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Lebesgue measure on Rd is constructed. It turns Rd into a measure space.

2a Jordan measure

Jordan measure on Rd (called also Jordan content) is closely related to the
d-dimensional Riemann integral. Both are treated in the course “Analysis 3”.
I borrow from that course several facts listed below. See also Sect. 1.1.2
“Jordan measure” in the textbook by Tao.

2a1 Fact. A set E ⊂ Rd is Jordan measurable (in other words, a Jordan set)
if and only if its indicator function 1lE is Riemann integrable; in this case the
Jordan measure of E is the Riemann integral,

m(E) =

∫
Rd

1lE .

Clearly, E must be bounded, and m(E) ∈ [0,∞).

2a2 Fact. If (a1, b1)× · · · × (ad, bd) ⊂ E ⊂ [a1, b1]× · · · × [ad, bd], then E is
Jordan, and m(E) = (b1 − a1) · · · · · (bd − ad).

2a3 Fact. If E,F are Jordan, then E ∪F , E ∩F and E \F are Jordan; and
if E ∩ F = ∅, then

m(E ∪ F ) = m(E) +m(F ) . (additivity)

Clearly, m(E∪F )+m(E∩F ) = m(E)+m(F ), and m(E∪F ) ≤ m(E)+
m(F ) (subadditivity). Also, E ⊂ F implies m(E) ≤ m(F ) (monotonicity).
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2a4 Fact (regularity). For every Jordan set E and every ε > 0 there exist
Jordan sets K,U such that K is compact, U is open, K ⊂ E ⊂ U , and
m(U \K) ≤ ε.1

2a5 Fact. Let L : Rd → Rd be an invertible linear transformation, and
b ∈ Rd. Then for every Jordan set E ⊂ Rd the set LE+b = {Lx+b : x ∈ E}
is Jordan, and

m(LE + b) = | detL|m(E) .

In particular, the Jordan measure is invariant under shifts, rotations and
reflections.

The following result is of little interest to Riemann integration, but crutial
for Lebesgue integration.

2a6 Proposition. Let E,E1, E2, · · · ⊂ Rd be Jordan sets. If E ⊂ ∪iEi, then
m(E) ≤∑im(Ei).

Proof. It is sufficient to prove that m(E) ≤ 2ε +
∑

im(Ei) for arbitrary
ε > 0. Given ε, we take ε1, ε2, · · · > 0 such that ε1 + ε2 + · · · ≤ ε (for
instance, εi = 2−iε), open Jordan Ui ⊃ Ei such that m(Ui) ≤ m(Ei) + εi,
and a compact Jordan set K ⊂ E such that m(K) ≥ m(E)− ε.

We have K ⊂ ∪iUi; by compactness, there exists i such that K ⊂ U1 ∪
· · ·∪Ui. Thus, m(E) ≤ ε+m(K) ≤ ε+m(U1) + · · ·+m(Ui) ≤ 2ε+m(E1) +
· · ·+m(Ei).

2a7 Corollary. Let E,E1, E2, · · · ⊂ Rd be Jordan sets. If E = ]iEi,
2 then

m(E) =
∑

im(Ei).

2b Open sets, compact sets;
outer measure, inner measure3

2b1 Definition. Lebesgue measure of an open set U ⊂ Rd is its inner Jordan
measure:4

m(U) = sup{m(E) : Jordan E ⊂ U} ∈ [0,∞] .

The notation is consistent: if U is Jordan, then this supremum is equal
to the Jordan measure of U .

1A stronger formulation K ⊂ E◦ ⊂ E ⊂ E ⊂ U holds, but we do not need it.
2It means, Ei ∩ Ej = ∅ for i 6= j, and E = ∪iEi.
3Our 2b–2d follow stages 3–6 of Sect. 2A in the textbook by Jones. About

Carathéodory, see Remark on p. 55 there: “But I believe the slow and deliberate de-
velopment we have given is preferable for the beginner.”

4Recall Sect. 1d: for an open set, its inner Jordan measure is relevant.
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2b2 Exercise. Let U ⊂ Rd be an open set, and E,E1, E2, · · · ⊂ Rd Jordan
sets.

(a) If U ⊂ ∪iEi, then m(U) ≤∑im(Ei).
(b) If U = ]iEi, then m(U) =

∑
im(Ei).

Prove it.

2b3 Exercise. Every open set U ⊂ Rd is ]iEi for some Jordan sets E1, E2, · · · ⊂
Rd.

Prove it.1,2

2b4 Corollary (subadditivity). m(U ∪ V ) ≤ m(U) + m(V ) for all open
U, V ⊂ Rd.

2b5 Lemma (monotone convergence for open sets). Let U,U1, U2, · · · ⊂ Rd

be open sets. If Ui ↑ U , 3 then m(Ui) ↑ m(U) ∈ [0,∞].

Proof. Clearly, m(U1) ≤ m(U2) ≤ · · · ≤ m(U), therefore limim(Ui) ≤
m(U). It is sufficient to prove that limim(Ui) > a for arbitrary a < m(U).

Given a < m(U) = sup{m(E) : Jordan E ⊂ U}, we take a Jordan E ⊂ U
such that m(E) > a. Using 2a4 we take a compact Jordan K ⊂ E such
that m(K) > a. By compactness, there exists i such that K ⊂ Ui. Thus,
a < m(K) ≤ m(Ui) ≤ limj m(Uj).

Countable subadditivity follows:4

m(U1 ∪U2 ∪ . . . ) ≤ m(U1) +m(U2) + . . . for all open sets U1, U2, · · · ⊂ Rd .

2b6 Definition. Outer measure m∗(A) of a set A ⊂ Rd is

m∗(A) = inf{m(U) : open U ⊃ A} .

Clearly, m∗(U) = m(U) for open U .

2b7 Exercise (countable subadditivity).

m∗(A1 ∪ A2 ∪ . . . ) ≤ m∗(A1) +m∗(A2) + . . . for all A1, A2, · · · ⊂ Rd .

Prove it.5

1Hint: try cubes of the form [ i12n ,
i1+1
2n )× · · · × [ id2n ,

id+1
2n ).

2Tao, Lemma 1.2.11.
3It means, U1 ⊂ U2 ⊂ . . . and U = ∪iUi.
4Since U1 ∪ · · · ∪ Ui ↑ U1 ∪ U2 ∪ . . . , and m(U1 ∪ · · · ∪ Ui) ≤ m(U1) + · · · + m(Ui).

Alternatively, the argument of 2b4 may be generalized.
5Hint: ε1 + ε2 + · · · ≤ ε.
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2b8 Definition. A set Z ⊂ Rd is a null set if m∗(Z) = 0.

Every subset of a null set is null.
A Jordan set of zero Jordan measure is null (due to 2a4).
Countable union of null sets is a null set (by countable subadditivity).

2b9 Definition. Lebesgue measure of a compact set K ⊂ Rd is its outer
Jordan measure:1

m(K) = inf{m(E) : Jordan E ⊃ K} .

The notation is consistent: if K is Jordan, then this infimum is equal to
the Jordan measure of K.

Subadditivity for compact sets, m(K1 ∪K2) ≤ m(K1) + m(K2), follows
readily from subadditivity for Jordan sets.

2b10 Exercise. If K is compact, U is open, and K ⊂ U , then
(a) there exists a Jordan set E such that K ⊂ E ⊂ U ;
(b) m(K) ≤ m(U);
(c) and moreover, m(K) < m(U).

Prove it.2

2b11 Exercise. If K,L are compact and K ∩ L = ∅, then
(a) there exist Jordan sets E,F such that K ⊂ E, L ⊂ F , and E∩F = ∅;
(b) m(K ] L) = m(K) +m(L).

Prove it.

2b12 Definition. Inner measure m∗(A) of a set A ⊂ Rd is

m∗(A) = sup{m(K) : compact K ⊂ A} .

Clearly, m∗(K) = m(K) for compact K. Also, m∗(A) ≤ m∗(A) due to
2b10(b).

2b13 Exercise (superadditivity).
(a) m∗(A ]B) ≥ m∗(A) +m∗(B) whenever A ∩B = ∅;
(b) m∗(A1]A2] . . . ) ≥ m∗(A1) +m∗(A2) + . . . whenever Ai are pairwise

disjoint.
Prove it.

2b14 Lemma (regularity).
m∗(U) = m(U) for open U ;
m∗(K) = m(K) for compact K.

1Recall Sect. 1d: for a compact set, its outer Jordan measure is relevant.
2Hint: dist(K,Rd \ U) > 0; try a finite union of small cubes.
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Proof. First, m∗(U) ≤ m(U) by 2b10(b). Second, given c < m(U), we take
Jordan E ⊂ U such that m(E) > c by 2b1, and compact K ⊂ E such that
m(K) > c by 2a4. Thus, m∗(U) = m(U).

For K, the argument is similar: 2b10(b) again, 2b9, and the other part
of 2a4.

2c Measurable sets of finite measure

2c1 Definition. A set A ⊂ Rd is integrable1 if m∗(A) = m∗(A) <∞; in this
case its (Lebesgue) measure is

m(A) = m∗(A) = m∗(A) .

Open sets of finite measure, as well as compact sets, are integrable by
2b14, and the notation is consistent (the same m(A) as before).

2c2 Lemma (additivity). If A,B are integrable and A∩B = ∅, then A]B
is integrable and m(A ]B) = m(A) +m(B).

Proof. By 2b6 and 2b13,

m∗(A ]B) ≤ m∗(A) +m∗(B) = m(A) +m(B) =

= m∗(A) +m∗(B) ≤ m∗(A ]B) ≤ m∗(A ]B) ,

therefore they all are equal.

In particular, m(U) = m(K) + m(U \ K) whenever U is open, K is
compact, and K ⊂ U .

2c3 Exercise (sandwich). A set A ⊂ Rd is integrable if and only if for
every ε > 0 there exist open U and compact K such that K ⊂ A ⊂ U and
m(U \K) ≤ ε.

Prove it.

2c4 Lemma. If A,B are integrable, then A ∪ B, A ∩ B and A \ B are
integrable.

Proof. Given ε > 0, we take compact K,L and open U, V such that K ⊂
A ⊂ U , L ⊂ B ⊂ V , m(U \K) ≤ ε and m(V \ L) ≤ ε. We get a sandwich
for A \B as follows:

K \ V︸ ︷︷ ︸
compact

⊂ A \B ⊂ U \ L︸ ︷︷ ︸
open

.

1Not a standard terminology. Just a shortcut for “measurable set of finite measure”.
Equivalent to integrability of 1lA.
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We note that (U \ L) \ (K \ V ) ⊂ (U \K) ∪ (V \ L), therefore m
(
(U \ L) \

(K \ V )
)
≤ 2ε by 2b4, which proves integrability of A \B.

Integrability of A∩B = A \ (A \B) and A∪B = (A \B)]B follows by
2c2.

2c5 Exercise. Prove integrability of A ∩ B and of A ∪ B using sandwich
and not using integrability of A \B.

2c6 Proposition. Let setsA1, A2, · · · ⊂ Rd be integrable, andA = A1 ∪ A2 ∪ . . .
satisfy m∗(A) <∞. Then A is integrable, and m(A) ≤ m(A1) +m(A2) + . . .
If in addition Ai are (pairwise) disjoint, then m(A) = m(A1) +m(A2) + . . .

Proof. We start with the disjoint case: A = ]iAi. By 2b7 and 2b13(b),

m∗(A) ≤
∑
i

m∗(Ai) =
∑
i

m(Ai) =
∑
i

m∗(Ai) ≤ m∗(A) ≤ m∗(A) ,

therefore they all are equal, which shows that A is integrable and m(A) =∑
im(Ai).
In the general case we introduce disjoint sets Bi with the same union as

follows:

B1 = A1 , B2 = A2 \ A1 , B3 = A3 \ (A1 ∪ A2) , . . .

then ]iBi = A. By 2c4, Bi are integrable. Thus, A is integrable, and
m(A) =

∑
im(Bi) ≤

∑
im(Ai).

2d Measurable sets in general

2d1 Definition. A set A ⊂ Rd is measurable if for every integrable set C,
the set A ∩ C is integrable; in this case the measure of A is

m(A) = sup{m(A ∩ C) : integrable C} .

If A is integrable, then it is measurable (by 2c4), and the notation is
consistent: this supremum is equal to m(A) defined earlier.

2d2 Lemma. If A is measurable and m∗(A) <∞, then A is integrable.

Proof. We take integrable C1, C2, . . . (for instance, cubes) such that ∪iCi =
Rd and apply 2c6 to A = (A ∩ C1) ∪ (A ∩ C2) ∪ . . .

2d3 Proposition (measurable sets are an algebra of sets). If A,B ⊂ Rd are
measurable, then A ∪B, A ∩B and Rd \ A are measurable.
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Proof. For integrable C the set (Rd \A)∩C = C \ (A∩C) is integrable (by
2c4); thus, Rd \ A is measurable.

Similarly, (A∪B)∩C = (A∩C)∪ (B ∩C) is integrable, therefore A∪B
is measurable.

For A ∩B use the same argument, or take the complement.

2d4 Proposition (measurable sets are a σ-algebra). If A1, A2, · · · ⊂ Rd are
measurable, then A1 ∪ A2 ∪ . . . and A1 ∩ A2 ∩ . . . are measurable.

Proof. For integrable C the set (∪iAi) ∩ C = ∪i(Ai ∩ C) is integrable by
2c6, thus ∪iAi is measurable.

For the intersection use the same argument, or take the complement.

2d5 Proposition (countable additivity). If A1, A2, · · · ⊂ Rd are measurable
and (pairwise) disjoint, then

m(A1 ] A2 ] . . . ) = m(A1) +m(A2) + · · · ∈ [0,∞] .

Proof. Denote A = ]iAi. For integrable C, by 2c6, m(A∩C) =
∑

im(Ai∩
C). We have supC m(A ∩ C) = m(A) and supC m(Ai ∩ C) = m(Ai); it
is sufficient to prove that supC

∑
im(Ai ∩ C) ≥ ∑im(Ai) (indeed, “≤” is

trivial).
We assume that m(Ai) < ∞ for all i (otherwise the claim is trivial).

Given n and ε > 0, we take integrable C1, . . . , Cn such that m(Ai ∩ Ci) ≥
m(Ai) − ε

n
for i = 1, . . . , n, then

∑n
i=1m(Ai ∩ C) ≥ ∑n

i=1m(Ai) − ε where
C = C1 ∪ · · · ∪ Cn. Thus, supC

∑n
i=1m(Ai ∩ C) ≥∑n

i=1m(Ai) for all n.

Additivity is a special case: m(A ]B) = m(A) +m(B) ∈ [0,∞].

2d6 Proposition. All open sets and all closed sets are measurable.

Proof. We take integrable compact sets C1, C2, . . . (for instance, cubes) such
that ∪iCi = Rd. For a closed F , compact sets F ∩Ci are integrable, therefore
measurable, hence F = ∪i(F ∩ Ci) is measurable.

For open set, take the complement.

2d7 Remark (regularity). For every measurable A,

sup
compact K⊂A

m(K) = m(A) = inf
open U⊃A

m(U) .

Proof. The left equality: m(A) = sup{m(C) : integrable C ⊂ A} by 2d1,
where m(C) = m∗(C) = sup{m(K) : compact K ⊂ C} by 2c1 and 2b12.

The right equality is trivial when m(A) = ∞; otherwise A is integrable
by 2d2, and m(A) = m∗(A) = inf{m(U) : open U ⊃ A} by 2c1 and 2b6.
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2d8 Exercise. Let us define a zigzag sandwich1 (of Jordan sets) as consisting
of Jordan sets Ek,l, Fk,l and (generally not Jordan) sets Ek, Fk, E,F such
that Ek,l ↓ Ek (as l → ∞) and Fk,l ↑ Fk for every k, and Ek ↑ E, Fk ↓ F .
Prove that2

(a) A set A ⊂ Rd is integrable if and only if there exists a zigzag sandwich
such that E ⊂ A ⊂ F and

lim
k

lim
l
m(Ek,l) = lim

k
lim
l
m(Fk,l) <∞ ;

and in this case

m(A) = lim
k

lim
l
m(Ek,l) = lim

k
lim
l
m(Fk,l) .

(b) A setA ⊂ Rd is measurable if and only if there exists a zigzag sandwich
such that E ⊂ A ⊂ F and F \ E is a null set; and in this case3

m(A) = m(E) = m(F ) ∈ [0,∞] .

2e Measure space

2e1 Definition. Let X be a set, and S some set of subsets of X (that is,
S ⊂ 2X).
(a) S is an algebra of sets,4 if5

∅, X ∈ S ; ∀A,B ∈ S A ∪B,A ∩B,X \ A ∈ S ;

(b) S is a σ-algebra (in other words, σ-field), if S is an algebra of sets, and

∀A1, A2, · · · ∈ S (∪iAi), (∩iAi) ∈ S ;

(c) if S is a σ-algebra on X, then the pair (X,S) is called a measurable space.

2e2 Definition. (a) A measure6 on a measurable space (X,S) is a function
µ : S → [0,∞] such that µ(∅) = 0, and

µ(A ]B) = µ(A) + µ(B) (additivity)

1This is the zigzag sandwich in the sense of Sect. 1e, but for sets rather than functions.
2Hint: 2d7, 2b9, 2b1.
3Do you think that in this case m(A) = limk limlm(Ek,l) = limk limlm(Fk,l)?
4Called also a concrete Boolean algebra.
5Surely you can shorten this (and following) definition(s). . .
6Ridiculously, “probability measures”, “nonatomic measures”, “finite measures” etc.

are (special cases of) measures, but “signed measures”, “complex measures”, “vector mea-
sures”, “finitely additive measures” etc. are not; rather, they are generalized measures.
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whenever A,B ∈ S are disjoint; and

µ(]iAi) =
∑
i

µ(Ai) (countable additivity)

whenever A1, A2, · · · ∈ S are (pairwise) disjoint;
(b) if µ is a measure on (X,S), then the triple (X,S, µ) is called a measure

space.

2e3 Example. All Jordan sets in Rd together with their complements are
an algebra of sets, but not a σ-algebra.

2e4 Example. All (Lebesgue) measurable sets in Rd are a σ-algebra; it
turns Rd into a measurable space. The Lebesgue measure is a measure on
this measurable space, and turns it into a measure space.

2f Rotation invariance

2f1 Proposition. Let L : Rd → Rd be an invertible linear transformation,
and b ∈ Rd. Then for every A ⊂ Rd, A is measurable if and only if the set
LA+ b = {Lx+ b : x ∈ A} is measurable, and in this case

m(LA+ b) = | detL|m(A) .

Proof. We denote Lx+ b by Tx.
First, let A be integrable. We take a zigzag sandwich for A according to

2d8(a). By 2a5, sets T (Ek,l), T (Fk,l) are Jordan, and m
(
T (Ek,l)

)
= m(Ek,l),

m
(
T (Fk,l)

)
= m(Fk,l). We have T (Ek,l) ↓ T (Ek) and T (Fk,l) ↑ T (Fk) (since

T is a bijection); also, T (Ek) ↑ T (E), T (Fk) ↓ T (F ), and T (E) ⊂ T (A) ⊂
T (F ). We get a zigzag sandwich for T (A); thus, T (A) is integrable, and
m(T (A)) = m(A). The same holds for T−1 : y 7→ L−1y − L−1b, thus, A is
integrable if and only if T (A) is integrable.

Now, let A be measurable. It means that A ∩ C is integrable for all
integrable C. Thus, T (A)∩T (C) = T (A∩C) is integrable for all C such that
T (C) is integrable. It means that T (A) is measurable. The same applies to
T−1. Finally, m(A) = sup{m(A∩C) : integrable C} = sup{m(T (A)∩T (C)) :
integrable T (C)} = m(T (A)).

2f2 Corollary. 1 (a) The Lebesgue measure is well-defined in every d-di-
mensional Euclidean space.

Indeed, every orthonormal basis in such space E leads to a linear isometry
L : E → Rd; we take m(A) = m(L(A)); by 2f1, the result does not depend
on the basis.

1The same applies to affine spaces.



Tel Aviv University, 2015 Functions of real variables 22

(b) The Lebesgue σ-algebra is well-defined in every d-dimensional vector
space, and the Lebesgue measure (on such space) is defined up to a coefficient.

2f3 Remark.
Prop. 2f1 generalizes readily to nonlinear
bijections T : Rd → Rd; if T preserves
the Jordan measure, then T preserves the
Lebesgue measure. Recall examples of non-
linear measure preserving transformations
from Sect. 1b.

≈

≈
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