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Measurable functions are approximately nice, even if look terrible.

7a A terrible integrable function

The indicator function of the set of all rational numbers is terrible for Rie-
mann integration, but trivial for Lebesgue integration: it is equivalent to
zero. An equivalence class of terrible integrable functions is shown below.

Recall the binary digits β1, β2, · · · : [0, 1)→ {0, 1} (treated in Sect. 3d4),
and consider the series

f =
∞∑
k=1

1

k
(2βk − 1) .

Probabilistically, this is the random series
∑
± 1
k

with independent fair ran-
dom signs.

In the Hilbert space L2[0, 1] (treated in Sect. 5f) vectors 2βk − 1 are
orthonormal (since the joint distribution of 2βk − 1 and 2βl − 1 is uniform
on {−1,+1} × {−1,+1}). Thus, partial sums Sn =

∑n
k=1

1
k
(2βk − 1) satisfy

‖Sn‖22 =
∑n

k=1
1
k2
↑ 1

6
π2 < ∞, and ‖Sn+k − Sn‖22 ≤

∑∞
k=n+1

1
k2
↓ 0, that is,

(Sn)n is a Cauchy sequence; by 5f3, it converges to some f in L2[0, 1] (in fact,
it converges almost everywhere; never mind).

7a1 Proposition. m{x ∈ (a, b) : f(x) ∈ (c, d)} > 0 whenever 0 < a < b < 1
and −∞ < c < d <∞.

We consider binary intervals (of rank n) I = [2−nk, 2−n(k + 1)
)
⊂ [0, 1

)
,

note that β1, . . . , βn are constant on such I, and denote by mI the uniform
distribution on I; that is,

mI(A) =
m(A ∩ I)

m(I)
= 2nm(A ∩ I) ;
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probabilistically, f∗mI is the conditional distribution of f given β1, . . . , βn.
Here are the conditional expectation and conditional variance.

7a2 Exercise. For every binary interval I of rank n,∫
fdmI =

n∑
k=1

1

k
(2βk(I)− 1) ;

∫ (
f −

∫
fdmI

)2

dmI =
∞∑

k=n+1

1

k2
.

Prove it.

7a3 Exercise. For arbitrary binary interval I and arbitrary y ∈ R, ε > 0
there exists a binary interval J ⊂ I such that∣∣∣∣ ∫ fdmJ − y

∣∣∣∣ ≤ ε ,

∫ (
f −

∫
fdmJ

)2

dmJ ≤ ε2 .

Prove it. Hint:
f(I) y

Proof of Prop. 7a1. We take a binary interval I ⊂ (a, b), y = (c + d)/2
and ε = (d − c)/6. By 7a3 there exists a binary interval J ⊂ I such that∣∣ ∫ fdmJ − y

∣∣ ≤ ε and
∫ (

f −
∫
fdmJ

)2
dmJ ≤ ε2. We have

mJ{x : f(x) /∈ (c, d)} ≤ mJ{x : |f(x)− y| ≥ 3ε} ≤
≤ mJ{x : |f(x)−

∫
fdmJ | ≥ 2ε} ≤ ε2

(2ε)2
= 1

4
< 1 ,

thus,

m{x ∈ (a, b) : f(x) ∈ (c, d)} ≥ m{x ∈ J : f(x) ∈ (c, d)} =

= 2−nmJ{x : f(x) ∈ (c, d)} > 0 ,

where n is the rank of J .

We see what can happen to an integrable function. But can it, somehow,
behave like β∞? We have

∫
I
βk dm = 1

2
m(I) whenever I is a binary interval

of rank n < k. It should be
∫
I
β∞ dm = 1

2
m(I) for all binary intervals I. But

then β∞ ·m = 1
2
m by 6b12, which implies β∞ = 1

2
a.e. by Lemma 7a4 below.

You see, infinite frequency (like t 7→ sin∞t) is impossible.1

7a4 Lemma. Let (X,S, µ) be a σ-finite measure space and f, g : X → [0,∞]
measurable functions. If f · µ = g · µ, then f = g a.e.

1Probably one can invent a new generalization of the notion “function” that makes it
possible, but surely outside Lebesgue’s theory.
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Proof. It is sufficient to prove that f ≤ g a.e. Assume the contrary: µ{x :
g(x) < f(x)} > 0. By σ-finiteness there exists A ∈ S such that 0 < µ(A) <
∞ and g < f on A. WLOG, g is bounded on A and f−g ≥ ε > 0 on A (think,
why). Thus, (f · µ)(A) =

∫
A
f dµ ≥

∫
A
g dµ + εµ(A) >

∫
A
g dµ = (g · µ)(A);

a contradiction.

7b Approximation of sets

Convergence of sets may be treated as convergence of their indicator func-
tions:

An → A ⇐⇒ 1lAn → 1lA .

Thus, each mode of convergence for functions leads to the corresponding
mode of convergence for sets. And quite often, different modes for functions
lead to the same mode for sets.

Note that |1lA − 1lB| = 1lA4B, where A4B = (A \ B) ] (B \ A) is
the symmetric difference. Each convergence mode for functions satisfies
fn → f ⇐⇒ fn − f → 0 ⇐⇒ |fn − f | → 0; thus, each convergence
mode for sets satisfies

An → A ⇐⇒ An4A→ ∅ .

Clearly, ‖1lA‖p =
(
µ(A)

)
1/p for 1 ≤ p < ∞; thus, for sets the relation

“An → ∅ in Lp” does not depend on p. Also, µ{x : 1lA(x) ≥ ε} = µ(A) for all
ε ∈ (0, 1); thus, for sets, An → ∅ globally in measure if and only if An → ∅
in L1. In contrast, convergence a.e. is different (recall 5c3), and the local
convergence in measure (defined in σ-finite spaces) is different (recall 1l[n,∞)

before 5b3).
So, for sets we have two modes of convergence in general, and three modes

in σ-finite spaces.

7b1 Exercise. (a) If
∑

n µ(An) <∞, then An → ∅ a.e.;
(b) if

∑
n µ(An4An+1) <∞, then ∃A An → A a.e.

Prove it.1

In σ-finite spaces convergence a.e. implies local convergence in measure
by 5c1. And if µ is finite, then convergence a.e. implies L1-convergence (for
sets, of course).

7b2 Proposition. Let (X,S, µ) be a σ-finite measure space, and E ⊂ S a
generating algebra of sets.2 Then for every A ∈ S there exist E1, E2, · · · ∈ E
such that En → A a.e.

1Hint: simpler than the proof of 5c5.
2That is, the σ-algebra generated by E contains each set of S up to a null set.
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Proof. By 5b8, WLOG, µ(X) <∞. We endow S with the metric ρ(A,B) =
µ(A4B) (on equivalence classes of sets, of course), and consider the closure
E of E in S; that is, for A ∈ S

A ∈ E ⇐⇒ ∀ε > 0 ∃E ∈ E ρ(A,E) < ε ⇐⇒
⇐⇒ ∃E1, E2, · · · ∈ E ρ(A,En)→ 0 ;

clearly, E is closed (that is, equal to its closure). Therefore E is a monotone
class; by the Monotone class theorem 6b11, E = S.

Given A ∈ S, we take En ∈ E such that ρ(A,En) → 0, choose a subse-
quence (Enk

)k such that
∑

k ρ(A,Enk
) < ∞, and get A4Enk

→ ∅ a.e. by
7b1(a).

7b3 Remark. Instead of using the Monotone class theorem we may prove
that E is an algebra of sets (think, why) and therefore a σ-algebra by 6b10.

We say that µ is E-σ-finite if there exist E1, E2, · · · ∈ E such that µ(Ek) <
∞ and ∪kEk = X.

7b4 Exercise. Let E ⊂ S be a generating algebra of sets, and µ be E-σ-finite.
Then for every A ∈ S such that µ(A) <∞ and every ε > 0 there exists E ∈ E
such that m(A4E) < ε.

Prove it.1

A useful algebra E on R is generated by intervals. Dealing with Lebesgue
measure (or another nonatomic measure) we do not need to bother whether
intervals are open, closed or neither; but unbounded intervals are allowed.
Dealing with an arbitrary measure (possibly, with atoms) we define intervals
as connected subsets of R (including, among others, [a, b), [a, a] = {a}, ∅,
R). Taking into account that intersection of two intervals is an interval, and
the complement of an interval is the union of (at most) two intervals, we
conclude that E consists of all unions of finitely many (disjoint) intervals.

7b5 Corollary (of 7b4). (a) For every Lebesgue measurable A ⊂ R of finite
measure and every ε > 0 there exists E ∈ E such that m(A4E) < ε;

(b) the same holds for arbitrary locally finite measure on Rd. 2

Every (measurable) set is nearly a finite sum of intervals. (Littlewood)3

1Hint: WLOG, µ(X) <∞; use 7b2.
2As before, by a measure on Rd we mean a (completed) measure on the Borel σ-algebra.
3See Tao, Sect. 1.3.5; Stein & Shakarchi Sect. 4.3; Wikipedia, “Littlewood’s three

principles of real analysis”.

http://en.wikipedia.org/wiki/Littlewood's_three_principles_of_real_analysis
http://en.wikipedia.org/wiki/Littlewood's_three_principles_of_real_analysis
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7b6 Example. The claim 7b5(b) can fail for a σ-finite measure. There
exists a σ-finite measure µ on [0, 1] such that µ

(
(a, b)

)
= ∞ whenever 0 ≤

a < b ≤ 1 and µ
(
{a}
)

= 0 for all a ∈ [0, 1]. We take µ = f 2 · m with
integrable f : [0, 1]→ [0,∞) that is nowhere square integrable. For example,
f(x) =

∑
k ck|x − xk|−1/2 where

∑
k |ck| < ∞ and xk ∈ [0, 1] are a dense

sequence.

7c Approximation of functions

Let (X,S, µ) be a σ-finite measure space, and E ⊂ S a generating algebra of
sets. A function f : X → R will be called E-simple, if f(X) ⊂ R is finite,
and f−1(y) ∈ E for each y ∈ f(X). Note that f is E-simple if and only if f
is a linear combination of indicators 1lE for E ∈ E . 1

7c1 Proposition. For every f ∈ L0(µ) there exist E-simple functions f1, f2, . . .
such that fn → f locally in measure.

Proof. The closure, in L0(µ), of the vector space of all E-simple functions is
a closed vector subspace of L0(µ). By 7b2, this subspace contains 1lA for all
A ∈ S. Therefore it contains all simple (not just E-simple!) functions, and
their limits; these are the whole L0(µ) (recall the paragraph before 4c15).

7c2 Proposition. If µ is E-σ-finite then, for every p ∈ [1,∞), E-simple
functions of Lp(µ) are dense in Lp(µ).

Proof. Approximating a given f ∈ Lp(µ) by f1lE where E ∈ E and µ(E) <
∞, we may assume WLOG that µ(X) < ∞. Similarly to the proof of 7c1,
the closure in Lp(µ) of E-simple functions contains all simple functions (of
Lp(µ)). Given f ∈ Lp(µ), we take simple f1, f2, · · · ∈ Lp(µ) such that fn → f
a.e., and |fn| ≤ |f | a.e. (think, how); then fn → f in Lp(µ) by the Dominated
Convergence Theorem 5d1, since |fn − f |p ≤ (2|f |)p.

When E is the algebra (on R) generated by intervals, E-simple functions
with bounded support are step functions.

7c3 Corollary. For every p ∈ [1,∞),
(a) step functions are dense in Lp(R);
(b) the same holds for Rd with arbitrary locally finite measure.

Every function (of class Lp) is nearly a step function.

1Recall the finite subalgebras treated in the proof of 6b7.
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7c4 Exercise. (a) Lp(Rd, µ) is separable1 for arbitrary p ∈ [1,∞) and
σ-finite µ;

(b) this claim can fail if µ is not σ-finite;
(c) L∞[0, 1] is not separable.2

Prove it.3

7c5 Corollary. The Hilbert space L2(Rd, µ) has a (finite or) countable or-
thonormal basis (and therefore, is either finite-dimensional or isomorphic to
l2), provided that µ is σ-finite.

7c6 Exercise. For every p ∈ [1,∞),
(a) compactly supported continuous functions are dense in Lp(R);
(b) the same holds for R with arbitrary locally finite measure;
(c) the same holds for Rd with arbitrary locally finite measure;
(d) this claim can fail for a σ-finite measure.

Prove it.4

Thus, in 7c5 one can find a basis that consists of compactly supported
continuous functions, provided that µ is locally finite.

Every function (of class Lp) is nearly continuous. (Littlewood)

7d Introduction to convolution

7d1 Definition. The convolution µ ∗ ν of two σ-finite measures µ, ν on Rd

is the pushforward measure of the product measure µ × ν under the map
Rd × Rd 3 (x, y) 7→ x+ y ∈ Rd.

That is,
(µ ∗ ν)(B) = (µ× ν)

(
{(x, y) : x+ y ∈ B}

)
for all Borel sets B ⊂ Rd.

Clearly, the convolution is positively bilinear: µ∗(ν1 +ν2) = µ∗ν1+µ∗ν2
etc. Also, (µ ∗ ν)(Rd) = µ(Rd)ν(Rd). The convolution of finite measures is a
finite measure. But the convolution of σ-finite measures need not be σ-finite

1That is, contains some (finite or) countable dense subset.
2And what do you think about a necessary and sufficient condition for separability of

L∞(Rd, µ)?
3Hint: (a) WLOG µ is finite; (b) try the counting measure; (c) think about ‖1l[0,a] −

1l[0,b]‖∞.
4Hint: (a) approximate 1l[a,b]; (b) and (c) mind the endpoints; (d) recall 3f2.
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(and indeed, md ∗md is not).1 Rather, it is the sum of countably many finite
measures.

Probabilistically, for probability measures on R,

PX+Y = PX ∗ PY for independent random variables X, Y ,

and the same holds for d-dimensional random vectors. In this case commu-
tativity and associativity suggest themselves:

PX ∗ PY = PX+Y = PY+X = PY ∗ PX ;

(PX ∗ PY ) ∗ PZ = P(X+Y )+Z = PX+(Y+Z) = PX ∗ (PY ∗ PZ) .

Commutativity holds in general:

(µ ∗ ν)(B) = (µ× ν){(x, y) : x+ y ∈ B} = (µ× ν){(y, x) : x+ y ∈ B} =

= (ν × µ){(x, y) : x+ y ∈ B} = (ν ∗ µ)(B) .

Associativity is more problematic, since µ ∗ ν need not be σ-finite.

7d2 Exercise. (a) Multiplication of measure spaces is associative. That is, if
(X,S1, µ), (Y, S2, ν), (Z, S3, ξ) are σ-finite measure spaces, then

(
(X,S1, µ)×

(Y, S2, ν)
)
× (Z, S3, ξ) = (X,S1, µ) ×

(
(Y, S2, ν) × (Z, S3, ξ)

)
. (As usual, we

treat ((x, y), z) and (x, (y, z)) as just (x, y, z).)
(b) Let (X,S1, µ), (Y, S2, ν), (Z, S3, ξ) be σ-finite measure spaces, and ϕ :

X → Y a measure preserving map (that is, measurable, and ϕ∗µ = ν). Then
ϕ×id : X×Z → Y×Z is a measure preserving map from (X,S1, µ)×(Z, S3, ξ)
to (Y, S2, ν)× (Z, S3, ξ). (Here (ϕ× id)(x, z) = (ϕ(x), z), of course.)

(c) If σ-finite measures µ, ν, ξ on Rd are such that µ ∗ ν and ν ∗ ξ are
σ-finite, then (µ ∗ ν) ∗ ξ = µ ∗ (ν ∗ ξ).
Prove it.2

Each measurable function f : Rd → [0,∞] leads to a measure f ·m; this
measure is σ-finite if and only if f is finite a.e. (think, why); and the map
[f ] 7→ f ·m is one-to-one by 7a4 (but not onto, of course). In this sense we
may treat functions as (special) measures and write, say, “µ ∗ f” instead of
“µ ∗ (f · m)”. If this µ ∗ f appears to be some g · m, then we may write
“µ ∗ f = g”; such g is unique, but does it exist? Yes, always!

1Another example, with µ finite and ν locally finite on R: µ =
(
x 7→ 1

1+x2

)
·m1 and

ν =
(
x 7→ x2

)
·m1.

2Hint: (a) it is sufficient to check product sets in Y ×Z; (b) apply (a) to ((x, y), z) 7→
(x+ y, z).
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7d3 Proposition. For every measurable function f : Rd → [0,∞) and every
σ-finite measure µ on Rd,

µ ∗ (f ·m) = g ·m where g : y 7→
∫
f(y − ·) dµ ∈ [0,∞] .

Proof. We prove, for arbitrary Borel h : Rd → {0, 1}, that∫
h d
(
µ ∗ (f ·m)

)
=
∫
h d(g ·m), that is,∫ (

(x, y) 7→ h(x+ y)
)

d
(
µ× (f ·m)

)
=

∫
gh dm.

By Tonelli theorem 6b15 the left-hand side is
∫ (
x 7→

∫
h(x+ ·) d(f ·m)

)
dµ.

Taking into account that
∫
h(x + ·) d(f · m) =

∫
f(·)h(x + ·) dm =∫

f(· − x)h(·) dm (due to the shift invariance of Lebesgue measure m) we
get (by Tonelli again)∫ (

x 7→
∫
f(· − x)h(·) dm

)
dµ =

=

∫ (
(x, y) 7→ f(y − x)h(y)

)
d(µ×m) =

=

∫ (
y 7→ h(y)

∫
f(y − ·) dµ

)
dm =

∫
gh dm.

We define the convolution µ ∗ f of a σ-finite measure µ on Rd and a
measurable function f : Rd → [0,∞) by

(7d4) (µ ∗ f)(x) =

∫
f(x− ·) dµ ∈ [0,∞] ,

and get µ ∗ (f ·m) = (µ ∗ f) ·m. The function µ ∗ f is finite a.e. if and only
if the measure µ ∗ (f ·m) is σ-finite. The equality (µ ∗ ν)(Rd) = µ(Rd)ν(Rd)
gives ∫

µ ∗ f dm = µ(Rd)

∫
f dm.

If f = 0 a.e., then µ ∗ f = 0 a.e. (since the integral vanishes). Thus, the
equivalence class of µ ∗ f is uniquely determined by (µ and) the equivalence
class of f . 1

1If f1 = f2 outside a null set Z, then f1 +∞1lZ = f2 +∞1lZ .
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Probabilistically, if a random variable Y independent of X has a density
pY (that is, PY = pY ·m), then X + Y has the density

pX+Y = PX ∗ pY .

Also,
pX+Y (z) = E pY (z −X) ,

which is a special case of the equality

(PX ∗ f)(z) = E f(z −X) .

Associativity 7d2(c) implies

(7d5) (µ ∗ ν) ∗ f = µ ∗ (ν ∗ f) a.e.

whenever µ ∗ ν and ν ∗ (f ·m) are σ-finite (that is, ν ∗ f is finite a.e).
For measurable f : Rd → R and σ-finite µ we define µ ∗ f : Rd → R by

(7d6) (µ ∗ f)(x) =

∫
f(x− ·) dµ ∈ R

provided that f(x − ·) is µ-integrable for almost all x (otherwise µ ∗ f is
undefined). Clearly, (7d6) is consistent with (7d4), and now µ ∗ f is linear in
f (and still positively linear in µ); it means, if µ ∗ f1 and µ ∗ f2 are defined,
then µ ∗ (f1 − f2) = µ ∗ f1 − µ ∗ f2, etc. Associativity (7d5) still holds,
whenever both sides are defined (since it holds for f+ and f−).

If µ = g·m for some g : Rd → [0,∞), then
∫
f(x−·) dµ =

∫
f(x− ·)g(·) dm.

We define the convolution f ∗ g of functions f, g : Rd → R by

(g ∗ f)(x) =

∫
f(x− ·)g(·) dm

provided that f(x−·)g(·) is m-integrable for almost all x, and get (g ·m)∗f =
g ∗ f . Commutativity gives f ∗ g = g ∗ f (take f+, f−, g+, g−). Associativity
gives (f ∗ g) ∗ h = f ∗ (g ∗ h) whenever both sides are defined.

If µ is purely atomic, µ(A) =
∑

yk∈A pk, then (µ∗f)(x) =
∑

k pkf(x−yk)
is a linear combination of shifts of f .

It follows that ‖µ∗f‖p ≤ ‖f‖pµ(R) for arbitrary p ∈ [1,∞] (and moreover,
the same holds for every shift-invariant norm) provided that µ is purely
atomic. But also if it is not!

7d7 Proposition. For every finite measure µ on R and every f ∈ Lp(m)
the function µ ∗ f is defined, and

‖µ ∗ f‖p ≤ ‖f‖p µ(R) .
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7d8 Lemma (Jensen inequality). Let (X,S, µ) be a probability space, ϕ :
R→ R a convex function, and f ∈ L1(µ); then

ϕ

(∫
X

f dµ

)
≤
∫
X

ϕ ◦ f dµ ∈ (−∞,+∞] .

Proof. By convexity, there exist a, b ∈ R such that ϕ(u) ≥ au + b for all
u, and ϕ(u) = au + b for u =

∫
X
f dµ. Then ϕ ◦ f ≥ af + b, whence∫

(ϕ ◦ f)− ≤
∫

(af + b)− < ∞, and ϕ
(∫

X
f dµ

)
= a

∫
X
f dµ + b =

∫
X

(af +
b) dµ ≤

∫
X
ϕ ◦ f dµ.

For 0 < µ(X) <∞ (instead of µ(X) = 1) we get

ϕ

(
1

µ(X)

∫
X

f dµ

)
≤ 1

µ(X)

∫
X

ϕ ◦ f dµ .

Proof of Prop. 7d7. WLOG, µ(R) = 1. We have |f |p ∈ L1(m), therefore
µ ∗ |f |p is defined, and

∫
µ ∗ |f |p dm =

∫
|f |p dm = ‖f‖pp. For almost every

x the function |f(x − ·)|p is µ-integrable, that is, f(x − ·) ∈ Lp(µ); by 5f4,
f(x− ·) ∈ L1(µ), which shows that µ ∗ f is defined.

Applying 7d8 to f(x − ·) (and ϕ(·) = | · |p) we get
∣∣ ∫ f(x − ·) dµ

∣∣p ≤∫
|f(x− ·)|p dµ; |(µ ∗ f)(x)|p ≤ (µ ∗ |f |p)(x); |µ ∗ f |p ≤ µ ∗ |f |p a.e.; thus,∫

|µ ∗ f |p dm ≤
∫
µ ∗ |f |p dm =

∫
|f |p dm.

We see that f ∗ g ∈ Lp whenever f ∈ L1 and g ∈ Lp.1

7e Approximation by convolution

7e1 Proposition. Let probability measures µ1, µ2, . . . on Rd satisfy ∀ε > 0
µn
(
{x : |x| < ε}

)
→ 1 as n → ∞. Then for every p ∈ [1,∞) and every

f ∈ Lp(md)
‖f − µn ∗ f‖p → 0 as n→∞ .

Proof. First, let f be continuous and compactly supported, therefore, uni-
formly continuous. Given ε we take δ such that |x − y| ≤ δ =⇒ |f(x) −

1In fact, f ∗ g is defined whenever f ∈ Lp, g ∈ Lq and 1
p + 1

q ≥ 1; moreover, f ∗ g ∈ Lr

whenever f ∈ Lp, g ∈ Lq and 1
p + 1

q − 1 = 1
r . See Jones, Chapter 12(B).
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f(y)| ≤ ε, and N such that n ≥ N =⇒ µn
(
{x : |x| < δ}

)
≥ 1− ε. Then

|f(x)−(µn∗f)(x)| =
∣∣∣∣f(x)−

∫
f(x−·) dµn

∣∣∣∣ =

∣∣∣∣ ∫ (f(x)−f(x−·)
)

dµn

∣∣∣∣ ≤
≤
∫
|f(x)− f(x− ·)| dµn =

∫
|x|<δ

(. . . ) +

∫
|x|≥δ

(. . . ) ≤ ε+ 2εmax |f |

for all x and all n ≥ N .
Second, for arbitrary f ∈ Lp(md) and ε > 0, by 7c6 there exists a contin-

uous compactly supported g such that ‖f − g‖p ≤ ε. For n large enough,

‖f − µn ∗ f‖p = ‖f − g‖p + ‖g − µn ∗ g‖p + ‖µn ∗ g − µn ∗ f‖p ≤ ε+ ε+ ε

by the first part of the proof, since ‖µn ∗ (g − f)‖p ≤ ‖g − f‖p by 7d7.

The convergence µn ∗ f → f is not uniform in f such that ‖f‖p ≤ 1. For
example, on R the function f : x 7→ sinnx turns into (−f) being shifted by
π
n
.

In particular, we may take the uniform distribution on [− 1
n
, 1
n
] as µn, then

µn ∗ f are continuous (recall (5d4)), and we get 7c6(a) again. But we can do
more.

7e2 Lemma. If µ is a compactly supported finite measure on Rd and f ∈
C(Rd), then µ ∗ f ∈ C(Rd).

Proof. If xn → x, then
∫
f(xn − ·) dµ →

∫
f(x − ·) dµ due to the uniform

convergence of the integrand on the support of µ.

7e3 Lemma. If µ is a compactly supported finite measure on Rd and f ∈
C1(Rd), then µ ∗ f ∈ C1(Rd).

Proof. For arbitrary x,∫
f(x+ h− ·) dµ =

∫ (
f(x− ·) + 〈∇f(x− ·), h〉+ o(h)

)
dµ

where o(h)
|h| → 0 uniformly (due to the uniform continuity of ∇f) on the

support of µ; thus,

(µ ∗ f)(x+ h) = (µ ∗ f)(x) +
(
µ ∗ 〈∇f, h〉

)
(x) + o(h) ,

which shows that ∇(µ ∗ f) = µ ∗ ∇f , that is, Di(µ ∗ f) = µ ∗ Dif for
i = 1, . . . , d.
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7e4 Corollary. By induction, f ∈ Cn(Rd) implies µ ∗ f ∈ Cn(Rd), and
Di1 . . . Din(µ ∗ f) = µ ∗Di1 . . . Dinf for all i1, . . . , in ∈ {1, . . . , d}.

7e5 Corollary. If f is a polynomial of degree ≤ n, then µ∗f is a polynomial
of degree ≤ n (since its (n+ 1)-th derivatives vanish).

(In 7e4 and 7e5 we still assume that µ is finite and compactly supported.)
It is easy to find functions gn ∈ Cn(Rd) that vanish outside the ball

{x : |x| < 1} and satisfy gn ≥ 0,∫
Rd

gn dm = 1 , ∀ε > 0

∫
|·|<ε

gn dm→ 1 ;

for example,

gn(x) =

{
constn,d(1− |x|2)n+1 for |x| ≤ 1,

0 otherwise.

Now, given p ∈ [1,∞) and f ∈ Lp(md), we approximate f by fn = f ∗ gn; by
7e1, fn → f in Lp(md); and by 7e4, fn ∈ Cn(Rd).

7e6 Remark. You may wonder, whether a measure µ can be thought of as
the limit of functions µ∗gn. Yes, in some sense it can. If µ is a finite measure
on Rd and pn = µ ∗ gn, then for every bounded continuous f : Rd → R,∫

fpn dm→
∫
f dµ as n→∞

(since functions f ∗ gn are uniformly bounded and converge to f). This is
the so-called narrow convergence1 of measures: pn ·m→ µ. However, it does
not mean that (pn ·m)(B)→ µ(B) for Borel sets B.

We may also consider polynomials

Pn(x) = constn,d(1− |x|2)n+1 for x ∈ Rd ,

the ball B = {x : |x| ≤ 1/2} ⊂ Rd, and a function f ∈ Lp(B) extended by 0
outside B. Then f ∗ Pn = f ∗ gn on B (since Pn = gn on B −B), and f ∗ Pn
is a polynomial (by 7e5).

We see that polynomials are dense in Lp on a bounded measurable subset
of Rd. But we’ll get more.

1Or “weak convergence”, or “weak∗ convergence”.
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7e7 Exercise. Let a function f : Rd → R vanish outside B = {x : |x| ≤
1/2}, and fn = f ∗ Pn.

(a) If f ∈ C(Rd), then f ∗ Pn → f in C(B) (that is, uniformly on B).
(b) If f ∈ Ck(Rd), then f ∗ Pn → f in Ck(B) (that is, uniformly on B,

with all derivatives of order ≤ k).
Prove it.

7e8 Corollary (of 7e7(a) and 7c6(c)). Let µ be a finite compactly supported
measure on Rd.

(a) Polynomials are dense in Lp(µ) for every p ∈ [1,∞).
(b) There exists an orthonormal basis of L2(µ) consisting of polynomials.

However, this claim can fail for measures without compact support (try
Lebesgue measure), for σ-finite measures (recall 3f2), and for p = ∞ (recall
7c4(b)).

7e9 Exercise. Let G ⊂ Rd be an open set, and f : G→ R.
(a) If G is bounded, f is bounded, and f is continuous, then there exist

polynomials fn such that fn → f uniformly on compacta (that is, uniformly
on every compact subset of G). Prove it.

(b) Does (a) hold if f is unbounded? if G is unbounded? if both are
unbounded?

7e10 Exercise. Let B = {x ∈ Rd : |x| ≤ 1} and f : B → R.
(a) If f ∈ C(B), then there exist polynomials fn such that fn → f in

C(B).
(b) If f ∈ Ck(B), then there exist polynomials fn such that fn → f in

Ck(B).
Prove it.1

Polynomials of a given degree are a shift-invariant finite-dimensional vec-
tor space of functions on Rd. Interestingly, each k ∈ Rd leads to a two-
dimensional shift-invariant space of functions

{x 7→ a cos〈k, x〉+ b sin〈k, x〉 : a, b ∈ R} ;

or rather, a pair {−k, k} for k 6= 0 leads to a two-dimensional space, and a
single point k = 0 to a one-dimensional space. Even better, we may turn to
complex-valued functions and get a one-dimensional space

{x 7→ cei〈k,x〉 : c ∈ C} ,
1Hint: fε(x) = f

(
(1− ε)x

)
.
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cei〈k,x〉 = (a+ bi)(cos〈k, x〉+ i sin〈k, x〉). Shift invariance leads to convolution
invariance: for fk : x 7→ ei〈k,x〉 and a finite measure µ on Rd we have

µ ∗ fk =

(∫
e−i〈k,·〉 dµ

)
fk ,

since
∫
fk(x− ·) dµ =

∫
ei〈k,x−·〉 dµ = ei〈k,x〉

∫
e−i〈k,·〉 dµ.

We restrict ourselves to k ∈ Zd and 2π-periodic (on each coordinate)
functions. Linear combinations

x 7→ c1e
i〈k1,x〉 + · · ·+ cnei〈kn,x〉

are called trigonometric polynomials. They are an algebra of functions (since
ei〈k1,x〉ei〈k2,x〉 = ei〈k1+k2,x〉).

Given a function f ∈ Lp
(
(−π, π)d

)
, we may extend it to Rd by 2π-pe-

riodicity, and this extended function may be thought of as the convolution
ν2πZd ∗ f of the counting measure ν2πZd on the lattice 2πZd and f (this time
f is treated as 0 outside (−π, π)d). By the “periodic” convolution f ∗2π g of
two such functions f, g we mean the restriction to (−π, π)d of the 2π-periodic
function1

(ν2πZd ∗ f) ∗ g = f ∗ (ν2πZd ∗ g) .

We introduce trigonometric polynomials

Pn(x1, . . . , xd) = constn,d(1 + cos x1)
n . . . (1 + cos xd)

n

choosing the constants such that
∫
(−π,π)d Pn dµ = 1. Similarly to the algebraic

case, for every f ∈ Lp
(
(−π, π)d

)
the trigonometric polynomials fn = Pn ∗2π f

satisfy fn → f in Lp
(
(−π, π)d

)
. Similarly to 7e8 we conclude that trigono-

metric polynomials are dense in Lp
(
(−π, π)d

)
for every p ∈ [1,∞), and there

exists an orthonormal basis of L2

(
(−π, π)d

)
consisting of trigonometric poly-

nomials. In contrast to the algebraic case, here one such basis suggests itself:
just

{x 7→ (2π)−d/2ei〈k,x〉 : k ∈ Zd} ,

since these functions are evidently orthogonal! And for the real-valued func-
tions, the basis consists of the constant function (2π)−d/2 and functions
x 7→ (2π)−d/2

√
2 cos〈k, x〉, x 7→ (2π)−d/2

√
2 sin〈k, x〉 where k runs over a

half of Zd \ {0} in the sense that one element should be chosen in each pair
{−k, k}.

1This is the convolution on the torus Rd/2πZd, in disguise.
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7f Outside a small set

A null set can be ignored in Lebesgue’s theory; but the terrible function of
Sect. 7a is equally terrible outside any null set. It is natural to ask, what can
be achieved by excluding a set of small measure.

7f1 Theorem (Lusin1). Let A ⊂ Rd be a measurable set, m(A) < ∞, and
f : A → R a measurable function. Then for every ε > 0 there exists a
compact set K ⊂ A such that m(A \ K) < ε and the restriction f |K is
continuous (on K).2

7f2 Theorem (Egorov3). Let (X,S, µ) be a measure space, µ(X) <∞, and
f1, f2, · · · : X → R measurable functions such that fn → 0 a.e. Then for
every ε > 0 there exists a set E ∈ S such that µ(X \ E) < ε and fn → 0
uniformly on E.

Every convergent sequence of functions is nearly uniformly convergent.
(Littlewood)

Proof of Th. 7f2. Similar to the proof of 5c1.
First, we consider monotone convergence: fn ↓ 0 a.e. For every δ > 0

we have µ{x : fn(x) > δ} ↓ 0. We choose εk > 0 such that
∑

k εk ≤ ε, and
δk → 0. For each k we take nk such that

µ {x : fnk
(x) > δk}︸ ︷︷ ︸
Ek

≤ εk .

The set E = ∪kEk satisfies µ(E) ≤ ε, and supx∈X\E fn(x) ≤ δk whenever
n ≥ nk, which shows that fn → 0 uniformly on X \ E.

Second, the general case (fn → 0 a.e.) reduces to the monotone case by
taking hn = sup(|fn|, |fn+1|, . . . ) and noting that |fn| ≤ hn ↓ 0 a.e.

Proof of Th. 7f1. WLOG, f is bounded (otherwise, replace A with {x ∈
A : |f(x)| ≤ n} where n satisfies m{x ∈ A : |f(x)| > n} < ε/2). By
7c6(a) there exist continuous fn : Rd → R such that fn → f in L1(A).
WLOG, fn → f a.e. on A (choose a subsequence, as in 5c5). Th. 7f2 gives a
measurable E ⊂ A such that m(A \ E) < ε/2 and fn → f uniformly on E.
Regularity 2c3 gives a compact K ⊂ E such that m(E \K) < ε/2. Finally,
the limit f |K of uniformly convergent sequence of continuous functions fn|K
is continuous.

1Or “Lizin”.
2It does not mean that “the whole f” is continuous at every point of K.
3Or “Severini-Egorov”, or “Egoroff”.
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7f3 Exercise. Let (X,S, µ) be a σ-finite measure space, and f1, f2, · · · :
X → R measurable functions such that fn → 0 a.e. Then there exist sets
E1, E2, · · · ∈ S such that µ(X \ ∪iEi) = 0 and fn → 0 uniformly on each Ei.

Prove it.

7f4 Exercise. Let µ be a locally finite measure on Rd, and f : Rd → R
a µ-measurable function. Then there exist compact sets K1, K2, · · · ⊂ Rd

such that µ(Rd \∪iKi) = 0 and the restriction f |Ki
is continuous (on Ki) for

each i.
Prove it.
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