Contents

3 Infinite independent sequences
 3a Independent events 28
 3b Independent random variables 33

3 Infinite independent sequences

3a Independent events

Continuous probability spaces are needed here; triangle arrays do not help.

3a1 Definition. (a) Events \(A_1, A_2, \ldots \) are independent if for every \(n \) the events \(A_1, \ldots, A_n \) are independent;
 (b) random variables \(X_1, X_2, \ldots \) are independent if for every \(n \) the random
 variables \(X_1, \ldots, X_n \) are independent;
 (c) \(\sigma \)-algebras \(A_1, A_2, \ldots \) are independent if for every \(n \) the \(\sigma \)-algebras
 \(A_1, \ldots, A_n \) are independent.

The relation
\[
P(X_1 \in B_1, X_2 \in B_2, \ldots) = P(X_1 \in B_1)P(X_2 \in B_2)\ldots
\]
holds for independent random variables \(X_n \) and Borel sets \(B_n \subset \mathbb{R} \), but is of little use.

3a2 Exercise. Let \((\Omega, \mathcal{F}, P)\) be \((0, 1)\) with Lebesgue measure, and \(\beta_1, \beta_2, \cdots : \Omega \to \{0, 1\} \) binary digits;
\[
\omega = \sum_{n=1}^{\infty} \frac{\beta_n(\omega)}{2^n}, \quad \liminf_{n} \beta_n(\omega) = 0.
\]

Then \(\beta_n \) are independent random variables; also, \(\beta_n = \mathbb{1}_{A_n} \), and \(A_n \) are independent events of probability 0.5 each (“a fair coin tossed endlessly”).
Prove it.

Treating \(\beta_n \) as random variables we observe that the random variable
\(U = \sum_n 2^{-n} \beta_n \) is distributed uniformly on \((0, 1)\), that is, \(F_U(u) = u \) for
\(0 \leq u \leq 1 \).

We introduce random variables
\[
U_1 = \sum_{n=1}^{\infty} 2^{-n} \beta_{2n-1}, \quad U_2 = \sum_{n=1}^{\infty} 2^{-n} \beta_{2n}.
\]
For each \(n \) the random vector \((\beta_1, \beta_3, \ldots, \beta_{2n-1})\) is distributed like \((\beta_1, \beta_2, \ldots, \beta_n)\); therefore \(\sum_{k=1}^{n} 2^{-k}\beta_{2k-1} \) is distributed like \(\sum_{k=1}^{n} 2^{-k}\beta_k \), that is, \(F_{U_1}(u) = F_U(u) \) whenever \(u \) is dyadic (that is, of the form \(k/2^n \)); it follows that \(F_{U_1} = F_U \). We see that \(U_1 \) is distributed uniformly on \((0,1)\); the same holds for \(U_2 \).

For each \(n \) the random vectors \((\beta_1, \beta_3, \ldots, \beta_{2n-1})\) and \((\beta_2, \beta_4, \ldots, \beta_{2n})\) are independent (think, why), therefore \(F_{U_1, U_2}(u_1, u_2) = F_{U_1}(u_1)F_{U_2}(u_2) \) for all dyadic \(u_1, u_2 \), and for arbitrary \(u_1, u_2 \) as well. We see that \(U_1, U_2 \) are independent.

Similarly we may introduce \(U_1, U_2, \ldots \) by

\[
U_n = \sum_{k=1}^{\infty} 2^{-k}\beta_{2n-1}(2^k-1)
\]

and check that these are an infinite sequence of independent random variables, each distributed uniformly on \((0,1)\).

Now, given \(p_1, p_2, \ldots \in [0,1] \), we may consider events \(A_n = \{U_n \leq p_n\} \) and check that they are independent, and \(P(A_n) = p_n \).

Let events \(A_1, A_2, \ldots \) be independent. The sum \(S = \sum_{k=1}^{\infty} \mathbb{1}_{A_k} \), the random number of occurred events, can be finite or infinite.

3a3 Theorem. \(^3\) (a) If \(\sum_{k=1}^{\infty} P(A_k) < \infty \) then \(S < \infty \) almost surely;
(b) if \(\sum_{k=1}^{\infty} P(A_k) = \infty \) then \(S = \infty \) almost surely.

These (a) and (b) are called Borel-Cantelli lemmas. Independence matters for (b) but not (a). For independent events, \(P(S < \infty) \) is either 0 or 1, which is a special case of Kolmogorov’s 0–1 law.

3a4 Exercise. Let \(U_1, U_2, \ldots \) be independent random variables, each distributed uniformly on \((-1,1)\). Then

\(^1\) Instead of dyadic numbers and CDF we could use dyadic algebra; it generates the Borel \(\sigma \)-algebra.
\(^2\) [W, Sect. 4.6].
\(^3\) [KS, Sect. 7.1, Lemmas 7.3, 7.4]; [D, Sect. 1.6, (6.1) and (6.6)].
(a) the sequence \((nU_n)_{n=1}^\infty\) is dense in \(\mathbb{R}\) a.s.;

(b) the sequence \((n^2U_n)_{n=1}^\infty\) is not dense, and moreover, \(n^2|U_n| \to \infty\) a.s. Prove it.

If \(A_k\) are independent, \(\mathbb{P}(A_k) \to 0\) but \(\sum_k \mathbb{P}(A_k) = \infty\), then the indicators \(X_k = 1_{A_k}\) converge to \(0\) in \(L^2(\Omega)\) but not almost surely; moreover, \(\limsup_k X_k(\omega) = 1\) for almost all \(\omega \in \Omega\). (There is a simpler, non-probabilistic example on \(\Omega = (0, 1)\).)

Proof of 3a3(a) (the first Borel-Cantelli lemma)

\[
S_n = \sum_{k=1}^n 1_{A_k}; \quad \mathbb{E} S_n = p_1 + \cdots + p_n, \quad p_k = \mathbb{P}(A_k); \\
\mathbb{P}(S_n > M) \uparrow \mathbb{P}(S > M) \quad \text{as } n \to \infty; \quad \text{(wrong for “\(\geq\)”!)} \\
\mathbb{P}(S_n > M) \leq \frac{\mathbb{E} S_n}{M} = \frac{p_1 + \cdots + p_n}{M} \leq \frac{1}{M} \sum_k \mathbb{P}(A_k); \\
\mathbb{P}(S > M) \leq \frac{1}{M} \sum_k \mathbb{P}(A_k) \downarrow 0 \quad \text{as } M \to \infty.
\]

Another proof: the sequence \(S_n\) is increasing and \(\mathbb{E} S_n\) is bounded, therefore \(S_n \uparrow S < \infty\) a.s.

End of proof of 3a3(a) (the first Borel-Cantelli lemma)

Proof of 3a3(b) (the second Borel-Cantelli lemma)

(Clearly \(\mathbb{E} S = \infty\), but we need much more...)

\[
\mathbb{P}(S_n \leq M) = \mathbb{P}(e^{-S_n} \geq e^{-M}) \leq \frac{\mathbb{E} e^{-S_n}}{e^{-M}} = e^M \prod_{k=1}^n \frac{(p_k \cdot e^{-1} + (1 - p_k) \cdot 1)}{1 - (1 - e^{-1})p_k} \\
\leq e^M \exp\left(-\sum_{k=1}^n p_k \cdot (1 - e^{-1})\right) \downarrow 0 \quad \text{as } n \to \infty; \quad \text{(since } 1 - \varepsilon \leq e^{-\varepsilon}) \\
\mathbb{P}(S \leq M) = 0 \quad \text{for all } M.
\]

Another proof: \(\mathbb{E} e^{-S_n} \to 0\) (as before); \(\mathbb{E} e^{-S} \leq \mathbb{E} e^{-S_n}; \mathbb{E} e^{-S} = 0\).

End of proof of 3a3(b) (the second Borel-Cantelli lemma)
Let A_k be equiprobable, of probability p each (“unfair coin”).

3a5 Proposition. $\frac{1}{n} (\mathbb{1}_{A_1} + \cdots + \mathbb{1}_{A_n}) \to p$ (as $n \to \infty$) almost surely.

This is a special case of the Strong Law of Large Numbers (see 3b2), but also of the following fact (less general and much simpler to prove).

3a6 Proposition. (Borel’s strong law of large numbers) Let X_n be independent, identically distributed random variables such that $\mathbb{E} X_1^4 < \infty$, then $\frac{1}{n} (X_1 + \cdots + X_n) \to \mathbb{E} X_1$ almost surely.

3a7 Exercise. (a) It is sufficient to prove 3a6 for $\mathbb{E} X_1 = 0$.
Let X_n be as in 3a6.
(b) If $\mathbb{E} X_1 = 0$ then $\mathbb{E} (X_1 + \cdots + X_n)^4 \sim 3n^2 (\mathbb{E} X_1^2)^2$.
Prove it.

Proof of 3a6. Assuming $\mathbb{E} X_1 = 0$ and denoting $S_n = X_1 + \cdots + X_n$ we have $\mathbb{E} \left(\frac{S_n}{n} \right)^4 = O(\frac{1}{n^2})$; $\sum_n \mathbb{E} \left(\frac{S_n}{n} \right)^4 < \infty$; $\sum_n (\frac{S_n}{n})^4 < \infty$ a.s.; $(\frac{S_n}{n})^4 \to 0$ a.s.; $\frac{S_n}{n} \to 0$ a.s.

3a8 Exercise. For S_n as in 1a5 (the simple random walk),

$$S_n = o(n) \quad \text{a.s.}$$

Prove it.

Compare it with 1a5. Convergence in L_2 is rather evident, but almost everywhere convergence is not.

A real number $x \in (0, 1)$ is called 10-normal, if its decimal digits $\alpha_1, \alpha_2, \ldots$ defined by

$$x = \frac{\alpha_1}{10} + \frac{\alpha_2}{10^2} + \cdots; \quad \alpha_1, \alpha_2, \cdots \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

have equal frequencies, that is,

$$\frac{\# \{ k \in [1, n] : \alpha_k = a \}}{n} \to \frac{1}{10} \quad \text{as } n \to \infty \quad (\text{for all } a)$$

and moreover, their combinations have equal frequencies, that is,

$$\frac{\# \{ k \in [1, n] : \alpha_k = a_1, \alpha_{k+1} = a_2, \ldots, \alpha_{k+l-1} = a_l \}}{n} \to \frac{1}{10^l} \quad \text{as } n \to \infty$$

for all a_1, \ldots, a_l and all l. Similarly, p-normal numbers are defined for any $p = 2, 3, \ldots$. Finally, x is called normal, if it is p-normal for all p.

3a9 Proposition. Normal numbers exist.

Proposition 3a9 follows from Proposition 3a10.

3a10 Proposition. 1 Almost all numbers are normal.

That is, the set of all normal numbers is Lebesgue measurable, and its Lebesgue measure is equal to 1. This is Borel’s normal number theorem (1909).

Proof. It suffices to treat a single base, for instance 10, and a single combination of digits, for instance “71”:

$$\frac{\#\{k \in [1, n] : \alpha_k = 7, \alpha_{k+1} = 1\}}{n} \to \frac{1}{100} \text{ as } n \to \infty.$$ (1)

Splitting these k into even and odd numbers we note that it suffices to treat the two cases separately; for instance, the odd case:

$$\frac{\#\{k : 2k - 1 \leq n, \alpha_{2k-1} = 7, \alpha_{2k} = 1\}}{n} \to \frac{1}{200},$$ (2)

or equivalently,

$$\frac{\#\{k : 2k - 1 \leq n, \alpha_{2k-1} = 7, \alpha_{2k} = 1\}}{\#\{k : 2k - 1 \leq n\}} \to \frac{1}{100} \text{ as } n \to \infty,$$

which is a special case of 3a3.

Do not think that the normality exhausts probabilistic properties of (digits of) real numbers.

3a11 Proposition. The series

$$\sum_{n=1}^{\infty} \frac{2\beta_n - 1}{n}$$

converges for almost all $x \in (0, 1)$. (Here β_1, β_2, \ldots are the binary digits of x.)

By the way, the sum of the series, $f(x) = \sum \frac{(-1)^{\beta_n}}{n}$, is a terrible (but measurable) function. Especially,

$$\text{mes}\{x \in (a, b) : f(x) \in (c, d)\} > 0$$

for all intervals $(a, b) \subset (0, 1), (c, d) \subset \mathbb{R}$ (here ‘mes’ stands for the Lebesgue measure). Surely we cannot draw its graph!

Here is a probabilistic counterpart of 3a11.

\[1\text{[D, Sect. 6.2, Example 2.5].}\]
3a12 Proposition. The series $\frac{X_1}{1} + \frac{X_2}{2} + \frac{X_3}{3} + \ldots$ converges almost surely. (Here X_1, X_2, \ldots are independent random signs.)

Convergence in L_2 is rather evident, but almost everywhere convergence is not. See also 3b3 and 3b8.

Propositions 3a11 and 3a12 will be proved in Section 3b.

3a13 Proposition. A measurable function $f : \mathbb{R} \to \mathbb{R}$ satisfying $f(x + 2^{-n}) = f(x)$ for all $x \in \mathbb{R}$ and $n = 1, 2, \ldots$ is constant almost everywhere.

In other words: there exists $a \in \mathbb{R}$ such that $f(x) = a$ for almost all x. (It need not hold for all x.) This is an analytical counterpart of the following probabilistic fact.

3a14 Proposition. Let X_1, X_2, \ldots be independent random signs, and a random variable Y be of the form $Y = f_n(X_n, X_{n+1}, \ldots)$ for all n. Then Y is constant a.s.

This is a special case of Kolmogorov’s 0–1 law (see 3b7).

3b Independent random variables

Let F and F_n be as in 1c2.

3b1 Theorem.\footnote{[D, Sect. 1.7, (7.4)].}

$$\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \to 0 \text{ almost surely, as } n \to \infty.$$

This is the (strong form of) Glivenko-Cantelli theorem.

Proof. By 1c3, for every $\varepsilon > 0$ there exist m and $t_1 < \cdots < t_m$ such that

$$\mu((-\infty, t_1]) \leq \varepsilon, \mu((t_1, t_2]) \leq \varepsilon, \ldots, \mu((t_{m-1}, t_m]) \leq \varepsilon, \mu((t_m, +\infty)) \leq \varepsilon.$$

Similarly to the proof of 1c2, if $|\mu_n((-\infty, t_k]) - \mu((-\infty, t_k])| \leq \varepsilon$ and $|\mu_n((-\infty, t_k]) - \mu((-\infty, t_k])| \leq \varepsilon$ for all k then $\sup_t |F_n(t) - F(t)| \leq 3\varepsilon$.

By 3b3, this happens eventually (almost surely), for every $\varepsilon > 0$ separately. Therefore, almost surely it holds for all $\varepsilon > 0$ simultaneously. \qed
Strong law of large numbers

3b2 Theorem. ¹ Let X_1, X_2, \ldots be independent identically distributed random variables. If $\mathbb{E}|X_1| < \infty$ then

$$\frac{X_1 + \cdots + X_n}{n} \to \mathbb{E}X_1 \quad \text{a.s. as } n \to \infty.$$

This is the Strong Law of Large Numbers. Compare it with 1c1, 3a5 and 3a6. It appears that 3b2 is much harder to prove.

3b3 Proposition. ² (Kolmogorov) Suppose X_1, X_2, \ldots are independent random variables with $\mathbb{E}X_n = 0$. If $\sum \text{Var}(X_n) < \infty$ then the series $\sum X_n$ converges almost surely.

Postponing the proof of 3b3 we first show that it implies 3b2. Before treating random series, recall convergence of series $\sum a_n$ of real numbers ($a_n \in \mathbb{R}$), and do not confuse it with convergence of positive series ($a_n > 0$); do not write $\sum a_n < \infty$ instead of “$\sum a_n$ converges”, and note that $\sum a_n$ can converge while $\sum b_n$ diverge even if $a_n/b_n \to 1$.

3b4 Lemma. (Kronecker) If $x_n \in \mathbb{R}$ are such that $\sum \frac{x_n}{n}$ converges then $\frac{x_1 + \cdots + x_n}{n} \to 0$.

Proof. (sketch) In terms of $y_n = \frac{x_n}{n}$, $x_n = ny_n$, it takes the form

$$\text{if } \sum y_n \text{ converges then } \frac{1}{n}y_1 + \frac{2}{n}y_2 + \cdots + \frac{n}{n}y_n \to 0.$$

In terms of $S_n = y_1 + \cdots + y_n$, $y_n = S_n - S_{n-1}$, it takes the form

$$\text{if } S_n \to S \text{ then } S_n - \frac{1}{n}(S_1 + \cdots + S_{n-1}) \to 0,$$

which is easy to check. \hfill \Box

Proof of 3b2 (strong law of large numbers) assuming 3b3 (to be proved later)

By the first Borel-Cantelly lemma 3a3(a), $|X_n| \leq n$ eventually, since

$$\sum_{n=1}^{\infty} \mathbb{P}(|X_n| > n) = \sum_{n=1}^{\infty} \mathbb{P}(|X_1| > n) \leq \mathbb{E}|X_1| < \infty.$$

¹[D, Sect. 1.7, Items (7.1) and (8.6)]; [KS, Sect. 7.2, Th. 7.7].

²[D, Sect. 1.8, Th. (8.3)].
We introduce $Y_n = X_n \cdot 1_{\{n,n\}}(X_n)$ and note that $Y_1 + \cdots + Y_n \to 0$ almost surely, since $X_n - Y_n \to 0$ almost surely. Thus it is sufficient to prove that $Y_1 + \cdots + Y_n \to E X_1$ a.s.

We introduce $Z_n = Y_n - E Y_n$ and note that $E Y_n = E \left(X_1 \cdot 1_{\{n,n\}}(X_1) \right) \to E X_1$, therefore $Y_1 + \cdots + Y_n - Z_1 - \cdots - Z_n = E Y_1 + \cdots + E Y_n - E X_1$. Thus it is sufficient to prove that $Z_1 + \cdots + Z_n \to 0$ a.s.

By 3b4, it is sufficient to prove that $\sum Z_n$ converges almost surely.

By 3b3, it is sufficient to prove that $\sum \text{Var}(Z_n) < \infty$.

We have $\text{Var} Z_n = \text{Var} Y_n \leq E Y_n^2$; it remains to prove that $\sum \frac{1}{n^2} E Y_n^2 < \infty$.

In fact, $\sum_{n=1}^{\infty} \frac{1}{n^2} E Y_n^2 \leq 2 E |X_1|$, since $\forall y \sum_{k=1}^{\infty} \frac{y^2}{k^2} \cdot 1_{\{k,k\}}(y) \leq 2|y|$.

Indeed, for $y \in (n-1, n]$ we have

$$\sum_{k=n}^{\infty} \frac{1}{k^2} y^2 \leq 2|y| \iff \sum_{k=n}^{\infty} \frac{1}{k^2} \leq \frac{2}{n} \leq \frac{2}{y} \iff$$

$$\frac{1}{n^2} + \sum_{k=n+1}^{\infty} \frac{1}{k^2} \leq \frac{1}{n^2} + \int_{n}^{\infty} \frac{dx}{x^2} = \frac{1}{n^2} + \frac{1}{n} \leq \frac{2}{n}.$$

End of proof of 3b2 assuming 3b3.

Kolmogorov’s maximal inequality

The following result is needed for 3b3.

3b5 Proposition. Let X_1, \ldots, X_n be independent random variables, $E X_k = 0$ and $E X_k^2 < \infty$ for $k = 1, \ldots, n$. Then, for every $c > 0$,

$$P \left(\max_{k=1,\ldots,n} |S_k| \geq c \right) \leq \frac{E S_n^2}{c^2}.$$

(Here $S_n = X_1 + \cdots + X_n$.)

3b6 Remark. Evidently, $P \left(|S_k| \geq c \right) \leq \frac{E S_n^2}{c^2} \leq \frac{E S_k^2}{c^2}$, thus, $\max_k P \left(|S_k| \geq c \right) \leq \frac{E S_n^2}{c^2}$. However, Kolmogorov’s result is much stronger! Also, evidently, $P \left(\max_k |S_k| \geq c \right) \leq \sum_k P \left(|S_k| \geq c \right) \leq \frac{1}{c^2} \sum_k E S_k^2$, but it does not help: the latter may grow as n (try $X_2 = X_3 = \cdots = 0$).
Here is the first proof, for the discrete case; it shows the idea used afterwards in the second, general proof. (We do it for the quadratic function, but the proofs work for every convex function.)

\[E(S_n \mid X_1, \ldots, X_k) = S_k, \text{ thus } E(S_n^2 \mid X_1, \ldots, X_k) \geq S_k^2; \]

(by conditional Jensen, or just conditional \(E X^2 - (E X)^2 \geq 0 \))

introduce disjoint events \(A_k = \{|S_1| < c, \ldots, |S_{k-1}| < c, |S_k| \geq c\}; \)

\[E(S_n^2 \mid A_k) \geq c^2; \quad E(S_n^2 \mid A_k) \geq c^2 \mathbb{P}(A_k); \]

\[E(S_2^2 \mid A_1 \cup \cdots \cup A_n) \geq c^2 \mathbb{P}(A_1 \cup \cdots \cup A_n); \]

\[E S_n^2 \geq c^2 \mathbb{P}\left(\max_k |S_k| \geq c \right). \]

Here is the second (final) proof.

Proof of 3b5

We introduce disjoint events \(A_k \) as before and prove that \(E(S_n^2 \mid A_k) \geq c^2 \mathbb{P}(A_k) \) as follows. We have

\[E(S_n^2 \mid A_k) = \int_{B_k \times \mathbb{R}^{n-k}} (x_1 + \cdots + x_n)^2 \mu_1(dx_1) \cdots \mu_n(dx_n), \]

where

\[B_k = \{(x_1, \ldots, x_k) : |x_1| < c, \ldots, |x_1 + \cdots + x_{k-1}| < c, |x_1 + \cdots + x_k| \geq c\}; \]

we rewrite the integral as

\[\int_{B_k} \mu_1(dx_1) \cdots \mu_k(dx_k) \int_{\mathbb{R}^{n-k}} (x_1 + \cdots + x_n)^2 \mu_{k+1}(dx_{k+1}) \cdots \mu_n(dx_n); \]

taking into account that (for every \(a \))

\[\int_{\mathbb{R}^{n-k}} \left(a + x_{k+1} + \cdots + x_n \right)^2 \mu_{k+1}(dx_{k+1}) \cdots \mu_n(dx_n) \geq a^2 \]

we get

\[\cdots \geq \int_{B_k} \mu_1(dx_1) \cdots \mu_k(dx_k) (x_1 + \cdots + x_k)^2 \geq c^2 \mathbb{P}(A_k). \]

End of proof of 3b5

1This idea, “stopping”, will be the tenor of Part 2 of the course.
Proof of 3b3

We’ll prove that the partial sums S_n are a Cauchy sequence a.s., that is,

$$\lim_{n} \sup_{k,l \geq n} |S_k - S_l| = 0 \quad \text{a.s.}$$

These suprema, being a decreasing (in n) sequence, converge a.s.; in order to prove that their limit vanishes a.s. it is sufficient to prove that

$$\forall \varepsilon > 0 \quad P\left(\sup_{k,l \geq n} |S_k - S_l| > 2\varepsilon \right) \longrightarrow 0 \quad \text{as } n \to \infty.$$

We have, using 3b5

$$P\left(\sup_{k,l \geq n} |S_k - S_l| > 2\varepsilon \right) \leq P\left(\sup_{k \geq n} |S_k - S_n| > \varepsilon \right) = \lim_{m} \frac{1}{\varepsilon^2} \sum_{k=n+1}^{\infty} \text{Var} X_k \longrightarrow 0 \quad \text{as } n \to \infty.$$

End of proof of 3b3

The proof of 3b2 (strong law of large numbers) is now complete.

Zero-one law

3b7 Proposition. Let X_1, X_2, \ldots be independent random variables, and a random variable Y be of the form $Y = f_n(X_n, X_{n+1}, \ldots)$ for all n. Then Y is constant a.s.

This is a form of Kolmogorov’s 0–1 law. (See also 3a13.) Basically, it holds because every measurable function of X_1, X_2, \ldots is approximately a measurable function of X_1, \ldots, X_n (see 3b14).

3b8 Exercise. Let X_1, X_2, \ldots be independent random variables, and $S_n = X_1 + \cdots + X_n$. Then the following events are of probability 0 or 1 each:

- S_n converge;
- S_n are bounded;
- S_n are bounded from above;
- S_n are bounded from below.

Deduce it from 3b7.
See also $3a_{11}$, $3a_{12}$.

Recall the σ-algebras generated by random variables: $\sigma(X)$, $\sigma(X,Y)$ etc.; $\sigma(X,Y)$ consists of sets of the form $\{\omega : (X(\omega), Y(\omega)) \in B\}$ for Borel $B \subset \mathbb{R}^2$. Rewriting $(X(\omega), Y(\omega)) \in B$ as $1_B(X(\omega), Y(\omega)) = 1$ we see that a $\sigma(X,Y)$-measurable indicator function is of the form $\varphi(\omega) = 1_B$. It follows (but not immediately) that the same holds for \mathbb{R}-valued (rather than \{0,1\}-valued) functions (the Doob-Dynkin lemma); this is why $\sigma(X,Y)$-measurable functions are often called measurable functions of X,Y. Similarly, $\sigma(X_1, X_2, \ldots)$-measurable functions are often called measurable functions of X_1, X_2, \ldots. Here $\sigma(X_1, X_2, \ldots)$ is the least σ-algebra making all X_k measurable. Denoting $\mathcal{F}_n^\infty = \sigma(X_n, X_{n+1}, \ldots)$ we have

$$\mathcal{F}_n^\infty \downarrow \text{(the tail } \sigma\text{-algebra)} = \bigcap_n \mathcal{F}_n^\infty.$$

Measurability w.r.t. the tail σ-algebra is measurability w.r.t \mathcal{F}_n^∞ for every n. It holds for Y of $3b_7$ and $3a_{14}$.

$3b_9$ Proposition (Kolmogorov’s 0-1 law). 1 If X_n are independent then the tail σ-algebra is trivial.

Denoting $\mathcal{F}_1^n = \sigma(X_1, \ldots, X_n)$ we have $\mathcal{F}_1^n \uparrow \sigma(X_1, X_2, \ldots) = \mathcal{F}_1^\infty$ in the sense that \mathcal{F}_1^∞ is the least σ-algebra that contains all \mathcal{F}_1^n. That is, $\mathcal{F}_1^\infty = \sigma(\mathcal{E})$ where $\mathcal{E} = \bigcup_n \mathcal{F}_1^n$.

$3b_{10}$ Exercise. (a) \mathcal{E} is an algebra;
(b) \mathcal{E} need not be a σ-algebra.

Prove it.

Hint: (b) try binary digits.

By $1b_6$, \mathcal{E} is dense in $\sigma(\mathcal{E})$, that is,

$$\inf_{E \in \mathcal{E}} P(A \Delta E) = 0 \quad \text{for all } A \in \sigma(\mathcal{E})$$

whenever \mathcal{E} is an algebra (not just $\cup_n \sigma(X_1, \ldots, X_n)$).

$3b_{12}$ Exercise. If a σ-algebra is independent of (all events of) an algebra \mathcal{E} then it is independent of $\sigma(\mathcal{E})$.

Prove it.

Proof of Kolmogorov’s 0-1 law. Independence of \mathcal{F}_1^n and $\mathcal{F}_n^{\infty+1}$ implies independence of \mathcal{F}_1^n and the tail σ-algebra for every n. By $3b_{12}$ the tail σ-algebra is independent of \mathcal{F}_1^∞, therefore, of itself! \[D, \text{Sect. 1.8, (8.1)}; \] \[W, \text{Th. 4.11}.\]
3b13 Exercise. Let $F_1 \subset F_2 \subset \cdots \subset F$ be sub-σ-algebras, and $F_\infty = \sigma(F_1, F_2, \ldots)$. Then
\[L_2(F_\infty) \text{ is the closure of } \bigcup_n L_2(F_n). \]
Prove it.

Hint: for an indicator function in $L_2(F_\infty)$ use (3b11); their linear combinations approximate every bounded function.

In particular,

\[L_2(\sigma(X_1, X_2, \ldots)) \text{ is the closure of } \bigcup_n L_2(\sigma(X_1, \ldots, X_n)) \]
whenever X_1, X_2, \ldots are random variables (not just independent).

Some more applications of zero-one law (and CLT).

3b15 Exercise. For the simple random walk $(S_n)_n$,
\begin{enumerate}
 \item $\sup_n |S_n| = \infty$ a.s.;
 \item $\liminf_n S_n = -\infty$ and $\limsup_n S_n = \infty$ a.s.;
 \item $\sup \{n : S_n = 0\} = \infty$ a.s.
\end{enumerate}
Prove it.

Hint: (a) $\max_k (S_{kn+n} - S_{kn}) = n$; (b) use (a) and 3b8 (c) use (b).

3b16 Exercise. For the simple random walk $(S_n)_n$,
\[\liminf_n \frac{S_n}{\sqrt{n}} = -\infty \quad \text{and} \quad \limsup_n \frac{S_n}{\sqrt{n}} = \infty \quad \text{a.s.} \]
Prove it.

Hint: $\sup_k \frac{S_{k+1} - S_k}{2^{k/2}} = \infty$ (using 2a1).