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8a Proper Riemann integral2

Recall that a function f : R → R is Riemann integrable if and only if for
every ε > 0 there exist step functions3 g, h : R → R such that g ≤ f ≤ h
and

∫
h−

∫
g ≤ ε. Equivalently: the lower integral supg≤f

∫
g and the upper

integral infh≥f
∫
h are equal (and finite). In this case their common value is

the Riemann integral
∫
f .

For Riemann integrability it is necessary (and far not sufficient) that f is
bounded and has a bounded support.

8a1 Proposition. Every Riemann integrable function is Lebesgue inte-
grable, with the same integral.

Proof. We take step functions gn ≤ f , hn ≥ f such that
∫
gn →

∫
f and∫

hn →
∫
f . WLOG, gn ↑ g and hn ↓ h (otherwise, use max(g1, . . . , gn)

and min(h1, . . . , nn)). Taking into account that g1 ≤ gn ≤ hn ≤ h1 and
g1, h1 ∈ L1 we get

∫
gn dm ↑

∫
g dm and

∫
hn dm ↓

∫
h dm. Thus, g ≤ f ≤ h

and
∫
g dm =

∫
h dm. Therefore f ∈ L1 and

∫
f dm = limn

∫
gn dm =

limn

∫
gn =

∫
f .

All said generalizes readily to functions Rd → R.

8b Lebesgue’s criterion for Riemann integrability4

8b1 Proposition. A bounded function f : R→ R with bounded support is
Riemann integrable if and only if it is continuous almost everywhere.5

1See also Jones, Sect. 7A; Capiński & Kopp, Sect. 4.5.
2“Bernhard Riemann was not the first to define the concept of a definite integral.

However, he was the first to apply a definition of integration to any function, without first
specifying what properties the function has.” (Jones, p. 161)

3By definition, a step function has a finite number of steps.
4“It is due to Lebesgue (who lived 1875–1941). However, Riemann actually gave a

very similar condition in his 1854 paper.” (Jones, p. 163)
5Not to be confused with “equal a.e. to a continuous function”; the latter condition is

neither necessary nor sufficient (think, why).
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Proof. “Only if”: given a Riemann integrable f , we take step functions
gn ↑ g and hn ↓ h as in the proof of 8a1 and note that g = h a.e. (since∫

(h− g) dm = 0). For almost every x we have

gn(x) ↑ f(x) , hn(x) ↓ f(x) , and

for every n, gn and hn are continuous at x .

By sandwich, it follows that f is continuous at x (think, why).
“If”: given that f is a.e. continuous, we define step functions gn, hn by

gn(x) = inf
t∈I

f(t) for x ∈ I , hn(x) = sup
t∈I

f(t) for x ∈ I

where I runs over binary intervals [2−nk, 2−n(k+1)
)
, k ∈ Z. For almost every

x, f is continuous at x, which implies gn(x) ↑ f(x) and hn(x) ↓ f(x) (think,
why). Thus, hn − gn ↓ 0 a.e.; also, h1 − g1 ∈ L1; therefore

∫
hn −

∫
gn =∫

(hn − gn) dm→ 0, which shows that f is Riemann integrable.

All said generalizes readily to functions Rd → R.

“This aesthetically pleasing integrability criterion has little practical value”
(Bichteler).1 Well, if you use it when proving simple facts, such as integrabil-
ity of 3

√
f or fg (for integrable f and g), you may find far more elementary,

“Lebesgue-free” proofs. But here are harder cases.

8b2 Exercise. Consider functions f : [0, 1]→ R such that the function

mid(−M, f,M) : x 7→


−M when f(x) ≤ −M,

f(x) when −M ≤ f(x) ≤M,

M when M ≤ f(x)

is integrable for all M > 0. Prove that the sum of two such functions is also
such function.

8b3 Exercise. Let f, g : [0, 1] → R be Riemann integrable, A ⊂ R2, ∀x ∈
[0, 1]

(
f(x), g(x)

)
∈ A, and ϕ : A→ R continuous and bounded.2 Then the

function x 7→ ϕ
(
f(x), g(x)

)
is Riemann integrable.

Prove it.

1From book “Integration — a functional approach” by Klaus Bichteler (1998); see
Exercise 6.16 on p. 27.

2The set A need not be closed, and ϕ need not be (locally) uniformly continuous.
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8b4 Exercise. Let f : [0, 1] × [0, 1] → R be bounded and such that all
sections f(x, ·) and f(·, y) are Riemann integrable. Then

(a) f need not be Riemann integrable;
(b) f must be Lebesgue integrable.

Prove it.1

8c Improper Riemann integral

As was noted in Sect. 1b, a conditionally convergent improper Riemann in-
tegral (like

∫∞
0

sinx
x

dx = π
2
) is beyond Lebesgue integration. An absolutely

convergent improper Riemann integral of a function f : R → R continuous
a.e. is

∫
f+ −

∫
f−. Thus, consider a function f : R → [0,∞) continuous

a.e. By 8b1 the Riemann integral
∫

1l[−M,M ] min
(
M, f(x)

)
dx exists for all

M ∈ (0,∞). We have
∫

1l[−M,M ] min
(
M, f(x)

)
dx ↑

∫
f(x) dx (as M → ∞),

the improper Riemann integral of f ; if (and only if) it is finite, the unsigned
function f is improperly Riemann integrable. Now, f : R→ R is (absolutely)
improperly Riemann integrable, if (and only if) f−, f+ are, and in this case∫
f =

∫
f+ −

∫
f−.

8c1 Proposition. Every (absolutely) improperly Riemann integrable func-
tion is Lebesgue integrable, with the same integral.

Proof. WLOG, f ≥ 0. We introduce fn = 1l[−n,n] min(n, f) and note that
fn ↑ f and

∫
fn ↑

∫
f <∞. By 8a1, fn ∈ L1 and

∫
fn dm =

∫
fn; thus, f is

measurable, and
∫
fn dm ↑

∫
f dm, and so,

∫
f dm =

∫
f .

All said generalizes readily to functions Rd → R.

1Hint: (a) try indicator of an appropriate dense countable set; (b) fn(x, y) = f( k
n , y)

for k
n ≤ x < k+1

n .
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