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TRIPLE POINTS: FROM NON-BROWNIAN
FILTRATIONS TO HARMONIC MEASURES

B. TSIRELSON

Introduction

A smooth boundary is two-sided: U1 N @U, N U3 = () for any smoothly
bounded domains (connected open sets) Uy, Us, Us of R? or any manifold.
For piecewise smooth boundaries, dim(0U; N 0U; N 9U3) < d — 2. Triple
points are rare. For irregular domains the situation differs (the phenomenon
of Brouwer, see [L]). There is an infinite sequence of pairwise nonoverlap-
ping domains U,, C R® with equal boundaries: 0U; = 0Us = ... (in addi-
tion, U, may be of positive three-dimensional Lebesgue measure). Each
U, reminds one of the blood circulation system, branching from artery to
capillary vessels, while QU,, is the tissue supplied with blood. Each bound-
ary point is accessible from each domain by a continuous path of finite
length.

A boundary is conjectured to be two-sided for arbitrary domains under
the right definition for sides, pointed out by Bishop [Bi, Sect. 6] in terms of
the Martin boundary: its natural projection to the topological boundary
should be at most 2 to 1 almost everywhere w.r.t. the natural measure on
the Martin boundary.

An equivalent formulation without Martin boundaries can be given
(Bishop [Bi], Eremenko, Fuglede, Sodin [ErFuSo2]) in terms of harmonic
measures. Consider the idea for the “blood vessel-type” domains. A Brow-
nian particle starting from an interior point of such a domain U exits from
U through the wall of a vessel (but probably not through the tissue), which
is essential for boundary-value problems in U. The probability distribution
of the exit point is the well-known harmonic measure for U. The measure
depends on the starting point, but its type does not (the type of a measure
means the class of all equivalent measures, where equivalence is mutual ab-
solute continuity). Let us define the harmonic boundary of U as the above
measure type on U \ U. The intersection of several harmonic boundaries
may be defined as another measure type such that a measure is absolutely
continuous w.r.t. the intersection if and only if it is absolutely continuous
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w.r.t. each of the given harmonic boundaries. The intersection is said to
be empty if the only such measure is zero.

Considerable progress has been made recently, and is furthered in this
paper, to understand harmonic boundaries. In contrast to the topological
boundary U \ U, the harmonic boundary of a three-dimensional domain
is of Hausdorff dimension strictly less than 3 [Bo| but sometimes greater
than 2 [Wo]. For each d there is a finite Ny such that the intersection of
Ny + 1 harmonic boundaries is always empty; see [Bi], where the following
estimates are given: Ny < 10 for d > 4, and N3 < 4. See also [FriH],
[01,2] for related estimates. The equality Ny = 2 is conjectured for all d
([Bi, Sect. 6] and [ErFuSo2]) but proved only for d = 2 ([Bi], [ErFuSol]):
two-dimensional topology excludes the “blood vessels” phenomenon (not
to be confused with the “Wada lakes” mentioned in [Bi, p. 20]; these fail
to access their boundary points by continuous paths).

One of the two main results of the present paper (Theorem 7.4) states
that Ny = 2 for all d. Thus, “Problem a” of [ErFuSo2] is solved, and the
conjecture of Bishop [Bi] is proved. The intersection of three harmonic
boundaries is always empty. In this respect there is no distinction between
smoothly bounded domains and irregular domains! Anyway, triple points
are rare; a boundary is two-sided.

Probabilistic arguments are usual when dealing with harmonic mea-
sures. The phrase “We think about harmonic measure in terms of hitting
probability of Brownian motion” [Bo, p. 478] is equally applicable here,
but the following phrase is not: “It seems clear that all — or almost all —
the arguments involving Brownian motion in this paper can be translated
into the language of classical potential theory” [O1, p. 180]. The result
Ny = 2 will be proved by using Brownian motion not only as a suitable
language. Stochastic analysis is involved far beyond the customary strong
Markov property. This is a challenge: can the result Ny = 2 be achieved
by non-stochastic arguments?

The motif of triple points brings together the topic of classical analysis,
discussed above, and the following topic of stochastic analysis: diffusion
processes on graphs. A graph is treated here not as a discrete scheme but
as a one-dimensional topological space with branching points. In such a
space a harmonic boundary need not be two-sided, see [ErFuSol, Sect. 7,
“An example from axiomatic potential theory”]. A diffusion process on a
graph is a simple, natural, and useful idea, arising when considering the
movement of nutrients in the root system of a plant [FrDu], small random
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perturbations of Hamiltonian dynamical systems [Fre|, large-scale geometry
of discrete groups [V], and some other topics (see [BPY]). A canonical case,
well-known as Walsh’s Brownian motion (see [W], [BPY]) can be described
as a complex-valued continuous martingale Z(t) such that |Z(t)|?> —¢ is also
a martingale, and Z3(t) € [0,+o0) for all ¢+ € [0,+00). Its phase space
{z € C: 2% €[0,+00)} = {re™/3 . r € [0,400),k = 0,1,2} consists
of three rays connected at the triple point 0. The two-ray counterpart of
Z(t), a continuous real-valued martingale B(t) such that B2(t) — ¢ is a
martingale, is just the usual one-dimensional Brownian motion. Processes
|Z(t)| and |B(t)| are identically distributed; each is a so-called reflecting
Brownian motion. In fact, B(t) can be obtained from the reflecting Brow-
nian motion by assigning independent equiprobable random signs +1 to its
excursions, and Z(t) can be obtained similarly by assigning independent
equiprobable random phases 1, ¢27/3, ¢4™/3_ The simple description sug-
gests that the distinction between processes Z(t) and B(t) should not be
deeper than that between B(t) and |B(t)|, which is misleading: we cannot
assign the phases (or signs) in real time. (I apologise for the non-standard
terminology, formally introduced only after Def. 1.1 but, hopefully, it is
self-explanatory on the intuitive level.) It is well-known (see sect. 1) that
a real-time deterministic machine can produce a Brownian motion from a
reflecting Brownian motion (not by assigning signs, of course). Can it pro-
duce Walsh’s Brownian motion? This was an open problem [BPY, Problem
2]. One of the two main results of this paper (Theorem 4.14) solves the
problem: Z(t) cannot be produced in real time from a Brownian motion,
nor from a finite or countable collection of independent Brownian motions.

Consider the three rays as domains Uy, Us,Us in the one-dimensional
space {z € C: 2% € [0,4+00)}. The harmonic measure of Uy, is concentrated
at 0, thus the intersection of three harmonic boundaries is nonempty, which
is impossible in R?. Accordingly, the Brownian motion on R¢ cannot pro-
duce Walsh’s Brownian motion. The triple point is an essential singularity,
while an endpoint is not!

The result pertaining to stochastic analysis will be proved first. The
other result, pertaining to classical analysis, will follow. A brighter light is
shed on their relation by a recent result of M. Barlow, M. Emery, F. Knight,
S. Song and M. Yor [BEKSoY]: in some sense (see also the end of sect. 4), a
boundary is two-sided in the infinite-dimensional space of Brownian sample
paths, which implies the result for R?.

The author is grateful to M. Emery, A. Skorokhod, M. Smorodinsky,
M. Sodin, and M. Yor for helpful discussions.
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1 From Stochastic Calculus to Stochastic Topology

For time-challenged non-probabilists, I suggest a short presentation of
stochastic calculus [Me2] (containing no proofs) and Chapter 1 of [E] to
introduce the subject. Books for further reading are recommended therein
(see also Bass [Ba]). The book by Revuz and Yor [RY] will be referred to
frequently.

A filtration is an increasing family F = (F(t))sc[0,00) Of sub-o-fields
F(t) C F(oo) on a probability space (2, F(c0), P). (Traditionally, a prob-
ability space is denoted by (€2, F, P) and a filtration by (F¢):e[0,00), Which
becomes inconvenient when dealing with several filtrations Fi,...,F,.)
The triple (Q,F, P) = (2, (F(t))e[o,00), P) is called a filtered probability
space (or a stochastic basis). It is assumed that (2, F(c0), P) is standard,
that is, isomorphic mod0 to [0,1] with Lebesgue measure, or a smaller
(maybe empty) interval plus atoms; F(0) contains all sets of probability
0; F(t) = NesoF(t + €); and F(oo) is the least o-field containing all F(¢).
A random process is a map X : [0,00) X  — R whose restriction to each
[0, t] X £2 is jointly measurable w.r.t. the Borel o-field on [0, t] and the o-field
Fi on . (That is, only progressively measurable processes are considered,
see [RY, 1.4.7].) The assumptions of this paragraph are implicit through-
out the paper. The reader may restrict himself to filtrations satisfying the
“absolute continuity condition” (see the following two paragraphs). The
restriction can be relaxed, as noted after Def. 2.3.

Each filtration F determines the corresponding set Mo (F) of all local
martingales (assumed right-continuous, starting from 0) and is uniquely
determined by Mjo.(F); in fact, F is generated by a countable subset
of Mioe(F) (just take a basis (Xi) of Lo(2, F(c0), P) and let M(t) =
E(Xk|.7-" (t))). It can be shown by some tricks (see [Skl, Example 2 on
p. 168] for one of them) that any filtration is generated by a single martin-
gale, but we do not need it. Usually defined via stopping (see [Me2, p. 138];
[E, 1.5]; [RY, IV.1.5 and in addition, 1.7, 4.1, and V.1.24, 2.13]), Miec(F)
may be defined equivalently as the closure of the separable Hilbert space
of Lo-bounded martingales in a weaker topology, so-called ucp-topology,
metrizable (see [E, 1.3]) but not normed, corresponding to the convergence
in probability, uniformly on finite time intervals. (See also [E, 4.43].) We
restrict ourselves to filtrations F satisfying the following “continuity con-
dition”: each M € Mjo.(F) is continuous (almost surely). The filtra-
tion generated by a Brownian motion (the so-called Brownian filtration)
satisfies the continuity condition, as well as the filtration generated by a
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continuous Feller process (that is, a time-homogeneous sample-continuous
Markov process whose semigroup sends continuous functions into continu-
ous functions). Walsh’s Brownian motion is another example. We borrow
convenient notation from [E]: for any continuous processes X and Y,

XZ2Y means X —-Y € M.

Any M € My.(F) such that M?2(t) — t is also a local martingale, nec-
essarily is a Brownian motion (P. Lévy’s characterization theorem [RY,
IV.3.6]). Any M € My(F) determines its “quadratic variation” — an
increasing process (M, M) such that M? — (M, M) € Myye(F). (Infor-
mally, (M, M)(t) = fg(dM(s))Q.) The process (M, M) may be treated as
another time, then M turns into a Brownian motion (see [RY, V.1]). We
restrict ourselves to filtrations F satisfying the following “absolute conti-
nuity condition”: the above continuity condition is satisfied, and for any
M € Mjoc(F) the process (M, M) is absolutely continuous (that is, almost
all sample paths of (M, M) are absolutely continuous functions on [0, 0)).
The condition is satisfied by a filtration generated by a Brownian motion
or a Walsh Brownian motion.

Such notions as “Brownian motion” or “Walsh’s Brownian motion” are
subordinate to a given filtration. If a process is a Brownian motion then
its sample paths are distributed according to the Wiener measure, but the
converse does not hold. Let sample paths of a process X be distributed
according to the Wiener measure. Then, indeed, X is a Brownian motion
w.r.t. the filtration Fx generated by X; Fx(t) C F(t). Future increments
X (t+ At) — X(t) do not depend on the past Fx(t) of the process X, but
still may depend on the whole past F(t), which is forbidden for a Brownian
motion.

An isomorphism between two filtered probability spaces (4, F1,P;)
and (Qq,F2, P») or (abusing the language) between two filtrations Fi
and F; is, by definition, a mod 0 isomorphism between probability spaces
(1, Fi(oc0), P1) and (Qe9, Fo(c0), P») sending Fi(t) to Fa(t) for each ¢t. If
Fi is generated by a random process X and F3 is generated by a random
process Y, then an isomorphism between F; and F5 is what we call a re-
versible real-time transformation of X into Y. A famous example (Lévy,
Skorokhod)is a reversible real-time transformation of a Brownian motion
X (t) into a reflecting Brownian motion Y (¢), given by the formula

Y(6)=X(0) - inf X(s).
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The inverse transformation is far from being evident:

t
X(t) =Y (t) — lim —/ 1(y(s)<5) ds.
0

For a detailed discussion see [RY, VI.2]. The evident non-invertible trans-
formation Y (¢) = | X (¢)| is an example of an irreversible real-time transfor-
mation, as defined below. (Some interesting transformations of a Brownian
motion into itself are described in [Y2, Sect. 17.3].) The definition is chosen
such that the formula Y (¢) = X(t —1) fort > 1,Y(t) =0for 0 <t <1is
not a real-time transformation of a Brownian motion X into another pro-
cess Y. The reason is that Y is a martingale w.r.t. its own filtration Fy,
but not w.r.t. Fx: knowing X (¢) we can predict Y (¢ + 1) with certainty.
The following definition stipulates that, given the past of Y, knowledge of
the past of X gives no additional information about the future of Y. The
notion defined below (though not in the same words) may be found in [GS,
Sect. 7], [IWa, Chap.2, Def.7.1], [DFSmT, Def.6.1].

1.1 DEFINITION. A morphism from a filtered probability space (21, F1, P1)
to a filtered probability space (2, F2, P»), or (abusing the language) from
a filtration F; to a filtration F», is a measure preserving map 7 : 23 — (9
satisfying two conditions:

(1) = is measurable from (Q, Fi(t), P1) to (Qg, Fa(t), P») for any ¢,
(2) for any ¢t and any A € F

P (A‘fQ(t)) (rw) =P (T*I(A) ‘_7-'1 (t)) (w)
for almost all w € Q5.

Here P (-|-) means the conditional probability; we suppress probability
measures (P, P,, @ and others) whenever they are uniquely determined
by context; this time, P means P p, on the left-hand side but P p, on the
right-hand side.

Conditions (1), (2) are equivalent to the following: 7 induces an em-
bedding of Moc(F2) into Mioc(F1). That is, for any local martingale
M5 € Mjoc(F2) the following process M; belongs to Mo (F1): Mi(t,w) =
My (t, Tw).

So, the phrase “the process X can be transformed into the process Y
in real time” means that there is a morphism from Fx to Fy.

It is well-known that a one-dimensional Brownian motion cannot be
transformed in real time into a two-dimensional Brownian motion. For a
Brownian filtration, Fp, the space Mjo.(Fp) reminds one, in some sense, of
a one-dimensional manifold. Of course, Mjo.(Fp) is an infinite-dimensional
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linear space. However each M € Mioc(FB) can be written as the stochastic
integral M (t fo (s) of some Fp-adapted process H (see [RY,
V.3.4]). Informally, dM( ) H(t) dB(t) means that, for fixed ¢ and w the
differential dM belongs to the one-dimensional linear space {hdB : h € R}
as if it were the tangent space.

It may seem that stochastic analysis is inherently non-smooth (has no
natural smooth structure) since the very Brownian motion is not smooth.
However, smoothness in time is not the point. A Browman motlon is rather
an infinite collection of independent variables, and M (¢ fo
is a function of the variables. Any bounded Fp(oc0)- measurable functlon
[ is of the form f = M(o0) for some M € M. (Fp), therefore f =
o H ) for some H, the differential H(t) dB(t) being well-defined
almost everywhere. In this sense stochastic analysis is inherently smooth:
measurability implies differentiability. Why? Because f(w) = M (oo, w)
is a kind of boundary value of M (t,w). For a deeper discussion, see the
Malliavin calculus [M], [N].

The filtration Fp» generated by an n-dimensional Brownian motion
B"(t) is, in some sense, n- dimensional each M € Mjy(Fpr) can be
written as the stochastic integral M (¢ fo H™(s)dB"™(s) of some n-
dimensional Fgr-adapted process H™. The space Mloc(an) reminds one
of an n-dimensional manifold. Accordingly, Moc(Fpn+1) cannot be embed-
ded into Mo (Fpn), that is, B"t1(t) cannot be produced in real time from
B™(t). See [J, Chap. 4] for a definition and properties of the so-called in-
stant dimension of Mo (F). Instant dimension is defined there for so-called
stable subspaces of Mjoc(F), but we need it for the whole M,.(F) only.
Note that a single martingale can generate a filtration of instant dimen-
sion greater than 1; an example: M (¢ fo B (s) dBy(s) for independent
Brownian motions By, Bs, see [RY, V 4 13]. See also [Sk1, Example 2 on
p. 168] for infinite instant dimension (Skorokhod calls it “rank”).

Stochastic analysis investigates quantitative properties of random pro-
cesses. Their qualitative properties, insensitive to reversible real-time trans-
formations, are properties of filtrations, considered up to isomorphisms. A
theory of filtrations could be called stochastic topology! Its starting point
is the instant dimension, the only! known invariant whose meaning is ev-
ident (though its invariance is not so evident, which is similar to classical
topology).

A Brownian motion in a topological group G can be defined as a path-

! As far as discontinuous martingales are excluded.
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continuous time-homogeneous process X with independent increments on
the left, starting from the unit element of the group [Bax|. For G = R (im-
plying the additive group) these are of the form X (¢) = aB(t) + bt where
B is the standard Brownian motion and a,b are constants. For a finite-
dimensional Lie group G any such X generates a filtration isomorphic to
the Brownian filtration Fpn for some n € {0,1,...,dimG}. (See [Bax]
and references therein; an infinite-dimensional case is treated in [Bax].) In
fact, a naturally constructed invertible real-time transformation produces
X from a Brownian motion Y in the tangent space of G at its unit (the
linear space of the Lie algebra). The global topology of G is irrelevant,
since a sample path is continuous and insensitive to self-intersections. The
dimension n of the least linear subspace embracing Y exhausts the classi-
fication.

Waiving the group structure and the independence of increments we
turn to diffusion processes in manifolds, or in R*, which is the same for
stochastic topology due to its local nature. Two main approaches to dif-
fusion processes are used: martingale problems and stochastic differential
(or integral) equations. The latter is a technique for connecting a diffusion
process and a Brownian motion by an invertible real-time transformation.

Invertibility of a real-time transformation may seem to be a simple
matter. In terms of stochastic differentials, the transformation has its dif-
ferential, defined almost everywhere. The differential is a linear measure-
preserving map from one finite-dimensional linear space, equipped with a
Gaussian measure, into another. Clearly, such a map is invertible (mod 0) if
and only if the two Gaussian measures are of the same dimension. Remem-
bering that stochastic topology is smooth and local, we may expect that
a real-time transformation is invertible if and only if it does not reduce
the instant dimension. Strangely enough, it does not hold. Invertibility
can be violated by a delicate combination of two phenomena. The first,
an initial value problem for an ordinary differential equation? can have
more than one solution. The second, a partition of a probability space into
(a continuum of) measurable sets can be an immeasurable partition. As
a consequence, the theory of stochastic differential equations is forced to
distinguish a strong solution (also called solution-process) from a weak so-
lution (also called solution-measure). The latter is a morphism of Fx into
Fpr (never reducing the instant dimension), the former is an isomorphism

I mean a classical (not stochastic) differential equation whose right-hand side is
continuous but need not satisfy Lipschitz condition.
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(some examples may be found in [RY, Chap. IX, 1.19, 3.6, 3.17, 3.18]) pro-
vided, however, that the stochastic differential equation is non-degenerate.
Otherwise, a strong solution is a (non-invertible) morphism Fpr» — Fx,
while a weak solution is not a morphism at all.

Irreversibility of a given transformation does not mean that the two
filtrations are nonisomorphic: another transformation may be invertible.
The first example of a filtration of instant dimension 1 (identically), non-
isomorphic to Brownian filtration, is given by [DFSmT]. It is of the form
(Q, Fp, A\P), where (2, Fp, P) is the Brownian filtered probability space
and A is a density (that can be chosen such that both A and 1/X are
bounded [FT]). Unexpectedly, equivalent measures can lead to nonisomor-
phic filtered probability spaces. The density A depends on the remote past
in a complicated way, thus the measure change P — AP turns the Brownian
motion B into a highly non-Markovian process.

It is natural to ask about an invariant distinguishing the filtration of
[DFSmT] from Brownian filtration. In fact, [DFSmT] deals mostly with dis-
crete time filtrations; a sequence t,, | 0 is considered rather than ¢ € [0, 00),
and Vershik’s theory of decreasing sequences of measurable partitions [Ver]
is used. The relevant invariant takes on only two values (“standard” and
“non-standard”). Richer invariants exist [F]| but are somewhat bizarre.

Walsh’s Brownian motion was conjectured to give a natural example of
a non-Brownian filtration of instant dimension 1 (see [RY, the text after
Question 6 at the end of Chapter V]), in addition to the artificial example
of [DFSmT]. We will prove the conjecture by means of a new invariant
of filtrations (that is, of filtered probability spaces), taking on two values
(“cozy” and “not cozy”). The invariant is defined only for continuous-time
filtrations. See also [BEKSoY] for a new integer-valued invariant: splitting
multiplicity.

2 Joining Two Copies of a Filtration

A joining of two probability spaces (2, Fx(oc), Px), k = 1,2, is usually
defined as a probability distribution @ on (€21 X Qg, F1(00) ® F2(o0)) whose
marginals are P; and P, but we may also define it as consisting of another
probability space (€2, F(c0), P) and two measure preserving maps 7, : £} —
Q. Any such J = ((Q, F(c0), P), 1, m2) determines Q,

Qs(A) =P({@ € Q: (m (@), m(@)) € A})
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for A C Q1 x Qg, A € Fi(o0) ® Fa(o0). Any @ with given marginals
is Qs for some J. Though, QQ;;, = Qj, does not mean that J; and
Jo are isomorphic, but it does not matter. We need only the case
(€41, Fi(00), P1) = (2, Fa(o0), Po).

2.1 DEFINITION. (a) A self-joining over a probability space (2, F(c0), P)
is a triple J = ((, F(0), P), w1, m3) consisting of a probability space
(Q, F(c0), P) and two measure preserving maps 7, : {2 — Q.

(b) A self-joining over a filtered probability space (£2, F, P) or (abusing
the language) over a filtration F is a triple J = ((€, F, P), m, o) consist-
ing of a filtered probability space (€, F,P) and two morphisms 7 from
(Q,F,P) to (Q,F,P).

The following simple example is especially important. Consider filtra-
tions F = Fp and F = F g2 generated by one- and two-dimensional Brow-
nian motions B and B2 = (Bi, Bs), respectively. For a given number
p € [-1,+1] define 71, 79 by

B(t)om = Bi(t),  B(t)om = pBi(t) + V1 - p>Ba(t)
then B o and B o m are p-correlated copies of B. The self-joining will
be denoted by J(p). Below, “Var” means “variance” (the squared dis-
tance from the one-dimensional space of constants in Lg) and “Cov” means
“covariance” (the bilinear form corresponding to the quadratic form “vari-
ance”).

2.2 LEMMA. For the self-joining J(p), for any f,g € Lo(Fp(o0))

(a) |Cov(f om,gom)| < |plr/Var(f)y/Var(g) for p € [-1,+1];
(b) Cov(f om, fom) — Var(f) for p — +1.

Proof. Let f,,g, be the orthogonal projections of f and g on the n-th
Wiener chaos, then f = fo+ fi+..., Var(f) = || fill> + || f2]* + ..., and

E(fom |m 73( ) = (fo+pfi+p°f2+...)om, that is, E(f(pB1 () +
V19— BQ | B1 ) (f0+pf1+p2f2—|—. .. )(Bl()), see [Ma, Chapter 1,
Sect. 6] or[N, §1.4.1]. Tt follows that Cov(fom, goms) = Cov((fo+fi+...)o

1, (90 +pgL+p°g2+...)om) = Cov(fo+ fit+...,90+pg1+p°g2+...) =
PE(f191) + p*E(f292) + - .. which makes (a) and (b) evident. O

The correlation coefficient p can be randomized by a simple generaliza-
tion of the self-joining J(p): multiplying Q by [—1, +1] we construct a larger
(Q F, P) supporting both a two-dimensional Brownian motion B2 and an
F (0)-measurable random variable p independent of B2. Any probability
measure on [—1,+1] can be chosen as the distribution of p. The above for-




1106 B. TSIRELSON GAFA

mulas for 7y, w9 still work, but p is now randomized. The simplest interest-
ing case is this: p takes on two values 0 and +1 only, P(p =1) = p € (0,1),
P(p = 0) =1 —p. Clearly, Cov(f o m,g9 o m3) = pCov(f,g) for any
fyg € Lo(Fp(c0)). This means a positive minimal angle between the
subspaces LY(m; 1 F(00)) = LY(Q, n; ' F(00), P) and LY(m, ' F(c0)) of the
Hilbert space Ly(F(00)) = La(Q, F(c0), P); here LY means the subspace
of all zero-mean functions of Lo. The angle averages the correlation, since
the Lo-norm is of a global nature, in contrast with the quadratic variation
used in the following definition.

2.3 DEFINITION. Let J = ((Q,F,P),n1,m) be a self-joining over a
filtered probability space (Q,F,P). The maximal correlation ppax(J) of
the self-joining J is defined as the least number of [0,1] such that for any
X,Y € Mioc(F) the following process on (Q, F, P) is an increasing process:

(X1 =Y, X1 — Y2) — (1 — pmax) ({(X1, X1) + (Y2, Y3)) ;
here X1 = X om, Yo =Y om.

The filtration F is assumed to satisfy the continuity condition of sec-
tion 1, but F is not. Throughout the paper, the condition is assumed for
a filtration if and only if its notation does not contain a tilde (~), un-
less the reader prefers to assume the absolute continuity condition to hold
everywhere, which can be done with no essential harm.

For any f € Lo(F(o0)) the process X (t) = E(f|F;) (E(-|-) means the
conditional expectation) is a local martingale (in fact, an Ls-bounded mar-
tingale), f = X (00), and® Var(f) = E(X, X)(c0). Applying (2.3) to X,Y
obtained this way from f,g € Ly(F(o0)) we get

X1(t) ~Ya(t) =E(f1 —g2 | Fo);
Var(fi — g2) > (1 — pmax) (Var(f1) + Var(g2)) ;
2Cov(f1,92) < pmax(Var(f1) + Var(g2)) ;

Cov(f omi,gom) < pmax\/Var(f)\/Var(g) .

The cosine of the minimal angle does not exceed pmax(J), and can be
strictly smaller. In fact, pmax(J) is the cosine of the minimal angle between
so-called stable subspaces generated by Mjoc(F) o w1 and Mo (F) o mo; a
definition can be found in [J, Chap. 4] or [RY, IV.5.11], but we do not need
it. The notion of the quadratic covariation,

(X,)=4X, X)+3(7,Y)- L X -V, X - V),

3Tt is assumed that F(0) is trivial; otherwise L3(F(occ)) should be replaced with
Ly(F(o0)) © L2(F(0)).
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allows us to write the process (X1 — Yo, X1 — Y2) — (1 — pmax) ((X1, X1) +
(Y2,Y2)) in the form

Pmax ((X1, X1) + (Y2, Y2)) — 2(X1,Y2).

If (Q,F,P) satisfies the absolute continuity condition of sect. 1, then
(X1, X1) and (Y3, Y2) are absolutely continuous, which implies absolute con-
tinuity of <X1, YQ), since (Xl, Xl) + <Y2, Y2) :i:2<X1, Y2> = <X1 :I:YQ, X1 :IZYQ)
increases. Thus, pyax is the least number satisfying

pmax%(<XlaX1> + <Y27Y'2>) > 2%<X1,Yv2>

almost everywhere. Multiplying X; by ¢, Y3 by 1/¢, and minimizing in c,
we get

|4(X1,Y2)| < prnan/ 2 (X1, X0y & (¥2, ).
In general, the ratio
#(X.Y)

V&, X) /&Y, V)

is the instant correlation between X,Y. So, pmax(J) is the supremum over
all XY € Mio(F) of the essential supremum in ¢ and w of the instant
correlation between X o7y and Y o 7y (with an evident caveat about zero
denominator).*

For a filtration of instant dimension 1, the instant correlation p does
not depend on the choice of X,Y up to a sign, and pmax(J) is the essential
supremum of |p| over Q x [0,00). (For a larger instant dimension, an in-
stant maximal correlation may be defined such that pmax(J) is its essential
supremum.) In particular, pmax(J) = |p| for the self-joining J(p) (with a
constant p), and pmax(J) = 1 for the example with randomized p € {0, 1}.

2.4 DEFINITION. A filtered probability space (€2, F, P), or (abusing the
language) a filtration F, is called cozy, if there is a sequence (J,) of self-
joinings J, = ((Qn,ﬁn,lsn),wgn),wén)) over F such that

(a) pmax(Jn) <1 for each n,

(b) Cov(f 07r§n),f07r§n)) — Var(f) when n — oo for any f € Lo(F(c0)).

2.5 LEMMA. A filtration generated by a finite or countable collection of
independent Brownian motions is cozy.

4All that has been said can be generalized easily for a filtration satisfying the conti-
nuity condition rather than the absolute continuity condition.
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Proof. For a single Brownian motion, it follows from Lemma 2.2 that we
may choose p, < 1, p, — 1 and let J, = J(p,). A generalization for many
dimensions is straightforward. O

2.6 LEMMA. There is no morphism from a cozy filtration to a non-cozy
filtration.

Proof. Let Fi be a cozy filtration and 7 a morphism from F; to an-
other filtration F»; we have to prove that F, is also cozy. Any self-
joining J = ((Q, F, P),my,m3) over (Q, Fi, P;) induces a self-joining .J =
(2, F,P), o 7wy, o m3) over (Qo, Fa, Py). We have prax(7J) < pmax(J)
since Moe(F1) D Mioc(Fz)om. On the other hand, Cov(fo(mom), fo(mo
7)) = Cov((f om) omy, (f om) omy)) for any f € Lo(Fa(o0)). Therefore, a
sequence (J,) of self-joinings over Fi, satisfying conditions (a), (b) of Def-
inition 2.4, induces the sequence (7Jy,) of self-joinings over Fs, satisfying
the conditions. O

Remembering that a strong solution of a stochastic differential equa-
tion may be thought of as a morphism Fprn — Fx we conclude that the
strong solution generates a cozy filtration. It is especially interesting for
degenerate equations, that is, non-invertible morphisms.

The main result of the section follows immediately from Lemmas 2.5,
2.6.

2.7 Theorem. There is no morphism from a filtration generated by a
finite or countable collection of independent Brownian motions to a non-
cozy filtration.

It will be shown that Walsh’s Brownian motion generates a non-cozy
filtration, and therefore it cannot be produced in real time from a Brownian
motion of any dimension, finite or infinite!

3 Joining Two Copies of Walsh’s Brownian Motion

A continuous semimartingale may be defined as the sum of a continu-
ous local martingale and a continuous process of (locally) finite variation:
X(t)—X(0) = Mx(t)+Ax(t), Mx(0) =0, Ax(0) = 0. The martingale part
Mx and the compensator Ax are uniquely determined by X. Quadratic
variation for X may be introduced by (X,X) = (Mx,Mx). (See [RY,
IV.1.17-18].) If Ax increases, X is called a local submartingale; if Ax
decreases, X is called a local supermartingale. The set of all continuous
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semimartingales is a linear subset of the linear topological space of all con-
tinuous processes (equipped with the ucp-topology, as in sect. 1), but the
linear subset is not closed. In fact, it is dense (since continuous processes
of finite variation are dense). The maps X +— Mx and X — Ax are linear
but not continuous. The set (convex, not linear) of all continuous local
submartingales is closed. In fact, it is the closure of the set of all continu-
ous submartingales. Being restricted to the closed set, the maps X — Mx,
X — Ax are continuous. The same applies for supermartingales. However,
a process can be both a supermartingale and a local martingale without
being a martingale, even if it is positive and bounded in Ly! See [RY,
V.2.13].

Walsh’s Brownian motion Z(t) (see the Introduction) can be described
alternatively by three processes X;(t), Xo(t), X3(t) such that

Z(t) = X1(t) + 2™/ Xy (t) + ™3 X 3(t)

and X1, X5, X3 do not overlap in the following sense: no more than one
of them differs from zero at any given ¢ (and w). Each X belongs to the
following class (see also [RY, VI.4.4]); another example is |Z(t)| (the same
as |B(t)| for Brownian B).

3.1 DEFINITION. A process of class X is a continuous semimartingale X
of the form M + V where M is a local martingale and V is an increasing
process such that X(0) = 0, X(t) > 0, and f(f 1(x(s)>0) dV (s) = 0 for all
t € [0,00).

For any X € ¥, the increasing process V is half of the local time of X
at 0 (see [RY, VL.1)),

i t
V(t) = 3Li(X) = %Eig% | <o) d{X, X)(s) =/0 1(x(s)=0) dX () -

That is, X = JL(X) for X € %,. Tt follows that X — 1L(X) is a time-
changed Brownian motion, and (by Skorokhod’s lemma [RY, VI.2.1]) any
X € ¥, is a time-changed reflecting Brownian motion.

For any X1, Xo,X3 € B, the process Z(t) = X(t) + e2™/3Xy(t) +
e*™/3 X3(t) is a local martingale if and only if L;(X1) = Ly(X3) = Li(X3)
for all t. The reason is simple: Z 2 1(L(X) + e2™/3L(X,) + e*™/3L(X3)),
s0, Z € My if and only if L(X;) + €™/3L(X3) + e*™/3L(X3) = 0, that
is, L(X1) = L(X2) = L(X3).

Non-overlapping processes X1, X2, X3 € ¥, such that L(X;) =
L(X;) = L(X3) describe Walsh’s Brownian motion if and only if
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(X1, X1)(t) + (X2, X2)(t) + (X3,X3)(t) = t for all t. Otherwise they de-
scribe a time-changed Walsh’s Brownian motion or, equivalently, a complex-
valued continuous local martingale Z such that Z3(t) € [0,00) for all ¢
(a special case of so-called spider-martingales [Y2, Def. 17.2], [BEKSoY,
Sect. 2]; for the change of time see [Y2, Prop. 17.6]).

So, let a filtration F; be generated by Walsh’s Brownian motion Z =
X 4 e2™/3X, 4 ¢*™/3X5. Striving to prove that F; is not cozy (which
will be done in next sections) we consider a sequence (Jy,) of self-joinings
over Fy satisfying condition (b) of Definition 2.4: Cov(f o 7r§n), fo Wén)) —
Var(f) when n — oo for any f € Lo(F(c0)). The following result shows
that for large n processes Z o wgn) and Z o Wén) must have many common

zeros, which hints at a singular nature of the triple point 0 of the space
{z€C:2%€]0,+00)}.

3.2 LEMMA. Let (J,) be as above, and processes Rgn),Rén) be defined by
R,(cn) (t)=|Z(t)| o ﬂ,(cn). Then for any t € [0, 00)

¢
(n)
IE/O 1(R§n)¢0)dL(R2 )—0 forn— 0.

The lemma follows from the next lemma, see below. Of course, E = E 5
means integration w.r.t. P,

The natural measure on the set of zeros of the second copy Z o Wén) of
Z is dL(Rgn)). Most of these zeros are also zeros of the first copy Z o ﬂ%")
(for large n, with a high probability), and most zeros of the first copy are
also zeros of the second copy. That is strange! Usually, if two functions
are close, we may expect at the utmost that their zeros are close, but need
not coincide. Abundance of zeros is not an explanation, since Lemma 3.2
has no counterpart for the two-ray case, the Brownian motion B(t), nor for
the one-ray case, |B(t)|. Remember the self-joining J(p) over Fp with a
constant correlation coefficient p. It is easy to see that Bom; and Boms (as
well as | B|om; and |B|omy) have no common zeros for p # +£1. We observe
emergence of the distinction mentioned in the Introduction: a triple point
18 an essential singularity, while an endpoint is not.

The proof involves the following “geodesic” metric on the space {z €
C: 2% €[0,+00)}:

dist (T1627rk1i/3’,r2627rk2i/3) _ |7"1 - 7"2\ , when k.1 = ko,
|r1] + |r2|, otherwise.
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Given a self-joining J over F, we introduce the process D,
Dy(t) = dist (Z(t) o w1, Z(t) o m2) .

If a sequence (J,,) of self-joinings satisfies condition (b) of Definition 2.4,
then E(Dy, (¢))2 — 0 for n — oco. Indeed, Cov(f o ﬁgn),f o Wgn)) — Var(f)
implies E|f o wgn) —fo wé")\Q — 0 for any f € Ly(Fz(00)). Combining
f=ReZ(t) and f = Im Z(t) we have E|Z(t) o m\™ — Z(t) o r{™ |2 — 0. Tt
remains to note that dist (21, 22) < const - |21 — 29| for all 21,20 € {z € C:
23 € [0,+00)}.

Lemma 3.2 follows immediately from the next lemma showing that
E [ 1(r,20) dL(Ry) < 6EDy (t). Here Ry(t) = |Z(t)| o m.

3.3 LEMMA. For any self-joining J over Fz, the following process is a
submartingale:

I 1 [
X(t) =Dy(t) - 5/0 1(r,£0) dL(R2) — 6/0 1(ry0) dL(R1) -

Here is an intuitive explanation. For any ¢ and w one of the following
simple cases takes place within a small neighborhood of ¢:

Case 1: Ri(t) > 0 and Ry(t) > 0. Then X = Dj; + const. Take k,l €
{1,2,3} such that R;(t) = X(t) om and Ry(t) = X;(t) ome. If k =1
then Dj = |Xj o m; — X o mo| is a submartingale, since X o m; and
X; o mp are martingales. If £ # [ then Dy = Xy om + X;jomo is a
martingale.

Case 2: Ri(t) > 0but Ra(t) = 0. Then X = D;—(1/6)L(R2)+const. Take
k such that R;(t) = Xk (t) o w;. Assume that kK = 1 (other cases are
similar), then Dy = X; om; — (X7 — X2 — X3) omy = (a martingale) —
$(L(X1) — L(X3) — L(X3)) o ma = (a martingale) + §L(Ry).

Case 3: Ryi(t) = 0 and Ry(t) = 0. Infinitesimally, D; can only increase,
and X = Dj + const + (negligible term).

The idea is quite clear for cases 1, 2 but vague for 3. Also, assembling
the local descriptions needs justification. Instead, the proof given below
uses stochastic integration.

For any continuous function f of finite variation, fot Lis(s)=0) df (s) = 0.
Stochastic integration is more subtle: for a continuous semimartingale X,
the integral fg 1(x(s)=0) X (s) need not vanish. If X () > 0 for all Z, then
[RY, VI.1.7]

t
1
/0 L(x(s)=0) X (s) = 5Le(X) 2 0,
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therefore [RY, IV.2.10]

/H 8)1(x(s)=0) dX (s /H ) dL(

for any bounded predictable process H. The following general lemma will
be used in the proof of Lemma 3.3.

3.4 LEMMA. Let X1,..., X, be continuous semimartingalesand Hy, ..., H,
be predictable processes such that for all t

Hi(t) >0 for all k; Z Hy(t) =
ZHk ) Xk (t) = = max Xi(t) -
Then the following process is increasing:

A(t) mI?.XXk / Hk ka

Proof. Let Yy (t) = —X(t) —I—maxZX( ), then Yy (¢) > 0, >~ Hy(t)Yi(t)

0, and A(t) = maxy X(0)+ Y, fo Hy(s) dYy(s). However, Hy(t)Yy(t) =0,
therefore (see the formula before the lemma)

/ Hy(s)dYy(s / Hi,(8)1 (v, (s)=0) dYx(5) / Hy(s)dLs(Yy),
which evidently increases. O

Proof of Lemma 3.3. Define processes Y1,Y,Ys: YV = (2X;, — X7 — X —
X3)om — (2Xy — X1 — X9 — X3) o mo, then Dy(t) = maxg—123|Yi(t)| =
maxy—1,.6 Yi(t), where Yy = -Y;, Y5 = Y5, Y5 = —Y3. (In fact,
D;(t) = maxg=123Ys(t) = maxg—123(—Yx(t)), but all the six terms are
needed for the proof.) Introduce processes Hi, ..., Hg such that Hy(t) > 0,
k=16 Hk(t) =1,and 37, ¢ HyYy =Dy as follows:
if Ry <Ry =Xpom then Hp=1;
if R <Ry=X;om then Hjz, =1;
if Ri=Xpom =Ry=X,0me >0 then Hy=1/2and H3;; =1/2;
if Ri=Ry=0 then Hy=---=Hg=1/6.
Lemma 3.4 states that A = Dy, _, 4 [ Hy dYj is an increasing process.
We have

Yy, = %(2L<Xk) L(X1) = L(X3) — L(X3)) o my

~ 1(2L(Xy) - L(X1) — L(Xs) — L(X3)) o
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= —$L(Ry) + :L(Ry) for k=1,2,3;
Mioe> 3" [ = By A+ §LRS) — $E(R)
k=1
=D;—A+ %/(Hl + Hy + Hs — Hy — Hs — Hg) d(L(Ry) — L(Ry))
=D;— A+ %/ sgn (R1 — Ry) d(L(Ry) — L(Ry))

1 1

It remains to prove that the above process is a martingale (not only a local
martingale). The integrand is bounded: |Hy — H3 | < 1. The integrator is
the sum of two (correlated) Brownian motions: (2Xj — X1 — X, — X3,2X) —
X1 — Xo — X3)(t) = (X1, X1)(t) + (Xz, Xo)(t) + (X3, X3)(t) = ¢, since
<ch7Xl) ZOfOIk#l O

In fact, 2X; — X1 — X9 — X3 is a so-called skew Brownian motion with
parameter o = 1/3, see [W], [HSh], and [RY, X.2.24, XII.2.16].

The main result of this section, Lemma 3.2, follows from Lemma 3.3
proved above. So, common zeros cannot be rare for two copies of Walsh’s
Brownian motion Z, if the sequence (J,,) of self-joinings of F satisfies
condition (b) of Definition 2.4. This is a half of the way toward non-coziness
of Fz. The second half is this: common zeros are rare for two copies of Z, if
the self-joining J of F satisfies condition (a) of Definition 2.4: pmax(J) < 1.
This statement will be proved in the next section for reflecting Brownian
motion |B|, which is enough due to the following argument.

If Z(t) is Walsh’s Brownian motion, then |Z(t)| is (another model of)
reflecting Brownian motion, and there is a natural morphism 7 from Fy
to Fiz. Any self-joining J of Fz induces a self-joining 7J of Fz (see the
proof of Lemma 2.6), and pmax(7J) < pmax(J)-

4 Joining Two Copies of Reflecting Brownian Motion

An interesting geometric property of two-dimensional Brownian trajecto-
ries, well-known since 1985 [Bu], [Shi], [Ev], and reappearing as a by-
product of the main results of the section, is shown on Fig. 1(a). For a
given angle o € (0,7), an instant ¢ € (0,00) will be called an @-minimum,
if

|B2(s) — Ba(t)|sin$ < (Bi(s) — Bi(t)) cos &
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Fig. 1(a). An co-minimum of a two- Fig. 1(b). Soon after an a-mini-
dimensional Brownian motion, « = 7/3. mum, a = 7/3. The shown a-mini-

The shown a-minimum is the first one  mum is the last one before t = 1.
after t = 1.

for all s € [0,t]. Here (B, B2) is a two-dimensional Brownian motion. Each
w € Q determines the set (maybe empty) of a-minima. The question is:
are there a-minima? The answer is positive for o < 7/2 and negative for
a > 7/2 (“with probability 1”7 is implied, as usual); see Lemma . and the
paragraph after it.

There is one more by-product (see Lemma .12 and the paragraph af-
ter it), admitting a nice geometric reformulation presented below. am
grateful to arc or for the reformulation [ 1], and to r ys tof Burd y
for pointing out that the geometric statement follows easily from a result
of Evans [Ev, Th. 1(ii)]. Let @ < /2. or each @-minimum ¢, each of the
two inequalities

By(s) Ba(t) sing  Bi(s) Bi(t) coss
is violated for some s € (¢, ), no matter how small 0is. fter an
a-minimum, the tra ectory cannot be sustained in a positive time within
one of the two half-planes shown on ig. 1(b). The fact is evident (and still
holds for &  0) for a predictable a-minimum (chosen in real time, without
anticipating the future), but the statement is much stronger: it holds for all
co-minima. ote that the statement ceases to hold at « 0.  0-minimum
is a ¢t such that Bi(¢) min Bj(s):s € [0,t] . Ta e the last O-minimum
before a given instant (say, 1), then 0 < By(s) Bi(t) for all s € (¢, )























































































