- [7] S. A. KOYYAZIN, A variant of the law of large numbers for random subsets of a space with an atomless measure, Preprint VTs SO Akad. Nauk SSSR, Krasnoyarsk, 1983, no. 1, pp. 8-9. (In Russian.)
- [8] A. I. ORLOV, Random sets: laws of large numbers and the testing of statistical hypotheses, Theory Prob. Appl., 23 (1978), pp.
- [9] Z. ARTSTEIN AND R. A. VITALE, A strong law of large numbers for random compact sets, Ann. Probab., 3 (1975), pp. 879-882.

A GEOMETRIC APPROACH TO MAXIMUM LIKELIHOOD ESTIMATION FOR INFINITE-DIMENSIONAL GAUSSIAN LOCATION. II.

B. S. TSIREL'SON

(Translated by K. Durr)

Part I of this paper [1] examined necessary and sufficient conditions for the existence, uniqueness and consistency of the MLE for an infinite-dimensional location parameter of a Gaussian measure. Regarding the infinite-dimensional set V to which the parameter to be estimated was known to belong, nothing was assumed beforehand except closedness. The geometric tool of the study was the mean width $h_1(V)$ introduced by Sudakov. This second part considers the more special question of the stability of the MLE with respect to sampling fluctuations. The set V is assumed to be convex. The geometric tool will be the k-th thickness $h_k(V)$ introduced by Simone Chevet (however, the statements of the main probabilistic results contain only h_1). Roughly speaking, it is found that in the MLE almost all degrees of freedom (except a finite number) inherent in a sample point are "frozen". This fact which is fairly natural in itself, occasionally produces unexpected and even curious effects in applications. For instance, in some cases of estimating a signal in additive white noise, the MLE turns out to be a step function regardless of the properties of the signal.

We continue to use the notation and things introduced in [1]: E, γ , E_0 , (θ, x) , $\|\theta\|$, γ_{θ} , $\gamma_{\theta,\sigma}$, $\mathcal{L}_{\sigma}(\theta, x)$, V, as well as $B(\theta, r)$. We shall also consider the finite-dimensional case. If E is finite-dimensional, then without loss of generality we can assume that $E = E_0 = \mathbb{R}^n$; $\langle \theta, \eta \rangle$ and $\|\theta\|$ are the usual Euclidean scalar product and norm in \mathbb{R}^n ; $\gamma = \gamma^n$ is the standard Gaussian measure in \mathbb{R}^n with density

$$(2\pi)^{-n/2} \exp\left(-\frac{1}{2}||x||^2\right)$$

with respect to Lebesgue measure. The logarithm likelihood can be written as

$$\log \mathcal{L}'_{\sigma}(\theta, x) = (\|x\|^2 - \|x - \theta\|^2)/2\sigma^2,$$

from which it is evident that the MLE is simply the closest point in V to x (however, in the infinite-dimensional case the vectors x and $x - \theta$ are "infinitely long" in the considered norm).

In Theorems 1-2 below, $V \subset \mathbb{R}^n$ is a convex closed set containing the point θ with coordinates $\theta_1, \dots, \theta_n, \sigma$ is a positive number and $\hat{\theta}(x)$ denotes the closest point in V to x.

Theorem 1. Let V be a convex polyhedron, i.e., the intersection of a finite number of halfspaces, and F_k be the set of all points lying on a k-dimensional face of the polyhedron V but not lying on a face of lower dimension (here F_0 is the set of vertices and F_n the interior of V). Let ξ be a Gaussian random vector in \mathbb{R}^n whose coordinates ξ_k are independent random variables with the means θ_k and the same variance σ^2 .

(a) If V is bounded, then

$$\mathbb{P}\{\hat{\theta}(\xi) \in F_k\} \leq \frac{1}{k!} \left(\frac{C}{\sigma}\right)^k$$

for all $k = 0, 1, \dots, n$, where $C = (2\pi)^{-1/2} h_1(V)$;

(**b**)

$$\mathbf{P}\left\{\hat{\theta}(\xi) \in \bigcup_{i=k}^{n} F_{i}\right\} \leq 10 \left(\frac{e^{2} C_{2}^{2}}{k} \log \frac{k}{C_{2}^{2}}\right)^{k/2}$$

for $k > C_2^2$ and $\sigma^2 k \log (k/C_2^2) \ge 1$; here $C_2 = (2\pi)^{-1/2} h_1(V \cap B(\theta, 1))$.

Theorem 2. Suppose that $\xi_1 = (\xi_{11}, \dots, \xi_{1n})$ and $\xi_2 = (\xi_{21}, \dots, \xi_{2n})$ are Gaussian random vectors in \mathbb{R}^n and for each k the variables ξ_{1k} and ξ_{2k} both have the mean θ_k and the variance σ^2 , and their correlation coefficient is equal to ρ ; and suppose that all the other correlations vanish.

(a) If V is bounded, $C = (2\pi)^{-1/2} h_1(V)$ and $\rho \ge 1 - \min(\sigma/5C, \frac{1}{2})$, then for any $u \ge 0$

$$\mathbf{P}\left\{\frac{\|\hat{\theta}(\xi_1) - \hat{\theta}(\xi_2)\|}{\sqrt{\sigma(1-\rho)}} \ge 3\sqrt{u\sigma + 2C}\right\} \le e^{-u};$$

(b) if
$$C_2 = (2\pi)^{-1/2} h_1(V \cap B(\theta, 1))$$
 and
 $\rho \ge 1 - \min((5C_2(\sqrt{2(u+3)} + C_2))^{-1}, \sigma/5C_2, \frac{1}{2}),$

then for any $u \ge 0$

$$\mathbf{P}\{\|\hat{\theta}(\xi_1) - \hat{\theta}(\xi_2)\|/\sqrt{\sigma(1-\rho)} \ge q\} \le e^{-u},$$

where

$$q = 3 \max (\sqrt{\sigma}(\sqrt{u+3} + \sqrt{2} C_2), (\sigma(u+3) + 2C_2)^{1/2}).$$

The inequalities in Theorems 1-2 do not involve the dimension n of the space E; they can of course be carried over to the infinite-dimensional case. To avoid talking about faces of a polyhedron, we introduce the following definition. For every $\theta \in V$ we define $K(\theta)$ to be the largest k for which there are linearly independent vectors $\eta_1, \dots, \eta_k \in E_0$ such that $\theta + a_1 \eta_1 + \dots + a_k \eta_k \in V$ for any $a_1, \dots, a_k \in [-1, +1]$. If θ is an extreme point of V, then $K(\theta) = 0$. If any amount of such η_i exist, then $K(\theta) = +\infty$. Under the conditions of Theorem 1, obviously $K(\theta) = k$ for $\theta \in F_k$. We introduce yet another definition to avoid the correlation coefficients of the components. Let ξ_1, ξ_2 be random elements of the space E each with the distribution $\gamma_{\theta,\sigma}$ and let $\rho \in (-1, +1)$. We say that ξ_1 and ξ_2 are ρ -correlated if they are representable as

$$\begin{split} \xi_1 &= \theta + \sigma(((1+\rho)/2)^{1/2}\zeta_1 + ((1-\rho)/2)^{1/2}\zeta_2), \\ \xi_2 &= \theta + \sigma(((1+\rho)/2)^{1/2}\zeta_1 + ((1-\rho)/2)^{1/2}\zeta_2), \end{split}$$

where ζ_1 , ζ_2 are independent random elements of E each with the distribution γ . Under the conditions of Theorem 2 the random vectors ξ_1 and ξ_2 are obviously ρ -correlated.

In Theorems 3-4 below, E can be both finite-dimensional and infinite-dimensional; $V \subset E_0$ is a convex closed set. According to [1] the MLE of the parameter θ ranging over V is well-defined if and only if the characteristic $C_1(V)$ introduced in [1] is finite. In contrast to [1], V is assumed here to be convex, and in this case $C_1(V)$ is either infinite or 0; and if it is 0, then the other characteristic $C_2(V, \theta)$ for $\theta \in V$ introduced in [1] becomes

$$C_2(V, \theta) = (2\pi)^{-1/2} h_1(V \cap B(\theta, 1)).$$

Indeed, for convex V we have

$$(V \cap B(\theta, r)) - \theta \subset r((V \cap B(\theta, 1)) - \theta),$$

and so also

(1)
$$h_1(V \cap B(\theta, r)) \leq rh_1(V \cap B(\theta, 1))$$

for $r \ge 1$, $\theta \in V$.

It is assumed in Theorems 3-4 that $C_1(V) < +\infty$; θ is a point in V, σ is a positive number; and $\hat{\theta}(x)$ is defined as in [1].

Theorem 3. Let ξ be a random element in E having the distribution $\gamma_{\theta,\sigma}$.

(a) If V is bounded, then for any $a \ge 0$

$$\mathbb{E} \exp (aK(\hat{\theta}(\xi))) \leq \exp (Ce^a/\sigma),$$

where $C = (2\pi)^{-1/2}h_1(V)$; **(b)**

$$\mathbf{P}\{K(\hat{\theta}(\xi)) \ge k\} \le 10(e^2 C_2^2 k^{-1} \log (k/C_2^2))^{k/2}$$

for
$$k > C_2^2$$
 and $\sigma^2 k \log (k/C_2^2) \ge 1$; here $C_2 = (2\pi)^{-1/2} h_1(V \cap B(\theta, 1))$.

Theorem 4. Suppose that ξ_1 , ξ_2 are random elements in E both having the distribution $\gamma_{\theta,\sigma}$ and that they are ρ -correlated. Then parts (a) and (b) of Theorem 2 hold.

REMARK 1. The constant "3" in front of the radical in the inequality in part (a) of Theorem 2 can be improved. But this is all that can be done to strengthen this inequality if ρ is close to 1 and C/σ and u are not close to 0. More precisely, let the function B of four arguments be such that in the conditions of part (a) of Theorem 2 (or Theorem 4—it makes no difference)

$$\underline{\lim_{\rho \to 1^{-}}} \mathbf{P} \left\{ \frac{\|\hat{\theta}(\xi_1) - \hat{\theta}(\xi_2)\|}{\sqrt{\sigma(1-\rho)}} \ge B(C, u, \sigma, \rho) \right\} \le e^{-u}.$$

Then it can be shown that the expression

$$\overline{\lim_{\rho \to 1^{-}} \frac{\sqrt{u\sigma + 2C}}{B(C, u, \sigma, \rho)}}$$

is bounded for any range of the parameters C, u and σ for which σ/C and 1/u are bounded. We continue the analysis begun in [1] of some examples linked with estimation of a signal in an additive white noise.

EXAMPLE 1. The set V consists of all functions on (0,1) whose variation does not exceed M (see [1], example 2). We apply part (a) of Theorem 3 to the set V_1 of functions in V orthogonal to the unit element. It is not hard to show that $K(\theta)$ is finite only for step functions $\theta \in V_1$ with variation exactly M; for such functions $K(\theta) = J(\theta) - 2$, where $J(\theta)$ is the number of steps. Part (a) of Theorem 3 yields the following proposition.

Let $dX(t) = S(t) dt + \sigma dw(t)$, where w is a Wiener process and S is a function of bounded variation; $Var_{t\in(0,1)} S(t) \le M$. Then the MLE \hat{S} for S in the indicated class of functions based on the observation X is a step function with probability, its variation is equal to M, and the random number J of steps of \hat{S} satisfies

$$\mathbf{E}\exp\left(aJ\right) \leq \exp\left(\sqrt{\pi/8} e^{a} \sigma^{-1} M + 2a\right)$$

for any $a \ge 0$.

EXAMPLE 2. The set V consists of all increasing functions in $L_2[0, 1]$; as in Example 3 in [1], we pass over to $V_{a,b}$. It is again clear that $K(\theta)$ is finite only for step functions θ ; from part (a) of Theorem 3 we conclude that $\hat{\theta}$ is a step function with probability 1. However, after passing to the limit in a, b the number of steps becomes infinite (they cluster at the ends of the interval).

REMARK 2. Considering V to be the set of all L_2 functions on the square $[0, 1] \times [0, 1]$ that are increasing in both arguments, we conclude that the ML-estimation of such functions is impossible in additive two-dimensional white noise; indeed, even limiting ourselves to functions with two values 0 and 1, we obtain a compact set V not possessing the GB-property, as Dudley showed [5].

EXAMPLE 3. The set V consists of all functions θ satisfying a Lipschitz condition $|\theta(s) - \theta(t)| \le M|s - t|$; see Example 1 for $\alpha = 1$ in [1]. Part (a) of Theorem 3 applied to

the set V_1 of functions in V orthogonal to the unit element makes it possible to draw only the following conclusion: $d\hat{S}(t)/dt = \pm M$ for almost all t with probability 1. The fact is that any function in V_1 (not only piecewise linear) with a derivative $\pm M$ is an extreme point of V_1 . In effect, with probability 1 the function \hat{S} is not piecewise linear; the intervals where it is linear make up the complement to a Cantor set.

REMARK 3. If so desired, Examples 1-2 can be generalized in the following direction. The condition $Var_{t\in(0,1)} S(t) \leq M$ can be written in the form

$$\int_0^1 \left| \frac{d}{dt} S(t) \right| dt \leq M,$$

interpret as follows: the derivative of S is a finite mass in the sense of generalized function theory, and the norm of this mass does not exceed M. Similarly, we can examine the more general condition $\int_0^1 |LS(t)| dt \le M$, where L is some linear differential operator. In that case the MLE is a piecewise smooth function, satisfying the equation LS(t) = 0 on each piece. The condition that S is increasing can be generalized to the condition $LS(t) \ge 0$.

The proofs of Theorems 1-4 will be given in part 3 of this paper [2]. For convenience of orientation, we point out what topics comprise this paper (parts 2 and 3) and how these topics are interrelated.

Topics 1-3: the relationship between the probability and geometric considerations. Here there are three formally independent topics: (1) the thickness of an infinite-dimensional GB-compact set as the volume of the joint spectrum averaged with respect to Gaussian measure (Theorem 6, as well as Lemma 2); (2) geometric-probabilistic analyses for the case where V is a finite-dimensional polyhedron (Lemma 1; Theorem 5 is also relevant here); (3) the same where V is a finite-dimensional convex solid with smooth boundary ([2], Lemmas 1, 2). Topics 2 and 3 deal essentially with the same thing but in entirely different languages; it is easier to develop them independently rather than derive one from the other.

Topic 4: the distance of the MLE from the true value of the parameter ([2], Lemmas 3, 4) depends on topic 2.

Topics 5-7: probabilistic results on the behavior of the MLE. Here again there are three formally independent topics; all three rely on topic 4; moreover, topic 5 relies on topic 2, and topics 6 and 7 on topic 3. Topic 5: the probability that the MLE occurs on a face of given dimension if V is a finite-dimensional polyhedron (Theorem 1); topic 6: the same if V is infinite-dimensional (Theorem 3 and also Lemmas 5, 6 in [2]); topic 7: the distance between the MLE's for two strongly correlated sample points ([2], Theorems 2 and 4 and Lemmas 7, 8). It would appear that topic 6 ought to depend on topic 5 but it was found to be easier to develop it independently. In a certain sense topic 7 is also about the same thing, but in an entirely different language, in order to give a nontrivial result when V has no nontrivial faces.

Chevet [3] introduced a scale of geometric characteristics h_k for convex GB-compact sets in a Hilbert space; $h_k(V)$ has come to be called the k-thickness of the set V. Starting out from the well-known integral cross-sectional measures W_k^n , she observed that under suitable numbering and norming they cease to depend on the dimension of the space containing the given finite-dimensional set; this allowed the h_k to be defined for finite-dimensional convex compact sets in Hilbert space; then an arbitrary convex compact set was approximated from within by finite-dimensional ones; here it turned out that $h_k(V) < +\infty$ if and only if $h_1(V) < +\infty$, i.e., for $V \in GB$. A relationship was found between the k-thickness and the moments of the supremum of a Gaussian process. Finally, Chevet carried over to the infinite-dimensional case the classical inequalities of Fenchel-Alexandrov for mixed volumes. These inequalities are a basic tool for proving results of this paper. See a modern introduction to the theory of cross-sectional measures in [4], Chapter 4; Section 9.9 of the cited chapter considers the infinite-dimensional case following Chevet.

We give two new definitions for h_k ; in contrast to Chevet's definition, they are related directly to a Gaussian measure and do not use finite-dimensional approximation. The normalization of the thickness used by Chevet (and for k = 1 by Sudakov) seems to us to be not the most convenient; it is more convenient to use the expression

(2)
$$\mathcal{M}_k(V) = (2\pi)^{-k/2} k! h_k(V), \qquad k = 0, 1, \dots,$$

cf. [3], (3.6.2). We shall also call the quantity $\mathcal{M}_k(V)$ the k-thickness of the set V. Inequalities (4.2.1) and (4.2.2) in [3] can now be written as

(3)
$$\mathcal{M}_{k-1}(V)\mathcal{M}_{k+1}(V) \leq \mathcal{M}_k^2(V),$$

(4)
$$\mathcal{M}_k(V) \leq \mathcal{M}_1^k(V), \qquad k = 0, 1, \cdots$$

For every GB-set $V \subset E_0$ the collection of probability measures $\{\gamma_\theta \colon \theta \in V\}$ has a least upper bound γ_V in the set of all (not only probability) finite measures on E; it is clear that the measure γ_V has the following density with respect to the measure γ :

(5)
$$\frac{\gamma_{V}(dx)}{\gamma(dx)} = \sup_{\theta \in V} \mathcal{L}(\theta, x) = \exp\left(\sup_{\theta \in V} \left(\langle \theta, x \rangle - \frac{1}{2} \|\theta\|^{2}\right)\right).$$

Theorem 5. $\gamma_V(E) = \sum_{k=0}^{\infty} \mathcal{M}_k(V)/k!$. From (4) and this theorem we obtain

Corollary 1. $\gamma_{\nu}(E) \leq \exp{(\mathcal{M}_1(V))}$.

Noting that the functionals \mathcal{M}_K are homogeneous, we find that

$$\gamma_{aV}(E) = \sum_{k=0}^{\infty} \mathcal{M}_k(V) a^k / k!$$

for any a>0, and hence we obtain an equivalent definition for k-thickness.

Corollary 2.

$$\mathcal{M}_{k}(V) = \frac{d^{k}}{da^{k}} \gamma_{aV}(E) \bigg|_{a=0+}$$

$$= \frac{d^{k}}{da^{k}} \left(\int \exp \left(\sup_{\theta \in V} \left(a(\theta, x) - \frac{1}{2} a^{2} \|\theta\|^{2} \right) \right) \gamma(dx) \right) \bigg|_{a=0+}, \quad k = 0, 1, \cdots.$$

One further equivalent definition of k-thickness will be given below in terms of the "joint spectrum" of several realizations of a random process. Here special care must be given to choosing a modification of the process. For GC-sets there is no problem since the realizations can be assumed to be continuous. However, in the general case the separable modification is found to be insufficient; the natural modification introduced in [6] is required. To every set $V \subset E_0$, a Gaussian random process (θ, x) is defined where θ ranges over V and x ranges over the space E equipped with the Gaussian measure γ . This process has a natural modification if and only if $V \in GB\sigma$ (a countable union of GB-sets) [6]. It is understood below that (θ, x) denotes precisely the natural modification of the above-mentioned process.

Let $V \in GB$ (or $GB\sigma$) and $x_1, \dots, x_k \in E$; we call the set spec $(x_1, \dots, x_k | V) = \{((\theta, x_1), \dots, (\theta, x_k)): \theta \in V\}$ lying in \mathbb{R}^k the joint spectrum for x_1, \dots, x_k on V. If V is a convex GB-compact set, then the joint spectrum is (a.s.) a convex bounded set; if $V \in GC$, it is closed and if $V \notin GC$, this is not necessarily so. We point out that a separable modification would not guarantee the convexity of the joint spectrum. The natural modification does guarantee it since the mapping $\theta \to ((\theta, x_1), \dots, (\theta, x_k))$ is algebraically linear on the linear span of the set V even if it is not continuous on V.

Theorem 6. For any convex GB-compact set $V \subset E_0$ and $k = 0, 1, \dots$,

$$\mathcal{M}_k(V) = \frac{1}{\pi_k} \int \cdots \int \operatorname{mes}_k \operatorname{spec}(x_1, \dots, x_k | V) \gamma(dx_1) \cdots \gamma(dx_k);$$

here mes_k is Lebesgue measure in \mathbb{R}^k ; $\pi_k = \pi^{k/2}/\Gamma(k/2+1)$ is the volume of the k-dimensional unit sphere.

Lemma 1. Let V be a finite-dimensional convex polyhedron in \mathbb{R}^n , and let F_k be defined as in Theorem 1. Then

$$\gamma_V\{x: \hat{\theta}(x) \in F_k\} = \mathcal{M}_k(V)/k!, \qquad k = 0, 1, \dots, n.$$

PROOF. Consider a k-dimensional face F of the polyhedron V (F includes no points lying on faces of lower dimension), the k-dimensional subspace $E_F \subset E_0$ parallel to it and its annihilator $E_F^\perp = \{x \in E : (\eta, x) = 0 \ \forall \eta \in E_F\}$, as well as the affine subspace $\tilde{F} = F + E_F$ containing F. In accordance with the decomposition $E = \tilde{F} \oplus E_F^\perp$ each measure γ_θ splits into the product of its projections $\gamma_\theta = (\gamma_\theta | \tilde{F}) \otimes (\gamma_\theta | E_F^\perp)$. It is easy to see that for $\theta \in F$ the set $\{x - \hat{\theta}(x) : x \in E, \hat{\theta}(x) = \theta\}$ is a convex cone K_F^0 in E_F^\perp not depending on θ . Therefore, $\{x \in E : \hat{\theta}(x) \in F\} = F + K_F^0$. The measure γ_V clearly coincides on this set with the measure

$$\gamma_F = \sup_{\theta \in F} \gamma_\theta = \sup_{\theta \in F} ((\gamma_\theta | \tilde{F}) \otimes (\gamma_\theta | E_F^\perp)) = (\sup_{\theta \in F} (\gamma_\theta | \tilde{F})) \otimes (\gamma_{\theta_0} | E_F^\perp),$$

where θ_0 is the unique point in $F \cap E_F^{\perp}$; however, the first factor coincides on the set F with the measure $(2\pi)^{-k/2} \operatorname{mes}_k$. Thus

$$\gamma_V\{x \in E : \hat{\theta}(x) \in F\} = ((2\pi)^{-k/2} \operatorname{mes}_k F)((\gamma | E_F^{\perp})(K_F^0)) = (2\pi)^{-k/2} (\operatorname{mes}_k F) \gamma(K_F),$$

where $K_F = K_F^0 + E_F$. Summing over all k-dimensional faces, we find that

$$\gamma_V\{x\in E\colon \hat{\theta}(x)\in F_k\}=(2\pi)^{-k/2}\sum_F(\operatorname{mes}_k F)\gamma(K_F).$$

It remains to apply Lemma 3.5 in [3], according to which

$$h_k(V) = \sum_F (\operatorname{mes}_k F) \gamma(K_F), \qquad k = 0, 1, \dots, n.$$

PROOF OF THEOREM 5. If V is a finite-dimensional polyhedron $\subset \mathbb{R}^n$, applying Lemma 1, we find that

$$\gamma_V(E) = \sum_k \gamma_V \{x \colon \hat{\theta}(x) \in F_k\} = \sum_{k=0}^n \frac{1}{k!} \mathcal{U}_k(V).$$

In the general case we approximate V from within by finite-dimensional polyhedra V_n , $V_1 \subset V_2 \subset \cdots \subset V$, with $\bigcup_{n=1}^{\infty} V_n$ dense in V; here $\mathcal{M}_k(V) = \lim_{n \to \infty} \mathcal{M}_k(V_n)$, $k = 0, 1, \cdots$, according to Proposition 3.9 in [3], and

$$\gamma_V = \sup_{\theta \in V} \gamma_\theta = \sup_n \sup_{\theta \in V} \gamma_\theta = \sup_n \gamma_{V_n}$$

so

$$\gamma_{V}(E) = \lim_{n \to \infty} \gamma_{V_n}(E) = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!} \mathcal{M}_k(V_n) = \sum_{k=0}^{\infty} \frac{1}{k!} \mathcal{M}_k(V).$$

The following general property of a natural modification will be used in the proof of Theorem 6.

Lemma 2. Let $\xi(\omega, t)$ be a natural modification of some random process, $\omega \in \Omega$, $t \in T$, and let S be dense in T in the following sense: for any $t \in T$ there are $s_n \in S$, $n = 1, 2, \dots$, such that $\xi(\omega, s_n) \to \xi(\omega, t)$, $n \to \infty$, for almost all ω (the corresponding set of probability 1 may depend on t). Then there is a set $\Omega_1 \subset \Omega$ of probability 1 possessing the following property: for any $t \in T$ there exist $s'_n \in S$, $n = 1, 2, \dots$, such that $\xi(\omega, s'_n) \to \xi(\omega, t)$, $n \to \infty$, for all $\omega \in \Omega_1$.

PROOF. By the definition of a natural modification, we can introduce a metrix ρ on T such that (T, ρ) is a separable metric space and $\xi(\omega, t)$ is continuous in t on (T, ρ) for all ω in some $\Omega_2 \subset \Omega$ of probability 1. Let $\{t_m\}_{m=1}^{\infty}$ be a fixed countable set dense in (T, ρ) ;

for each m, fix $s_{m,n} \in S$ such that

$$P\{|\xi(\omega, s_{m,n}) - \xi(\omega, t_m)| > 1/n\} \le 2^{-m-n}$$

The sum of these probabilities over all m and n is finite. Therefore there is a set $\Omega_3 \subset \Omega$ of probability 1 possessing the following property: $|\xi(\omega, s_{m,n}) - \xi(\omega, t_m)| \le 1/n$ for all $\omega \in \Omega_3$ and all pairs (m, n) except a finite (depending on ω) number of pairs. Put $\Omega_1 = \Omega_2 \cap \Omega_3$. Let $t \in T$ be given. Choose m_1, m_2, \cdots , such that $t_{m_n} \to t$, $n \to \infty$, in (T, ρ) . Put $s'_n = s_{m_n}$. Then for large n we have

$$\begin{split} \left| \xi(\omega, s_n') - \xi(\omega, t) \right| &\leq \left| \xi(\omega, s_{m_n}) - \xi(\omega, t_{m_n}) \right| + \left| \xi(\omega, t_{m_n}) - \xi(\omega, t) \right| \\ &\leq 1/n + \left| \xi(\omega, t_{m_n}) - \xi(\omega, t) \right| \to 0, \quad n \to \infty, \end{split}$$

for all $\omega \in \Omega_1$, as required.

Corollary 3. Let $V \subseteq E_0$ be a GB-set and let $V_0 \subseteq V$. If V_0 is dense in V, then spec $(x_1, \dots, x_k | V_0)$ is dense in spec $(x_1, \dots, x_k | V)$ for almost all (x_1, \dots, x_k) .

Note that the assertion is trivial for GC-sets.

of l independent standard normal variables). Therefore,

PROOF OF THEOREM 6. We first reduce the general case to the finite-dimensional one. To do this, we approximate V from within by finite-dimensional convex compact sets V_n , $n=1,2,\cdots$, where $\mathcal{M}_k(V)=\lim_{n\to\infty}\mathcal{M}_k(V_n)$, as already noted in the proof of Theorem 5. By Corollary 3 the union (over n) of the convex sets spec $(x_1,\cdots,x_k|V_n)$ is dense in the convex set spec $(x_1,\cdots,x_n|V)$ a.s., and therefore

$$\int \cdots \int \operatorname{mes}_{k} \operatorname{spec}(x_{1}, \cdots, x_{k} | V) \gamma(dx_{1}) \cdots \gamma(dx_{k})$$

$$= \int \cdots \int \lim_{n \to \infty} \operatorname{mes}_{k} \operatorname{spec}(x_{1}, \cdots, x_{k} | V_{n}) \gamma(dx_{1}) \cdots \gamma(dx_{k})$$

$$= \lim_{n \to \infty} \int \cdots \int \operatorname{mes}_{k} \operatorname{spec}(x_{1}, \cdots, x_{k} | V_{n}) \gamma(dx_{1}) \cdots \gamma(dx_{k}).$$

Hence, it suffices to prove Theorem 6 for the case where V is finite-dimensional. The space E can then also be assumed to be finite-dimensional of dimension n. The set spec $(x_1, \dots, x_k | V)$ is the image of V under the linear mapping $A_x : E \to \mathbb{R}^k$ which is defined by $A_x(\theta) = (\langle \theta, x_1 \rangle, \dots, \langle \theta, x_k \rangle)$; here and elsewhere $x = (x_1, \dots, x_k)$. Choose a fixed orthonormal basis in E; the matrix of the mapping A_x in this basis (denote it also by A_x) has k rows and n columns. Each element of this matrix depends on the point x of the probability space $(E \oplus \dots \oplus E, \gamma \otimes \dots \otimes \gamma)$ and in this sense can be viewed as a random variable. It is easy to see that all the elements of A_x are independent standard Gaussian random variables. Orthogonalizing the rows of A_x , we obtain a factorization $A_x = B_x C_x$, where B_x is a lower triangular square matrix of order k and k is a matrix of k orthonormal rows of k elements. Examining the orthogonalization process, we can easily show that all the elements of k are independent, all the off-diagonal elements have a standard normal distribution and all diagonal elements have the following distributions: k k k k k k k is the distribution of the square root of the sum of the squares

$$\mathbf{E} \det B_{x} = (\mathbf{E}\chi_{n})(\mathbf{E}\chi_{n-1}) \cdots (\mathbf{E}\chi_{n-k+1})$$

$$= \frac{\sqrt{2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \frac{\sqrt{2} \Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \cdots \frac{\sqrt{2} \Gamma\left(\frac{n-k+2}{2}\right)}{\Gamma\left(\frac{n-k+1}{2}\right)} = 2^{k/2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n-k+1}{2}\right)}.$$

Further, it is not hard to show that B_x and C_x are independent and that the matrix C_x has a unique probability distribution invariant under rotation or more precisely under right-multiplication by any orthogonal matrix of order n; it is essentially a question of a

uniform distribution on the Stiefel manifold $V_k(\mathbb{R}^n)$, and just below of a uniform distribution on the Grassman manifold $G_k(\mathbb{R}^n)$. We have

$$\mathbf{E} \operatorname{mes}_{k} \operatorname{spec} (x | V) = \mathbf{E} \operatorname{mes}_{k} B_{x} C_{x} V$$

$$= (\mathbf{E} \operatorname{det} B_{x}) (\mathbf{E} \operatorname{mes}_{k} C_{x} V)$$

$$= 2^{k/2} \frac{\Gamma((n+1)/2)}{\Gamma((n-k+1)/2)} \mathbf{E} \operatorname{mes}_{k} C_{x} V.$$

The set C_xV is isometric to the orthogonal projection of V on the k-dimensional subspace spanned by the rows of the matrix C_x . Therefore, $E \operatorname{mes}_k C_xV$ is the mean volume of the k-dimensional projection of V. We use a consequence of Kubota's formula [3], formula 4.4.4"; it says that the mean volume of the k-dimensional projection of V is equal to

$$\Gamma\left(\frac{n}{2}+1\right)\left[\binom{n}{k}\Gamma\left(\frac{k}{2}+1\right)\Gamma\left(\frac{n-k}{2}+1\right)\right]^{-1}h_k(V);$$

by means of the duplication formula for the Γ -function

$$\Gamma(2z) = \pi^{-1/2} 2^{2z-1} \Gamma(z) \Gamma(z + \frac{1}{2})$$

we now find that

$$\frac{1}{\pi_{k}} \operatorname{E} \operatorname{mes}_{k} \operatorname{spec}(x|V) = \frac{\Gamma(k/2+1)}{\pi^{k/2}} 2^{k/2} \frac{\Gamma((n+1)/2)}{\Gamma((n-k+1)/2)} \frac{k!(n-k)!}{n!} \cdot \frac{\Gamma(n/2+1)}{\Gamma(k/2+1)\Gamma((n-k)/2+1)} \frac{(2\pi)^{k/2}}{k!} \mathcal{M}_{k}(V)$$

$$= 2^{k} \frac{\Gamma((n+1)/2)\Gamma(n/2+1)}{\Gamma(n+1)} \cdot \frac{\Gamma(n-k+1)}{\Gamma((n-k+1)/2)\Gamma((n-k)/2+1)} \mathcal{M}_{k}(V)$$

$$= 2^{k} \frac{\sqrt{\pi}}{2^{n}} \frac{2^{n-k}}{\sqrt{-\pi}} \mathcal{M}_{k}(V) = \mathcal{M}_{k}(V).$$

REMARK 4. Theorem 6 can be proved differently for the finite-dimensional case by introducing a large number of "extraneous" measurements, as was done in the proof of Theorem 3 in [7].

Received by the editors December 9, 1983

REFERENCES

- B. S. TSIREL'SON, A geometric approach to maximum likelihood estimation for infinite-dimensional Gaussian location. I, Theory Prob. Appl., 27 (1982), pp. 411-418.
- [2] B. S. TSIREL'SON, A geometric approach to maximum likelihood estimation for infinite-dimensional Gaussian location. III, Theory Prob. Appl., (in press).
- [3] S. CHEVET, Processus gaussiens et volumes mixtes, Z. Wahrsch Verw. Gebiete, 36 (1976), pp. 47-65.
- [4] YU. D. BURAGO AND V. A. ZALGALLER, Geometric Inequalities, Nauka, Leningrad, 1980. (In Russian.)
- [5] R. M. DUDLEY, Lower layers in R² and convex sets in R³ are not GB classes, Lect. Notes Math., 709 (1979), pp. 97-102.
- [6] B. S. TSIREL'SON, A natural modification of a random process and its applications to random series of functions and Gaussian measures, Zap. Nauchr. Sem. Leningrad Otdel. Mat. Inst. Steklon, 55 (1976), pp. 35-63. (In Russian.)

[7] V. N. SUDAKOV AND B. S. TSIREL'SON, Extremal properties of halfspaces for spherically invariant measures, Zap. Nauchr. Sem. Leningrad Otdel. Mat. Inst. Steklon, 41 (1974), pp. 14-24. (In Russian.)

THE UNIFORM DISTRIBUTION ON COMPACT HOMOGENEOUS SPACES AND THE KANTOROVICH-RUBINSHTEIN METRIC

V. A. KAIMANOVICH

(Translated by Yona Ellis)

Let X be a compact G-space with a Haar measure m (e.g., G is a compact group, X = G). A number of papers (see [1]-[4]) have studied the problem of the uniform distribution on X, i.e., the weak convergence of the measures $\mu_1 \cdots \mu_n \nu$ or $\mu^n \nu$ to m (μ_i and ν are probability measures on G and X, respectively and μ^n is the n-fold convolution of μ). Below we apply a new technique to the investigation of this problem based on the metrization of the weak topology by the Kantorovich-Rubinshtein (KR) metric and we generalize old results of Arnol'd-Krylov and Ullrich-Urbanik.

1. The KR Metric

Let (X, ρ) be a compact metric space, M(X) the space of Borel probability measures on X and Lip (X, ρ) the space of functions $u: X \to \mathbb{R}$ such that $u(s) - u(t) \le \rho(s, t)(\forall s, t \in X)$. The KR-metric

$$d(\nu_1, \nu_2) = \inf \int \rho(s, t) d\Psi(s, t),$$

where the inf is taken over all measures $\Psi \in M(X \times X)$ whose projections onto the first and second factors are ν_1 and ν_2 , metrizes the weak topology in M(X), and the inf is always attained for a measure Ψ if and only if $u(s) - u(t) = \rho(s, t)$ ($\forall (s, t) \in \text{supp } \Psi$) for some $u \in \text{Lip } (X, \rho)$. The dual definition is $d(\nu_1, \nu_2) = \sup \{ \langle f, \nu_1 - \nu_2 \rangle : f \in \text{Lip } (X, \rho) \}$ [5].

Everywhere below (except in Section 6) we assume that the topological group G acts continuously and minimally on X by isometries, i.e., G is embedded in the compact group Iso (X) of all isometries of X equipped with the invariant metric $\rho^*(g_1,g_2)=\sup_{x}\rho(g_1x,g_2x)$. Obviously, $d(g\nu_1,g\nu_2)=d(\nu_1,\nu_2)$, $d(\mu\nu_1,\mu\nu_2)\leq d(\nu_1,\nu_2)$. We call a measure μ on G transitive on X if $\rho(s,\sup_{x}\rho(s)\to 0,\ n\to\infty)$ ($\forall s,t\in X$). For X=G this is equivalent to μ being strictly aperiodic [1].

Lemma 1. If $d(\mu\nu_1, \mu\nu_2) = d(\nu_1, \nu_2)$ and supp $\mu' \subset \text{supp } \mu$, then $d(\mu'\nu_1, \mu'\nu_2) = d(\nu_1, \nu_2)$.

Lemma 2. If the measure μ is transitive on X and $\nu_1 \neq \nu_2 \in M(X)$, then $d(\mu^n \nu_1, \mu^n \nu_2) < d(\nu_1, \nu_2)$ for some n (depending on ν_1).

PROOF. Let Ψ be a fixed measure realizing $d(\nu_1, \nu_2)$, and $(s, t) \in \text{supp } \Psi$, $\rho(s, t) = \varepsilon > 0$. If $d(\mu^n \nu_1, \mu^n \nu_2) = d(\nu_1, \nu_2)$, then the measure $\mu^n \Psi$ realizes $d(\mu^n \nu_1, \mu^n \nu_2)$, i.e., there is a $u_n \in \text{Lip }(X, \rho)$ such that

$$u_n(gs) - u_n(gt) = \rho(gs, gt) = \varepsilon(\forall g \in \text{supp } \mu^n).$$

The values of $u_n(gs)$ for $g \in \text{supp } \mu^n$ for large n can be arbitrarily close to the smallest value of u_n on X, whence $\varepsilon = 0$ and $v_1 = v_2$.