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Lebesqgue integral: definition, basic properties. Integral as a new measure.
Integral w.r.t. pushforward measure.

4a Introduction

Given a measure space (X, S, ) and a measurable function f : X — [0, oo],
we are interested in a measure v on (X, S) such that

(4al) p(A) inf f(x) <v(A) < p(A)sup f(z) forall Ae S,

zcA x€A

in order to define the integral by

/Afdu: V(A).

In symbols, the relation between u, f and v is often written as

Y-t
1
less often as dv = fdu, and sometimes! as v = f - p; the latter notation is
used below.

We start with “simple functions”, then proceed to measurable functions
X — [0,00] (“unsigned”), and then to measurable functions X — [—00, 00|
(“signed”).

Throughout, (X, S, 1) is a measure space.

1See for example Def. 6 in Appendix A5 to lecture notes by Klaus Ritter; there, find
“Probability theory (WS 2011/12)”.


http://www.mathematik.uni-kl.de/compstoch/members/klaus-ritter/lecture-notes/
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4b Simple functions (unsigned)

4b1 Remark. (a) If p is a measure and ¢ € [0,00), then cu is a measure.
(By convention, 0 - oo = 0.)

(b) If pq, uo are measures, then gy + po is a measure. (All measures are
on the same (X, .5), of course.)

(c) If 1 is a measure and B € S, then A — p(A N B) is a measure.

By a simple function® we mean a measurable function f : X — R such

that f(X) C R is a finite set. For now we assume also f(X) C [0,00) and
call f an unsigned simple function.

4b2 Lemma. For every unsigned simple function f there exists one and only
one measure v satisfying (4all); and this v is given by

v(A)= Y yu(Anf(y) for A€S.
yef(X)

Proof. Uniqueness: it follows from (4al]) that v(A) = yu(A) whenever A C
7' (y); and in general, v(A) = v(W, (AN f~(y))) = ZyV(A Nfy) =
S (AN f(y)).

Existence: the latter formula gives a measure (by and, denoting
b = sup,cu f(z) we have A = W,<,(A N f'(y)) and therefore v(A) <
beSbM(A N f(y)) = bu(A); the infimum is treated similarly. O

We denote this measure v by f - y;

(f-mA) =Y yu(Anf ().

yef(X)
In particular,
(4b3) (I - p)(A) = w(AN B);
(4b4) (L - 1)(X) = p(A).

4b5 Exercise.
(f - 1)(4) = /Ooou(A N (y.00)) dy.

(Just the Riemann integral of a step function with bounded support.)
Prove it.

!But note that “simple” functions are much more complicated than step functions.
Indeed, the indicator of a measurable set is a simple function, even if the set is quite
complicated.
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Clearly, (¢f) - pu=c(f - u) for ¢ € [0,00). Also, if f is constant, f(-) = ¢,
then f - u = cpu.

4b6 Lemma. (f+g)-pu = f-pu+ g-p for all unsigned simple functions f, g.

Proof. If A is such that f and g are constant on A, then ((f +g) - p)(A4) =
(f-p1)(A)+ (g-p)(A) (think, why). And in general, this equality still holds,

since A is the disjoint union of such sets:

A= Anflyng ().

yEf(X),z€9(X)

One says that the map f + f - p is positively linear.

4b7 Exercise. (fg)-pu=g-(f - p) for all unsigned simple functions f, g.
Prove it.!

In particular,

(4b8) (g-1)(A) = ((g1la) - ) (X),

since both sides are equal to (14 - (g - p))(X).

4c Measurable functions (unsigned)

4cl Definition. The (Lebesgue) integral of a measurable function f : X —
[0,00] over a set A € S is

/Afdu = sup{(g - 1)(A) : unsigned simple g < f}.

Immediate consequences (check them):

(4¢2) if f is simple, then /Af dp = (f-n)(A); (simple)
(4c3) if f =g on A, then /Afd,u = /Agd,u; (locality)
(4cd) if f < gon A, then /Afd,u < /Agdu; (monotonicity)
(4¢5) if f =con A, then /Af du = cu(A); (constant)

Hint: similar to M
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(4c6) ifa < f<bon A, then au(A) < / fdu <bu(A). (mean value)
A

In probability theory, the (mathematical) expectation of a random vari-
able X : 2 — [0, 00] on a probability space (£, F, P) is, by definition,

]EX:/XdP.
Q

We'll see soon that the map A +— fA fdp is a measure, and then we’ll
denote this measure by f - u. First, additivity.

/Awfduz/Afdwr/deu

whenever A, B € S are disjoint.

Proof. [, fdu = supy(g- p) (AW B) = sup,((g-p)(A) + (g- u)(B)) <
sup, (g - n)(A) +sup,(g - u)(B) = S fdu+ [ fdu; we have to prove that
wade,u > fAfdM+ fod/% that iS, fALﬂdeIU’ > (gl ’ M)(A) + (g2 ’ N)(B)
for all simple g1, g < f. We take g = max(g;, g2) (the pointwise maximum);
this is also a simple function, and g < f. Thus, [, , fdp > (g-u)(AWB) =

(9-1)(A) + (g-1)(B) = (g1 1)(A) + (g2 - 1)(B). O

Second, countable additivity.

4c7 Lemma.

4c8 Remark. In Definition 2e2 of a measure, the countable additivity may
be replaced with the condition

AT A implies  p(Ag) T p(A).
(Think, why is it equivalent.)

4c9 Lemma.

Ag T A implies /fd”/fdu
A A
for A, Ay, Ay, -+ € 5.

Proof. [, fdu = sup,(g - p)(A) = supysup,(g - 1)(Ar) = sup,supy(g -
1) (A) = supy, [, fdpu. O

Now we introduce the measure f - by

(f-,u)(A):/Afdu for AeS.

The notation is consistent due to (4c2)).
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4c10 Exercise. (a) If u is finite and f is bounded,' then f - u is finite;
(b) if u is o-finite and f is finite (everywhere), then f -y is o-finite.
Prove it.?

4c11 Theorem (Monotone Convergence Theorem). Let functions f, fi, fa, - - :
X — [0, 00] be measurable, and a set A € S. Then

fe T fon A implies /Afkd/LT/Afdu_

4c12 Lemma. Let measurable fi, fo, -+ : X — [0,00] and ¢ € [0, oo satisfy
i< fo<...and Ve € A limy fi(z) > c. Then limy fA fredu > cu(A).

Proof. 1t is sufficient to prove that limy [, fi dp > bp whenever 0 < b < ¢
and 0 < p < p(A). Given such b and p, we introduce sets Ay = {x € A :
fr(x) > b}, note that Ay 1 A (think, why) and therefore u(Ay) T p(A). For
k large enough we have p(Ax) > p. The simple function g = bl,, satisfies

g < fi, whence fA fe = (g ) (A) =bu(Ax) > bp. O
Proof of Theorem[4c1 Clearly, limy, [, fi dp exists and cannot exceed [, fdy;
we have to prove that limy [, fudp > [, fdu, that is, limy [, fidp >

(g - p)(A) for arbitrary simple g < f.

We have (g-p)(A) = >_,c o) yu(Ay) where A, = Ang(y); and, by {7
Safedu=3"c,x) fAy fr du. For each y, on A, we have limy, fy = f > g = y;
by Lemma [4c12| limy fAy frdp > yu(A,). The sum over y € g(X) completes
the proof. O

4c¢13 Exercise.

{AdeZKfu@“IF%%“ﬂdy

Prove it.3
(The right-hand side is the Lebesgue integral on (0,00) of the function

y = (AN [y, ]).)

In particular, let A = X, and (X, S) be ( ,B[ ,oo]) (1 being an
arbitrary measure on this measurable space), and f=1id : [0,00] — [0, o0].
Then
(4c14)

/ id dp = / 11((y,o0]) dy  for all Borel measures y on [0, 0o].
[0,00] 0

I'Not by +o0, of course.

2Hint: (a) easy; (b) use (a).
SHint: [1b5} fi 1 f; f5 ' (y,00) T £~ (y, o]; use [hc11] (twice).
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Think twice before writing this f[O,oo] as [7; the points 0 and oo may be
atoms of the measure p.

In probability theory, for a random variable X : Q — [0, 00|, P(X ~*(z, ])
is the probability of the event X > x, denoted P (X > az), and we get

IEX:/ P(X >z)da.
0

Positive linearity of the map f — f - p proved in Sect. for simple f
will be generalized soon to measurable f. In other words: positive linearity
of [, (for every given A € S).

For every measurable f there exist simple fj such that fx T f. Just choose
finite sets £y C Ey C -+ C [0, 00) whose union is dense in [0, 00), and take

fela) = max{y € Ey, 1y < f(z)}.

4c15 Proposition. [,(f + ¢)dp = [, fdu + [, gdp for all measurable
frg: X — [0, 00].

Proof. We take simple fy, g such that fi. 1 f, gx T g; then fy+g. T f+¢g. By
edd) [y frdpt [y fdp, [yoedut [, gdu, and [, (fitge)dpt [,(f+9) du.
Thus, [,(f + g)dp = limy [,(fr + g) dp = limg(f, fedp + [, gedp) =
limy, [, frdp +limy, [ gedp = [, fdp+ [, 9dp. O

Also, [,(cf)dp = c [, fdu for ¢ > 0 (think, why); thus, [, is positively
linear.

4c16 Corollary (of 4c15 and dcll). [, (3°02, fi) du =Y poy [, fedp

4c17 Exercise. 12 Let f = 0 on the Cantor set, and f = k on each interval
of length 37% which has been removed from [0, 1]. Find f[o y Jdm.

In terms of monotone convergence of measures,
(4c18) pr T = VAES u(A) 1 u(4),

the Monotone Convergence Theorem becomes

(4c19) tf = foont fop;
and [4c16 becomes
(4¢20) (it ot ) p=Ffi-p+fop+..

! Capinski & Kopp, Exer. 4.2.
Hint: Y o0 kbt = L5 ok =1/(1-z)? for -1 <z < 1.
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4c21 Exercise. Let (Y,T) be a measurable space, ¢ : X — Y a measurable
map, and f : Y — [0, 00| a measurable function. Then

fooa=o.((fop) n).
Prove it.!

We get a “change of variable formula”:?

4c22 d(p.p) = op)du for BeT,
o) [ raem= [ repan worne
(123) /Y £ d(pups) = /X (fow)du.

In particular, let (Y, T') be ([O, oo, BJ0, oo]), and f =id : [0, 00| — [0, c0l;
we also rename ¢ to f and get

[ fau= [ sadis;
X [0,00]
this fact follows also from and (4cl4).

In probability theory, for a random variable X : Q — [0, 00|, X, P is the
distribution of X, denoted Py (as was noted before 3d3), and we get

EX = id dPx
[0,00]
and, more generally, E f(X) = [ fdPx for Borel f : [0, 00] — [0, 00].
Another special case of Y =X, T CS, ¢ =1id. In this case
oot = il (323) becomes

/deer):/deu

for B € T and T-measurable f. Extending a measure from 7" to S we do

not change integrals that were defined before. In particular, completion of a

measure does not change integrals that were defined before the completion.
Extension of the set X may be treated similarly.

4c24 Remark. Every increasing sequence of measures converges to some
measure.

Proof (sketch). Let p; 1T u; clearly, p is additive; countable additivity
(similar to {4c9)): let A; 1 A, then u(A) = sup; pui(A) = sup, sup; p;i(A;) =
sup; sup; f1;(A;) = sup; pu(A;).

'Hint: first, f is an indicator; second, f is simple; third, the general case.
2Tao, Exer. 1.4.37; Capinski & Kopp Th. 4.41.



Tel Aviv University, 2015 Functions of real variables 41

4c25 Exercise. pg T p implies f -y, 1T f - p for unsigned simple f.
Prove it.!

4c26 Exercise. (fg)-p=g- (f - p) for all unsigned measurable f, g.
Prove it.?

In particular, if f: X — (0, 00), then = (f-p= (%f) p=1-p=p
that is,

1
v=f-up = ,u:?-y for 0 < f < o0.
In more traditional notation

(4c27) f=— for v=f-pu

the fact 4c26] becomes

(4c28) /Agdyz/A<gj—:) .

4c29 Example. The standard normal distribution on R (called also the
standard Gaussian measure on R) is the probability measure v = ¢ - m

where
]_ 7332/2

p(x) = Nz

If a random variable X is distributed v (that is, Px = 7), then

:/Qf(X)dP:/fd’y /fwdm f() (¢) dt

for every Borel f: R — [0, 00].

is the standard normal density .

4c30 Exercise. (a) cu{z € A: f(z) > ¢} < [, fdu for all ¢ € [0, 00];?
b)if [, fdu < oo, then {z € A: f(z) = oo} is a null set;
c)if [, fdu=0, then {x € A: f(z) > 0} is a null set.

Prove it.*

One says that f < oo almost everywhere on A, if {x € A: f(z) = oo} isa
sub-null set. (For measurable f it is then a null set.) More generally, given a
property of a point of A, one says that this property holds almost everywhere

3Do not forget: 0- 0o =0 (as noted in
4Hint: (a) integrate f over this set; (b), (c) use (a).

'Hint: f is a linear combination of indicators; use (4b3).
2Hint: first, do it for simple g using {@b7), f T f and second, gx T g, use (4c19).
ibi)
(b)
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(a.e.) on A, if it holds outside of some sub-null set (and then, necessarily,
outside of some null set). In probability theory this is called “almost surely”
(a.s.). Thus,

(4c31) if / fdu < oo, then f is finite a.e. on A;
A

(4¢32) if / fdu =0, then f=0ae. onA.
A

If 4(A) < oo and f is finite a.e. on A, but unbounded, then [, fdu may
converge or diverge. But if f = 0 a.e. on A, then fAfd,u = 0 (even if
i(A) = 00), since this is evidently true for simple functions. In particular,
/ o, fdu =0 forall f,if Z is a null set. (Indeed, even the equality 0 = oo
holds a.e. on a null set!) It follows bythat Sufdu= fA\Z f dp; null sets
are negligible.

Two functions are called equivalent, if they are equal almost everywhere.

Denoting by [f] the equivalence class of f we may write the equivalence as
[f] = [g]. If [f] = [g] then [, fdu= [, gdu for all A (just because null sets
are negligible). That is, [,[f]du is well-defined. Also, [f] - p is well-defined.

If [fi] = [g1] and [fo] = [g2], then [fi + fo] = [91 + go] (think, why);
thus, the sum of two equivalence classes is a well-defined equivalence class.
Moreover, the same holds for the sum of countably many equivalence classes.
Also the relation [f] < [g] is well-defined.

Functions may be replaced with equivalence classes in all our statements.

For instance, in (4c6)):
ifa<f<bae onA, then au(A) < / fdu <bu(A);
A

in McTTk
fe T fae onA implies /fdeT /fd,u;
A A

and so on. Usually one still writes functions (just for convenience), but means
their equivalence classes.

4d Integrable functions

4d1 Definition. A measurable function f : X — [—o00, +0o0] is integrable, if
S 1fldp < .

Clearly, integrable functions are a vector space. The functional f —
Jx If| dp is (generally) not a norm on this space of functions, but is a norm



Tel Aviv University, 2015 Functions of real variables 43

on the corresponding space of equivalence classes:

I3 = [ 151k

el = 1ellLAl

I+ gl < WA+ [HTgIll s
III=0 < [fl=[0].

This normed' space is denoted by L;(X, S, i), or just Ly(u).?

Integrable functions are finite a.e.; WLOG we may assume that they are
finite everywhere.

Every integrable function can be written as the difference of two unsigned
integrable functions; in particular,

f=f"—f", where ff =max(f,0)and f~ = (—f)".

4d2 Lemma. If unsigned integrable fi, f2, g1, g2 satisty f1 — fo = g1 — ¢o,
then fxfldﬂ_ffodM: fXgldlu_fXQQd/”L'

Proof. f1+92:f2+gl;by7ff1+f92:ff2+fgluthatis?ffl_
ff2=f91— . ]

Thus, we may define
/ fdu:/ gdu—/ hdp  whenever f =g —h;
X X X
here f is integrable, and g, h are unsigned integrable. Clearly,

[fl— | fdu isa linear functional on Lq(u),

) /de/w‘ <A

The same holds for [ » of course.
A vector-function f: X — R", f(z) = (fi(x),..., fu(x)), is called inte-
grable, if its coordinate functions fi,..., f, are integrable; in this case, by

definition,
/Afd,u: (/Afldu,...,/Afndu>.

'In fact, Banach space; its completeness will be proved later.
20r LY ().
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With respect to integrability, complex-valued functions X — C may be
treated as just X — R? (and X — C" as X — R?").

Applying [lcI3]to f* and f~ we get (for integrable f)
) [ ran= [T uan o) - [T ulan o) d.
Similarly to (dc14)),
(4d4) /Rid dp = /OOO 1((y, 00)) dy — /OOO p((—o0, —y)) dy

for all Borel measures 1 on R such that [ |-|du < oc.
In probability theory, for an integrable random variable X,

IEX:/ ]P’(X>x)da:—/ P(X < —z)dz.
0 0

Applying (4c22) and (4c23)) to fT and f~ we see that they hold for all
integrable f. In particular,

[ fau= [iaaia;
X R
this fact follows also from and (4d4)). In probability theory,

EX = / id dPx for all integrable X ,
R
Ef(X)= / fdPx for all Px-integrable f.
R

For vector-functions f : X — R", similarly,

[ ran= [ .

p-integrability of f being equivalent to (f.u)-integrability of id. In probabil-
ity theory,
Ef(Xy,...,X,) = fdPx, . x,,
R’I’L
where Py, . x, = X.P is the joint distribution (recall the paragraph before

3d3).

-----
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a.e., @2
a.s., @2

almost everywhere,
almost surely,

change of variable, [40]

equivalence class,
equivalent functions,
expectation, [37]

integrable function, 2]
integrable vector-function, [43]

integral,

monotone convergence theorem,

norm, [43]
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