigma_k > n) = E (M_n; \sigma_k \leq n < \tau_k) \geq 0;
\]

\[
a P(\sigma_k \leq n) \geq b P(\tau_k \leq n);
\]

take \(n \to \infty \).

The same holds for supermartingales.

6c4 Theorem. Every positive martingale converges a.s. to an integrable random variable.
Proof. By Dubins’s inequality, the martingale \((M_n)_n\) cannot cross \((a, b)\) infinitely many times. Almost surely, for all rational \(a < b\), it crosses \((a, b)\) finitely many times, which excludes the case \(\lim\inf M_n < a < b < \lim\sup M_n\). It means that \(\lim\inf M_n = \lim\sup M_n\) a.s. Integrability of the limit follows from Fatou lemma.

We turn to branching. Let \((Z_n)_n\) be the simple branching process introduced in Sect. 6c.

Given \(\mathcal{F}_n\) we have \(\frac{1}{2}Z_{n+1} \sim \text{Binom}(Z_n, p)\), thus \(\mathbb{E}(Z_{n+1} | \mathcal{F}_n) = 2pZ_n\), which shows that \(M_n = \frac{1}{(2p)^n}Z_n\) is a (positive) martingale. By 6c4, \(M_n \to M_\infty\) a.s., \(\mathbb{E}M_\infty \leq 1\).

Proof of 6c1. Case \(p < 0.5\): we have \(\sup_n \frac{1}{(2p)^n}Z_n < \infty\), that is, \(Z_n = O((2p)^n)\), a.s., which ultimately excludes the case \(Z_n \geq 1\); extinction.

Case \(p = 0.5\): \(Z_n \to M_\infty\) a.s.; we have to prove that \(M_\infty = 0\) a.s.

Assuming the contrary we take \(k > 0\) such that \(\mathbb{P}(M_\infty = k) > 0\), then

\[
\mathbb{I}_{Z_n = k} \to \mathbb{I}_{M_\infty = k};
\]

\[
\mathbb{P}(Z_n = k) \to \mathbb{P}(M_\infty = k);
\]

\[
\mathbb{P}(Z_n = k, Z_{n+1} = k) \to \mathbb{P}(M_\infty = k);
\]

that is, the distribution \(\text{Binom}(k, 0.5)\) is concentrated at \(0.5k\), — a contradiction.

More detailed information on the branching process can be obtained using the generating functions

\[
f_n(\theta) = \mathbb{E}(\theta^{Z_n}).
\]

We have \(f_0(\theta) = \theta; f_1(\theta) = p\theta^2 + 1 - p; \mathbb{E}(\theta^{Z_{n+1}} | Z_n = k) = (f_1(\theta))^k\) (think, why); thus \(f_{n+1}(\theta) = \mathbb{E}(f_1(\theta)^{Z_n} = f_n(f_1(\theta)))\), that is,

\[
f_n = f_1 \circ \cdots \circ f_1 \quad (n \text{ times}).
\]

Iterations for \(f_n(0) = \mathbb{P}(Z_n = 0)\) converge (draw a picture!) to the first root of the equation \(f_1(\theta) = \theta\). Taking into account that \(f_1(1) = 1\) we solve the equation easily: \(\theta = (1 - p)/p\). We get

\[
\mathbb{P}(Z_n = 0) \to \frac{1 - p}{p} = \mathbb{P}(\exists n \ Z_n = 0).
\]

In order to prove 6c2 it remains to prove that \(\mathbb{E}M_\infty = 1\) and \(\mathbb{P}(M_\infty = 0) = \mathbb{P}(\exists n \ Z_n = 0)\). In order to prove the former it is sufficient to prove that \(M_n \to M_\infty\) in \(L_1\), or in \(L_2\), or just convergence of \(M_n\) in \(L_2\) (to whatever).
6c5 Lemma. If a martingale \((M_n)_n\) satisfies \(\mathbb{E} M_n^2 < \infty\) for all \(n\) then random variables\(^1\) \(M_{n+1} - M_n\) are mutually orthogonal.

Proof. We have \(\mathbb{E} ((M_{n+1} - M_n)Y) = 0\) for all \(Y \in L_\infty(F_n)\) and therefore (by approximation) for all \(Y \in L_2(F_n)\); apply it to \(Y = M_{k+1} - M_k\) for \(k < n\).

Thus, \(\|M_{n+k} - M_n\|^2 = \|M_{n+k} - M_{n+k-1}\|^2 + \cdots + \|M_{n+1} - M_n\|^2\); convergence of \((M_n)_n\) in \(L_2\) is equivalent to convergence of \(\sum \|M_{n+1} - M_n\|^2\), that is, to \(\sup_n \|M_n\|^2 < \infty\). Here is the conclusion.

6c6 Proposition. A positive\(^2\) martingale bounded in \(L_2\) converges both in \(L_2\) and almost surely.

In order to prove “the former” it remains to prove that \((M_n)_n\) is bounded in \(L_2\). We have

\[
\Var Z_1 = 4p(1 - p) ; \\
\Var (Z_{n+1} \mid Z_n = k) = k \Var Z_1 = 4p(1 - p)k ; \\
\Var (Z_{n+1} \mid Z_n) = 4p(1 - p)Z_n ; \\
\Var (M_{n+1} \mid M_n) = \frac{1}{(2p)^n+1} \Var (Z_{n+1} \mid Z_n) = \frac{4p(1 - p)(2p)^n}{(2p)^{2n+2}} M_n ;
\]

\[
\Var M_{n+1} - \Var M_n = \mathbb{E} \Var (M_{n+1} \mid M_n) + \Var \mathbb{E} (M_{n+1} \mid M_n) ; \\
\Var M_{n+1} - \Var M_n = \mathbb{E} \Var (M_{n+1} \mid M_n) = \frac{4p(1 - p)}{(2p)^{n+2}} .
\]

But why \(\mathbb{P}(M_\infty = 0) = \mathbb{P}(Z_n \to 0)\)? (“\(\geq\)” is evident.) Is the event \(1 \leq Z_n = o((2p)^n)\) negligible for \(p > 0.5\)?

First, \(\mathbb{P}(M_\infty = 0 \mid F_n) = (\mathbb{P}(M_\infty = 0))^Z_n\) (independent subtrees...).

Second, \(\mathbb{P}(M_\infty = 0 \mid F_n) \to 1_{M_\infty = 0}\) a.s., as we’ll see in 7d1.

Thus, on the event \(1 \leq Z_n = o((2p)^n)\) (if it is not negligible) we have \((\mathbb{P}(M_\infty = 0))^Z_n \to 1\), therefore \(\mathbb{P}(M_\infty = 0) = 1\) in contradiction to \(\mathbb{E} M_\infty = 1\).

The proof of 6c2 is thus finished (except for one claim postponed to Sect. 7, the “second” above).

(In fact, \(\mathbb{P}(M_\infty = 0) = 1\) if and only if \(\mathbb{E} (X \ln X) = \infty\)...)

\(^1\)So-called martingale differences.

\(^2\)The same holds for non-positive martingales, as we’ll see in 7c6.