820 * 'B. S. TSIREL'SON

[7] S. A. KOVYAZIN, A variant of the law of large numbers for random subsets of a space with an
atomless measure, Preprint VTs SO Akad. Nauk SSSR, Krasnoyarsk, 1983, no. 1, pp. 8-9.
(In Russian.)

(8] A. 1. OrRLOV, Random sets: laws of large numbers and the testing of statistical hypotheses, Theory
Prob. Appl., 23 (1978), pp.

[9] Z. ARTSTEIN AND R. A. VITALE, A strong law of large numbers for random compact sets, Ann.
Probab., 3 (1975), pp. 879-882.

A GEOMETRIC APPROACH TO MAXIMUM LIKELIHOOD ESTIMATION
FOR INFINITE-DIMENSIONAL GAUSSIAN LOCATION. II

B. S. TSIREL’'SON

(Translated by K. Durr)

Part I of this paper [1] examined necessary and sufficient conditions for the existence,
uniqueness and consistency of the MLE for an infinite-dimensional location parameter
of a Gaussian measure. Regarding the infinite-dimensional set V to which the parameter
to be estimated was known to belong, nothing was assumed beforehand except closedness.
The geometric tool of the study was the mean width h,(V) introduced by Sudakov. This
second part considers the more special question of the stability of the MLE with respect
to sampling fluctuations. The set V is assumed 1o be convex. The geometric tool will be
the k-th thickness h,(V) introduced by Simone Chevet (however, the statements of the
main probabilistic results contain only h,). Roughly speaking, it is found that in the MLE
almost all degrees of frecdom (except 2 finite number) inherent in a sample point are
“frozen™. This fact which is fairly natural in itself, occasionally produces unexpected and
even curious effects in applications. For instance, in some cases of estimating a signal in
additive white noise, the MLE turns out to be a step function regardless of the properties
of the signal.

We continue to use the notation and things introduced in {1]: E, ¥, E,, (8, x), |0},
Yos Yo,or Lo (8, X), V, as well as B(9, r). We shall also consider the finite-dimensional case.
If E is finite-dimensional, then without loss of generality we can assume that E = E,=R";
{6, 7) and ||@]] are the usual Euclidean scalar product and norm in R"; y=19" is the
standard Gaussian measure in R" with density

(2m)™" exp (~ x|
with respect to Lebesgue measure. The logarithm likelihood can be written as
log £.(6, x) = (|| x[|* - |lx - 6]*)/ 207,

from which it is evident that the MLE is simply the closest point in V to x (however, in
the infinite-dimensional case the vectors x and x — 8 are “infinitely long” in the considered
norm).

In Theorems 1 2 below, V<= R" is a convex closed set containing the point 8 with

coordinates 6,,- - -, 8,, o is a positive number and B(x) denotes the closest point in V
to x.

Theorem 1. Let V be a convex polyhedron, i.e., the intersection of a finite number of
halfspaces, and F, be the set of all points lying on a k-dimensional face of the polyhedron V
but not lying on a face of lower dimension (here F, is the set of vertices and F, the interior
of V). Let ¢ be a Gaussian random vector in R™ whose coordinates £, are independent random
variables with the means 8, and the same variarce o>.
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(a) If V is bounded, then
.y _1(c k
{9(§)€Fk}=‘ﬁ p

forallk=0,1,- -+, n, where C=Q2m)""*hy(V);
(b)
. n e’C3 k )"/2
4 < —
pliere O r}=io( e gy
for k> C2 and o’k log (k/C2) =1, here C,=Q7) V*h (VN B(H,1)).

Theorem 2. Suppose that &, =(£y, ", &n) and &= (&, ", &) are Gaussian
random vectors in R” and for each k the variables £, and £, both have the mean 6, and
the variance o, and their correlation coefficient is equal to p; and suppose that all the other
correlations vanish.

(8) If Vis bounded, C =(2w)""*h\(V) and p=1—-min (a/5C,}), then for any u=0

1660 - 8(ell }<
P{ Jol=0) z3Vur+2C{=e";

(b) if C;=(@27)"V*h (VN B(6,1)) and
p=1-min (5C,(VZu+3)+ G ', 0/5C,,3),

then for any u= 0

P{l6(£) - 6(&e)/Va(i-p)zg)=e™,

where
g=3max (Vo(Vu+3+v2Cy), (o(u+3)+2C)"?).

The inequalities in Theorems 1-2 do not involve the dimension n of the space E;
they can of course be carried over to the infinite-dimensional case. To avoid talking about
faces of a polyhedron, we introduce the following definition. For every e V we define
K (8) to be the largest k for which there are linearly independent vectors n,,* - -, M € Eo
such that 8 +a,n,+---+a;n. € Vforanya,, -+, a€ {—1, +1]. If 8 is an extreme point
of V,then K(6)=0. If any amount of such 7; exist, then K(8) = +co. Under the conditions
of Theorem 1, obviously K (8) = k for 6 € F,. We introduce yet another definition to avoid
the correlation coefficients of the components. Let £, £; be random elements of the space
E each with the distribution v, and let p € (~1, +1). We say that {, and &, are p-correlated
if they are representable as

£ =0+o(((1+p)/2) 2L +((1-p)/2)'L2),
&=0+a((1+p)/2)2+((1-p)/ DV?L),

where {,, {, are independent random elements of E each with the distribution y. Under
the conditions of Theorem 2 the random vectors £, and &, are obviously p-correlated.
In Theorems 3-4 below, E can be both finite-dimensional and infinite-dimensional;
V< E, is a convex closed set. According to [1] the MLE of the parameter 0 ranging over
V is well-defined if and only if the characteristic C,(V) introduced in [1] is finite. In
contrast to [1], V is assumed here to be convex, and in this case C,(V) is either infinite
or 0; and if it is 0, then the other characteristic C,(V, 8) for 8 € V introduced in [1] becomes

GV, 6)= Q=) V2h (VN B(6, 1)).
Indeed, for convex V we have
(VNB{s, r))—-6<cr((VNB(6,1))-9),
and so also
(1) h(VN B(O, r))= rh (VN B(8, 11}

forrz1l,8e V. e S
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It is assumed in Theorems 3-4 that C,(V) <+0; 8 is a point in V, o is a positive
number; and 6(x) is defined as in [1].

Theorem 3. Let £ be a random element in E having the distribution v, .
(a) If V is bounded, then for any a =0
E exp (aK(8(£))) Sexp (Ce?/0),
where C = (2m)"V2h(V);
(b)
_ P{K(6(£)) = k}510(eC3k™" log (k/ C)*2
for k> C?% and o*k log (k/C3)=1; here C,=(2mw)""*h,(VN B(6, 1)).
Theorem 4. Suppose that £,, £, are random elements in E both having the distribution
Yo.» and that they are p-correlated. Then parts (a) and (b) of Theorem 2 hold.

REMARK 1. The constant *“3” in front of the radical in the inequality in part (a) of
Theorem 2 can be improved. But this is all that can be done to strengthen this inequality
if p is close to 1 and C/o and u are not close to 0. More precisely, let the function B of
four arguments be such that in the conditions of part (a) of Theorem 2 (or Theorem 4—it
makes no difference)

o [16e) - el -
lim P{ Voli=p) =B(C,u,o',p)}=e X

Then it can be shown that the expression

pet—

T Mo +2C
s~1- B(C, u, o, p)

is bounded for any range of the parameters C, u and o for which o/ C and 1/ u are bounded.
We continue the analysis begun in [1] of some examples linked with estimation of a
signal in an additive white noise.

EXAMPLE 1. The set V consists of all functions on (0, 1) whose variation does not
exceed M (see [1], example 2). We apply part (a) of Theorem 3 to the set V; of functions
in V orthogonal to the unit element. It is not hard to show that K(4) is finite only for
step functions 8 € V; with variation exactly M; for such functions K(8) = J(0) -2, where
J(6) is the number of steps. Part (a) of Theorem 3 yields the following proposition.

Let dX(t) = S(t) dt+ o dw(1), where w is a Wiener process and S is a function of
bounded variation; Var,¢ ;) S(t) = M. Then the MLE S for § in the indicated class of
functions based on the observation X is a step function with probability, its variation is
equal to M, and the random number J of steps of S satisfies

. Eexp(aJ)=exp (Vn/8 e’c™'M +2a)
forany a=0.

EXAMPLE 2. The set V consists of all increasing functions in L,{0, 1]; as in Example
3 in [1], we pass over to V,,. It is again clear that K(#) is finite only for step functions
6; from part (a) of Theorem 3 we conclude that @ is a step function with probability 1.
However, after passing to the limit in a, b the number of steps becomes infinite (they
cluster at the ends of the interval).

REMARK 2. Considering V to be the set of all L, functions on the square [0, 1]1x[0, 1]
that are increasing in both arguments, we conclude that the ML-estimation of such functions
is impossible in additive two-dimensional white noise; indeed, even limiting ourselves to
functions with two values 0 and 1, we obtain a compact set V not possessing the
GB-property, as Dudley showed [5].

EXAMPLE 3. The set V consists of all functions 8 satisfying a Lipschitz condition
|0(s) — 8(t)| = M|s —t|; see Example 1 for @ =1 in [1]. Part (a) of Theorem 3 applied to
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the set V; of functions in V grthogonal to the unit element makes it possible to draw only
the following conclusion: dS(t)/dr=xM for almost all ¢ with probability 1. The fact is
that any function in V; (not only piecewise linear) with a derivative +M is an extreme
point of V,. In effect, with probability 1 the function S is not piecewise linear; the intervals
where it is linear make up the complement to a Cantor set.

REMARK 3. If so desired, Examples 1-2 can be generalized in the following direction.
The condition Var,¢( ) S(¢) = M can be written in the form

[

interpret as follows: the derivative of S is a finite mass in the sense of generalized
function theory, and the norm of this mass does not exceed M. Similarly, we can examine
the more general condition L', |LS(t)] dt = M, where L is some linear differential operator.
In that case the MLE is a piecewise smooth function, satisfying the equation LS(1)=0
on each piece. The condition that S is increasing can be generalized to the condition
LS(t)=0.

The proofs of Theorems 1-4 will be given in part 3 of this paper [2]. For convenience
of orientation, we point out what topics comprise this paper (parts 2 and 3) and how
these topics are interrelated.

Topics 1-3: the relationship between the probability and geometric considerations.
Here there are three formally independent topics: (1) the thickness of an infinite-
dimensional GB-compact set as the volume of the joint spectrum averaged with respect
to Gaussian measure (Theorem 6, as well as Lemma 2); (2) geometric-probabilistic analyses
for the case where V is a finite-dimensional polyhedron (Lemma 1; Theorem 5 is also
relevant here); (3) the same where V is a finite-dimensional convex solid with smooth
boundary ({2], Lemmas 1, 2). Topics 2 and 3 deal essentially with the same thing but in
entirely different languages; it is easier to develop them independently rather than derive
one from the other.

Topic 4: the distance of the MLE from the true value of the parameter ([2], Lemmas
3, 4) depends on topic 2.

Topics 5-7: probabilistic results on the behavior of the MLE. Here again there are
three formally independent topics; all three rely on topic 4; moreover, topic 5 relies on
topic 2, and topics 6 and 7 on topic 3. Topic 5: the probability that the MLE occurs on
a face of given dimension if V is a finite-dimensional polyhedron (Theorem 1); topic 6:
the same if V is infinite-dimensional (Theorem 3 and also Lemmas 5, 6 in [2]); topic 7:
the distance between the MLE’s for two strongly correlated sample points ({2], Theorems
2 and 4 and Lemmas 7, 8). It would appear that topic 6 ought to depend on topic S but
it was found to be easier to develop it independently. In a certain sense topic 7 is also
about the same thing, but in an entirely different language, in order to give a nontrivial
result when V has no nontrivial faces.

Chevet [3] introduced a scale of geometric characteristics h; for convex GB-compact
sets in a Hilbert space; h,(V) has come to be called the k-thickness of the set V. Starting
out from the well-known integral cross-sectional measures W7, she observed that under
suitable numbering and norming they cease to depend on the dimension of the space
containing the given finite-dimensional set; this allowed the h, to be defined for finite-
dimensional convex compact sets in Hilbert space; then an arbitrary convex compact set
was approximated from within by finite-dimensional ones; here it turned out that
h, (V) <+ if and only if h(V) < +0, i.e., for Ve GB. A relationship was found between
the k-thickness and the moments of the supremum of a Gaussian process. Finally,
Chevet carried over to the infinite-dimensional case the classical inequalities of Fenchel-
Alexandrov for mixed volumes. These inequalities are a basic tool for proving results of
this paper. See a modern introduction to the theory of cross-sectional measures in [4],
Chapter 4; Section 9.9 of the cited chapter considers the infinite-dimensional case following
Chevet.

d
—_ dt=M,
dts(') t A
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We give two new definitions for by in contrast to Chevet’s definition, they are related
directly to a Gaussian measure and do not use finite-dimensional approximation. The
normalization of the thickness used by Chevet (and for k=1 by Sudakov) seems to us to
be not the most convenient; it is more ~onvenient to use the expression :

(2) "‘tk(v)=(27r)—k/2k!hk(v)y k=0$ 19' Y

cf.[3],(3.6.2). Wesshall also call the quantity 4, (V) the k-thickness of the set V. Inequalities
(4.2.1) and (4.2.2) in [3] can now be written as

(3) My (V) My (V)= MO(V),
4) M (VIS MV), k=0,1,---.

For every GB-set V< Egthe collection of probability measures {y,: 6 € V} has a least
upper bound vy in the set of all (not only probability) finite measures on E; it is clear
that the measure yy has the following density with respect to the measure vy:

yv(dx) _ _ ( ( 1 2))
© )~ 26,0 =exp | wp {6,051 )

Theorem 5. yv(E)=Y 5.0 H#:(V)/ kL
From (4) and this theorem we obtain

Corollary 1. yy(E)=exp (#,(V)).
Noting that the functionals .#x are homogeneous, we find that

Yov(E) = kifo M (V)ak/ k!

for any a> 0, and hence we obtain an equivalent definition for k-thickness.

Corollary 2.
k

d
M (V) =EE7¢V(E)

a=0+

d- 1
=;,7<I exp (it:g (a(0, x)-5a2H0||’)>v(dx))

One further equivalent definition of k-thickness will be given below in terms of the
“joint spectrum” of several realizations of a random process. Here special care must be
given to choosing a modification of the process. For GC-sets there is no problem since
the realizations can be assumed to be continuous. However, in the general case the
separable modification is found to be insufficient; the natural modification introduced in

_[61 is required. To every set V< Eq, a Gaussian random process (8, x) is defined where
6 ranges over V and x ranges over the space E equipped with the Gaussian measure 7.
This process has a natural modification if and only if Ve GBo (a countable union of
GB-sets) [6]. It is understood below that (6, x) denotes precisely the natural modification
of the above-mentioned process.

Let Ve GB (or GBo) and x,,- -+, x: € E; we call the set spec (x4, , % V)=
{((8, x), * - - , {8, x,)): 6 € V} lying in R* the joint spectrum for x,,- - -, x, on V. If V is
a convex GB-compact set, then the joint spectrum is (a.s.) a convex bounded set; if
Ve GC, itis closed and if V ¢ GC, this is not necessarily so. We point out thata separable
modification would not guarantee the convexity of the joint spectrum. The natural
modification does guarantee it since the mapping 6 - (6, xp), - + +, (6, X)) is algebraically
linear on the linear span of the set V even if it is not continuous on V.

k=01,

’

Theorem 6. For any convex GB-compact set V< E, and k=0,1,- -,

1
ﬂk(V)=;:j e jmesk spec (xy, -+ +, x| V)y(dx,) - - - y(dx);
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here mes, is Lebesgue measure in R*; 7 = w*/2/T(k/2+ 1) is the volume of the k-dimensional
unit sphere.

Lemma 1. Let V be a finite-dimensional convex polyhedron in R", and let F, be defined
as in Theorem 1. Then

yvix: 6(x) € Fe} = M (V)/ KL, k=0,1,---,n

PROOF. Consider a k-dimensional face F of the polyhedron V (F includes no points
lying on faces of lower dimension), the k-dimensional subspace Er © E; parallel to it and
its annihilator Ex ={x¢€ E: (7, x)=0 Vn € Eg}, as well as the affine subspace F=F+E¢
containing F. In acoordance with the decomposition E = E @ E+ each measure 7y, splits
into the product of its projections y, = (76| F)® (75| EF)- 1t is easy to see that for 6 F
the set {x — O(x) x€E, 8(x) 0} is a convex cone K% in E£ not depending on 6. There-
fore, {xe E: 0(x)e F}= F+ K%. The measure yy clearly comcndes on this set with the
measure

Ve =sup 7.-sur>((7.|F)®(7.|E )= (sur’(an))®(m|E

where 8, is the unique omt in FN E¢; however, the first factor coincides on the set F
with the measure (27)~*/2 mes,. Thus ’

yv{x € E: 6(x) € F}=((27)""/? mes, F)((Y|E3)(K%)) = (2m)*/*(mes, F)y(KF),

where Kp = K%+ Er. Summing over all k-dimensional faces, we find that

yvixe E: (x) e F}=(2m) ™2 (mes, F)y(Kg).
F

It remains to apply Lemma 3.5 in [3], according to which

hk(v)=2(mcskF)7(KF), k=0111'.')n‘
F

PROOF OF THEOREM 5. If V is a finite-dimensional polyhedron< R", applying
Lemma 1, we find that

1
w(E)= Z yvix: G(X)E F.}= Z k,-“k(v)
In the general case we approximate V from within by finite-dimensional polyhedra V,,
V,c V,c - -c V, with US., V, dense in V; here M, (V) =lim,.o #(V,), k=0,1,-- -,
according to Proposition 3.9 in [3], and

Yv =SUp Y, =SUP SUP ¥, =SUD Yv,,
feV

SO
n1
yo(E)=lim w,(E)= lim § helVa)= T S H(V).

The following general property of a naturai modification will be used in the proof
of Theorem 6.

Lemma 2. Let é(w, t) be a natural modification of some random process, w e, te T,
and let S be dense in T in the following sense: for any t€ T there are s,€ S, n=1,2,-- -,
such that &(w, s,) > é(w, t), n> o, for almost all @ (the corresponding set of probability 1
may depend on t). Then there is a set Q, < of probability 1 possessing the following
property: for any t€ T there exist s,€ S, n=1,2,- - -, such that £{(w, s%,) > £(w, 1), n >,
forall weQ),.

PROOF. By the definition of a natural modification, we can introduce a metrix p on
T such that (T, p) is a separable metric space and £(w, t) is continuous in ¢ on (T, p) for
all @ in some Q, < (} of probablllty 1. Let {t,,, =t bea ﬁx/egioﬂr,hsmimsem T.p),
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for each m, fix s,,, € S such that
P{lé(, ) —E(w, 1,,)!>1/n}s27m",

The sum of these probabilities over all m and n is finite. Therefore there is a set ;<
of probability 1 possessing the following property: |£(w, Smn)—&(w, 1,)]=1/n for all
wef)y and all pairs (m, n) except a finite (depending on w) number of pairs. Put
Q,=Q,NQ;. Let te T be given. Choose m,, m,, - - -, such that tm, > 1, n> 0, in (T, p).
Put s, =s,,_,. Then for large n we have

|&(w, s7) = £, ]S |E(w, Sm_n) — E(@, 1 )] +[E(w, ) = E(w, 1)]
=1/n+|g(w, 1)~ £(w, )]>0, n->oo,
for all we Q,, as required.

Corollary 3. Let V< E, be a GB-set and let Voc V. If V, is dense in V, then
spec (xy, - +, x| Vo) is dense in spec (x,, - - -, x| V) for almost all (x,,- -, x,).
Note that the assertion is trivial for GC-sets.

PROOF OF THEOREM 6. We first reduce the general case to the finite-dimensional
one. To do this, we approximate V from within by finite-dimensional convex compact
sets V,, n=1,2,-- -, where 4, (V)=lim, . #(V,), as already noted in the proof of
Theorem 5. By Corollary 3 the union (over n) of the convex sets spec (X1, 00, x| V,) is
dense in the convex set spec(x,,- - -, x,,l V) as., and therefore

J‘ e J mes,, spec (x,,* -+, x| V)y(dx;) - - - y(dx,)
=I s J’ lim mes, spec (x,, - - -, x| V) y(dx,) - - - y(dxy)

= 'l'i_{?oj e J mes, spec (x;,* -, x| Vo) y(dx,) - - - y(dxy).
Hence, it suffices to prove Theorem 6 for the case where V is finite-dimensional. The
space E can then also be assumed to be finite-dimensional of dimension n. The set
spec(x,, - -, x|V) is the image of V under the linear mapping A,:E - R* which is
defined by A,(0)=((0, x,), - - -, (6, x,)); here and elsewhere x=(x,,- - - , Xi). Choose a
fixed orthonormal basis in E; the matrix of the mapping A, in this basis (denote it also
by A,) has k rows and n columns. Each element of this matrix depends on the point x
of the probability space (E®- - -@E, y®- - -®y) and in this sense can be viewed as a
random variable. It is easy to see that all the elements of A, are independent standard
Gaussian random variables. Orthogonalizing the rows of A,, we obtain a factorization
A, = B,C,, where B, is a lower triangular square matrix of order k and C, is a matrix
of k orthonormal rows of n elements. Examining the orthogonalization process, we can
easily show that all the elements of B, are independent, all the off-diagonal elements have
a standard normal distribution and all diagonal elements have the following distributions:
Xns Xn—1s" * " » Xn—k+1 (X1 is the distribution of the square root of the sum of the squares
of I independent standard normal variables). Therefore,

Edet B, =(Ex, (Exp-1) - - * (EXn-k+1)

n+1 n n—-k+2 n+1
() ) ok ey

= . = 2 .
n n-1 n—k+1 n—k+1
= r rf——m— rN——m-—-—-
Q) (5) =) ()
Further, it is not hard to show that B, and C, are independent and that the matrix

C, has a unique probability distribution invariant under rotation or more precisely under
right-multiplication by any orthogonal matrix of order n; it is essentially a question of 2
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uniform distribution on the Stiefel manifold V,(R"), and just below of a uniform distribu-
tion on the Grassman manifold G,(R"). We have
E mes, spec (x| V) =E mes, B,C,V
= (E det B,)(E mes, C.V)

_ Tl +1)/2)

T((n—k+1)/2)C Pesx &V

The set C.V is isometric to the orthogonal projection of V on the k-dimensional subspace
spanned by the rows of the matrix C,. Therefore, E mes, C,V is the mean volume of the
k-dimensional projection of V. We use a consequence of Kubota’s formula 3], formula
4.4.4%; it says that the mean volume of the k-dimensional projection of V is equal to

(@G5 e

by means of the duplication formula for the I'-function
IQ2z)=a"Y22=-IT()[(z+))
we now find that
I'(k/2+ 1)2,‘,2 I'((n+1)/2) kY (n-k)!
/2 T((n—k+1)/2) n!
) I'(n/2+1) (2m)*2
I'k/2+1DI((n—k)/2+1) k!
IF((n+1)/2)I'(n/2+1)
T(n+1)
) I'(n-k+1) P
T((n—-k+1)/2)F((n-k)/2+1)" "
Ja ok
2" V=
REMARK 4. Theorem 6 can be proved differently for the finite-dimensional case by

introducing a large number of *“‘extraneous” measurements, as was done in the proof of
Theorem 3 in [7].

1
—E mes, spec (x| V) =
T

M (V)

=2k

(v)

=2k M (V)= M (V).
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THE UNIFORM DISTRIBUTION ON COMPACT HOMOGENEOUS SPACES
AND THE KANTOROVICH-RUBINSHTEIN METRIC

V. A. KAIMANOVICH

(Translated by Yona Eliis)

Let X be a compact G-space with a Haar measure m (e.g., G is a compact group,
X =G). A number of papers (sce {1]-[4]) have studied the problem of the uniform
distribution on X, i.e., the weak convergence of the measures u, - * - w,v or u"v to m (™
and v are probability measures on G and X, respectively and u." is the n-fold convolution
of u). Below we apply a new technique to the investigation of this problem based on the
metrization of the weak topology by the Kantorovich-Rubinshtein (KR) metric and we
generalize old results of Arnol'd-Krylov and Ullrich-Urbanik.

1. The KR Metric

Let (X, p) be a compact metric space, M(X) the space of Borel probability measures
on X and Lip(X,p) the space of functions u:X->R such that u(s)—u(e)=
p(s, 1)(Vs, te X). The KR-metric

d(v,, v2)=infj p(s, ) d¥(s, 1),

where the inf is taken over all measures ¥ e M (X x X) whose projections onto the first
and second factors are vy and v,, metrizes the weak topology in M(X), and the inf is
always attained for a measure ¥ if and only if u(s)—u(1)=p(s, 1) (V(s, t) e supp ¥) for
some u € Lip (X, p). The dual definition is d(vy, ) =sup {(f, v;—»,): fe Lip (X, p)} [5].

Everywhere below (except in Section 6) we assume that the topological group G acts
continuously and minimally on X by isometries, i.e., G is embedded in the compact group
Iso (X) of all isometries of X equipped with the invariant metric p*(g., 8)=
sup, p(g,x, g:x). Obviously, d(gv,, gv,)=d(v,, v,), d(uv, uv,)) =d (v, v,). We call a
measure u on G transitive on X if p(s, supp u"8,) >0, n> o0 (Vs, te X). For X =G this
is equivalent to being strictly aperiodic {1}

Lemma 1. Ifd(ﬂ-"ns#”z)zd("n"z) and supp p'<supp u, then d(p'vy, p'vy) =
d(v,, »y).

Lemma 2. Ifthe measure u is transitive on X and vy # vy€ M(X), thend(pu"v,, u"v,) <
d(v,, v;) for some n (depending on v, ,).

PROOF. Let ¥ be a fixed measure realizing d(»,, v,),and (s, 1) € supp ¥, p(s, t)=e>

0. If d(u"v,, u"v,) = d(v,, v,), then the measure u" ¥ realizes d(u"v,, 1"vy), i.e., there
is a u, € Lip (X, p) such that

u,(8s)~u,(gt)=p(gs, gt) = e(Vg e supp u").

The values of u,(gs) for gesupp u” for large n can be arbitrarily close to the smallest
value of u, on X, whence £ =0 and vy=v,.



