8 Relation to the Riemann integral¹

8a	Proper Riemann integral	90
8b	Lebesgue's criterion for Riemann integrability .	90
8c	Improper Riemann integral	92

8a Proper Riemann integral²

Recall that a function $f : \mathbb{R} \to \mathbb{R}$ is Riemann integrable if and only if for every $\varepsilon > 0$ there exist step functions³ $g, h : \mathbb{R} \to \mathbb{R}$ such that $g \leq f \leq h$ and $\int h - \int g \leq \varepsilon$. Equivalently: the lower integral $\sup_{g \leq f} \int g$ and the upper integral $\inf_{h \geq f} \int h$ are equal (and finite). In this case their common value is the Riemann integral $\int f$.

For Riemann integrability it is necessary (and far not sufficient) that f is bounded and has a bounded support.

8a1 Proposition. Every Riemann integrable function is Lebesgue integrable, with the same integral.

Proof. We take step functions $g_n \leq f$, $h_n \geq f$ such that $\int g_n \to \int f$ and $\int h_n \to \int f$. WLOG, $g_n \uparrow g$ and $h_n \downarrow h$ (otherwise, use $\max(g_1, \ldots, g_n)$) and $\min(h_1, \ldots, n_n)$). Taking into account that $g_1 \leq g_n \leq h_n \leq h_1$ and $g_1, h_1 \in L_1$ we get $\int g_n dm \uparrow \int g dm$ and $\int h_n dm \downarrow \int h dm$. Thus, $g \leq f \leq h$ and $\int g dm = \int h dm$. Therefore $f \in L_1$ and $\int f dm = \lim_n \int g_n dm = \lim_n \int g_n dm$.

All said generalizes readily to functions $\mathbb{R}^d \to \mathbb{R}$.

8b Lebesgue's criterion for Riemann integrability⁴

8b1 Proposition. A bounded function $f : \mathbb{R} \to \mathbb{R}$ with bounded support is Riemann integrable if and only if it is continuous almost everywhere.⁵

¹See also Jones, Sect. 7A; Capiński & Kopp, Sect. 4.5.

 $^{^{2}}$ "Bernhard Riemann was not the first to define the concept of a definite integral. However, he was the first to apply a definition of integration to any function, without first specifying what properties the function has." (Jones, p. 161)

³By definition, a step function has a finite number of steps.

 $^{^4}$ "It is due to Lebesgue (who lived 1875–1941). However, Riemann actually gave a very similar condition in his 1854 paper." (Jones, p. 163)

⁵Not to be confused with "equal a.e. to a continuous function"; the latter condition is neither necessary nor sufficient (think, why).

Proof. "Only if": given a Riemann integrable f, we take step functions $g_n \uparrow g$ and $h_n \downarrow h$ as in the proof of 8a1 and note that g = h a.e. (since $\int (h-g) dm = 0$). For almost every x we have

$$g_n(x) \uparrow f(x)$$
, $h_n(x) \downarrow f(x)$, and
for every n , g_n and h_n are continuous at x

By sandwich, it follows that f is continuous at x (think, why).

"If": given that f is a.e. continuous, we define step functions g_n, h_n by

$$g_n(x) = \inf_{t \in I} f(t)$$
 for $x \in I$, $h_n(x) = \sup_{t \in I} f(t)$ for $x \in I$

where *I* runs over binary intervals $[2^{-n}k, 2^{-n}(k+1))$, $k \in \mathbb{Z}$. For almost every x, f is continuous at x, which implies $g_n(x) \uparrow f(x)$ and $h_n(x) \downarrow f(x)$ (think, why). Thus, $h_n - g_n \downarrow 0$ a.e.; also, $h_1 - g_1 \in L_1$; therefore $\int h_n - \int g_n = \int (h_n - g_n) dm \to 0$, which shows that f is Riemann integrable. \Box

All said generalizes readily to functions $\mathbb{R}^d \to \mathbb{R}$.

"This aesthetically pleasing integrability criterion has little practical value" (Bichteler).¹ Well, if you use it when proving simple facts, such as integrability of $\sqrt[3]{f}$ or fg (for integrable f and g), you may find far more elementary, "Lebesgue-free" proofs. But here are harder cases.

8b2 Exercise. Consider functions $f:[0,1] \to \mathbb{R}$ such that the function

$$\operatorname{mid}(-M, f, M) : x \mapsto \begin{cases} -M & \text{when } f(x) \leq -M, \\ f(x) & \text{when } -M \leq f(x) \leq M, \\ M & \text{when } M \leq f(x) \end{cases}$$

is integrable for all M > 0. Prove that the sum of two such functions is also such function.

8b3 Exercise. Let $f, g : [0, 1] \to \mathbb{R}$ be Riemann integrable, $A \subset \mathbb{R}^2$, $\forall x \in [0, 1]$ $(f(x), g(x)) \in A$, and $\varphi : A \to \mathbb{R}$ continuous and bounded.² Then the function $x \mapsto \varphi(f(x), g(x))$ is Riemann integrable.

Prove it.

 $^{^1\}mathrm{From}$ book "Integration — a functional approach" by Klaus Bichteler (1998); see Exercise 6.16 on p. 27.

²The set A need not be closed, and φ need not be (locally) uniformly continuous.

_

8b4 Exercise. Let $f : [0,1] \times [0,1] \to \mathbb{R}$ be bounded and such that all sections $f(x, \cdot)$ and $f(\cdot, y)$ are Riemann integrable. Then

(a) f need not be Riemann integrable;

(b) f must be Lebesgue integrable.

Prove it.¹

8c Improper Riemann integral

As was noted in Sect. 1b, a conditionally convergent improper Riemann integral (like $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$) is beyond Lebesgue integration. An absolutely convergent improper Riemann integral of a function $f : \mathbb{R} \to \mathbb{R}$ continuous a.e. is $\int f^+ - \int f^-$. Thus, consider a function $f : \mathbb{R} \to [0, \infty)$ continuous a.e. By 8b1 the Riemann integral $\int \mathbb{1}_{[-M,M]} \min(M, f(x)) dx$ exists for all $M \in (0, \infty)$. We have $\int \mathbb{1}_{[-M,M]} \min(M, f(x)) dx \uparrow \int f(x) dx$ (as $M \to \infty$), the improper Riemann integral of f; if (and only if) it is finite, the unsigned function f is improperly Riemann integrable. Now, $f : \mathbb{R} \to \mathbb{R}$ is (absolutely) improperly Riemann integrable, if (and only if) f^-, f^+ are, and in this case $\int f = \int f^+ - \int f^-$.

8c1 Proposition. Every (absolutely) improperly Riemann integrable function is Lebesgue integrable, with the same integral.

Proof. WLOG, $f \ge 0$. We introduce $f_n = \mathbb{1}_{[-n,n]} \min(n, f)$ and note that $f_n \uparrow f$ and $\int f_n \uparrow \int f < \infty$. By 8a1, $f_n \in L_1$ and $\int f_n dm = \int f_n$; thus, f is measurable, and $\int f_n dm \uparrow \int f dm$, and so, $\int f dm = \int f$.

All said generalizes readily to functions $\mathbb{R}^d \to \mathbb{R}$.

¹Hint: (a) try indicator of an appropriate dense countable set; (b) $f_n(x,y) = f(\frac{k}{n},y)$ for $\frac{k}{n} \le x < \frac{k+1}{n}$.