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Abstract

We develop and analyze �nite di¤erence schemes for the two-dimensional
Helmholtz equation. The schemes which are based on nine-point ap-
proximation have a sixth-order accurate local truncation order. The
schemes are compared with the standard �ve points pointwise rep-
resentation which has second-order accurate local truncation error
and a nine points fourth-order local truncation error scheme based
on the Padé approximation. Numerical results are presented on a
model problem approximated with the developed schemes.

1 Introduction

Many physical phenomena such as acoustics, elasticity and electromagnetic
waves are governed in the frequency domain by the Helmholtz equation

r2u+ k2u = F:

In this study we analyze �nite di¤erence approximations on uniform grids,
denoting h for the grid-size. Besides the standard �nite di¤erence scheme
which is of order O (h2), high order schemes with fourth order of accuracy
were developed in [2]. These schemes, which can be used for variable k, are
based on the Padé approximation and were examined in [3]. In [3] another ap-
proach was introduced to achieve higher order accuracy where the Helmholtz
equation is used to replace higher order derivatives in the truncation error by
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lower order derivatives which can be approximated on a nine point stencil.
In [5] this approach is used for a constant value of k to achieve a scheme with
sixth order of accuracy. In this study we use this approach and improve it
to get a family of sixth order of accuracy schemes that are easier to use in
applications, such as the Helmholtz equation in an unbounded domain which
is solved using PML [6], [5].
Another approach to get sixth-order of accuracy scheme is presented in

[1]. The approach there is to �nd optimal coe¢ cients for a class of wave
equations. The speci�c scheme presented there for the Helmholtz equation
is a special case, to order O(h6), of the family of schemes developed here.

2 Finite Di¤erence Schemes

In two dimensions the Helmholtz equation becomes:

uxx + uyy + k
2u = F (1)

Let �i;j be a numerical approximation to u (xi; yj), and Fi;j be a known
function. We wish to have symmetric stencil in both directions x and y. One
scheme having these properties has the form

A0�i;j + As�s + Ac�c = B0Fi;j +Bs�s +Bc�c (2)

where
�s = �i;j+1 + �i+1;j + �i;j�1 + �i�1;j

is the sum of the values of the mid-side points and

�c = �i+1;j+1 + �i+1;j�1 + �i�1;j�1 + �i�1;j+1

is the sum of the values at the corner points. Similarly for F we have

�s = Fi;j+1 + Fi+1;j + Fi;j�1 + Fi�1;j

and
�c = Fi+1;j+1 + Fi+1;j�1 + Fi�1;j�1 + Fi�1;j+1:
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3 Pointwise Representation

Expanding the standard approximation for the second derivative

Dxx� =
�i+1;j � 2�i;j + �i�1;j

h2

in a Taylor series, we get for every su¢ ciently smooth u

Dxxu = uxx +
h2

12
uxxxx +

h4

360
uxxxxxx +O

�
h6
�
:

Adding a similar approximation for uyy we get

(Dxx +Dyy)u = uxx + uyy

+
h2

12
(uxxxx + uyyyy) +

h4

360
(uxxxxxx + uyyyyyy) +O

�
h6
�
: (3)

Hence, we get the representation

(Dxx +Dyy)u = uxx + uyy +O
�
h2
�

and for the Helmholtz equation

(Dxx +Dyy)u = F � k2u+O
�
h2
�
:

Using our notation,

(Dxx +Dyy)u =
�s � 4�i;j

h2
: (4)

Multiplying by h2 leads to the standard �ve point pointwise representation,
(2), (see [3])

A0 = �4 + (kh)2 ; As = 1; Ac = 0 (5)

B0 = h
2; Bs = Bc = 0:

4 Fourth Order Accurate Scheme

Di¤erentiating (1) twice with respect to x and y we get

uxxxx + uxxyy = Fxx �
�
k2u
�
xx

(6)

uyyyy + uxxyy = Fyy �
�
k2u
�
yy
:
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Adding these equations we get

uxxxx + uyyyy = Fxx + Fyy �
��
k2u
�
xx
+
�
k2u
�
yy

�
� 2uxxyy: (7)

Inserting into (3) and neglecting all O (h6) terms we conclude

(Dxx +Dyy)u = F � k2u+ (8)

h2

12

�
Fxx + Fyy �

��
k2u
�
xx
+
�
k2u
�
yy

�
� 2uxxyy

�
+O

�
h4
�
:

In order to preserve the O (h4) approximation, we can use an O (h2) approx-

imation for Fxx+Fyy�
�
(k2u)xx + (k

2u)yy

�
�2uxxyy. We choose Fxx+Fyy �

(Dxx +Dyy)F , uxxyy � DxxDyyu. One can choose to directly di¤erence
(k2u)xx + (k

2u)yy with second order accuracy. Instead we shall assume that
k is constant. Then (k2u)xx+(k

2u)yy = k
2 (uxx + uyy) = k

2 (F � k2u) giving�
Dxx +Dyy +

h2

6
DxxDyy

�
u+

 
1� (kh)

2

12

!
k2u (9)

= F

 
1� (kh)

2

12

!
+
h2

12
(Dxx +Dyy)F +O

�
h4
�
:

Using (4) and

DxxDyyu =
�c � 2�s + 4�i;j

h4

in (9) we get an approximation which is similar to the EB approximation in
[3]

A0 = �
10

3
+ (kh)2

 
1� (kh)

2

12

!
; As =

2

3
; Ac =

1

6
(10)

B0 =

�
2

3
� k

2

12

�
h2; Bs =

h2

12
; Bc = 0:

5 Sixth Order Accurate Scheme

To achieve sixth order accurate schemes we have to assume k is a constant,
since we need more derivatives of the Helmholtz equation. We also need a

4



fourth order accurate approximation for Dxx +Dyy. Using this assumption
and di¤erentiating (6) twice with respect to x and y we get

uxxxxxx + uxxxxyy = Fxxxx � k2uxxxx (11)

uyyyyyy + uxxyyyy = Fyyyy � k2uyyyy

and
uxxxxyy + uxxxxyy = Fxxyy � k2uxxyy: (12)

Using (7,11,12) we get

uxxxxxx + uyyyyyy = Fxxxx + Fyyyy � Fxxyy
� k2

�
Fxx + Fyy � k2 (uxx + uyy)� 3uxxyy

�
:

Inserting into (3) we get

(Dxx +Dyy)u = F � k2u

+
h2

12

�
Fxx + Fyy � k2 (uxx + uyy)� 2uxxyy

�
+
h4

360

�
Fxxxx + Fyyyy � Fxxyy � k2

�
Fxx + Fyy � k2 (uxx + uyy)� 3uxxyy

��
+O

�
h6
�
:

Using the Taylor series for DxxDyy we �nd

DxxDyyu = uxxyy +
h2

12
(uxxxxyy + uxxyyyy) +O(h

4):

So we get�
Dxx +Dyy +

h2

6
DxxDyy

�
u = F � k2u+ h

2

12

�
Fxx + Fyy � k2 (uxx + uyy)

�
+

(13)

h4

360

�
Fxxxx + Fyyyy + 4Fxxyy � k2

�
Fxx + Fyy � k2 (uxx + uyy) + 2uxxyy

��
+O

�
h6
�
:
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Using DxxDyyu for uxxyy and F � k2u instead of uxx + uyy and rearranging
we get 

Dxx +Dyy +
h2

6

 
1 +

(kh)2

30

!
DxxDyy

!
u

+

 
1� (kh)

2

12

 
1� (kh)

2

30

!!
k2u

= F

 
1� (kh)

2

12

 
1� (kh)

2

30

!!
+
h2

12

 
1� (kh)

2

30

!
(Fxx + Fyy)

+
h4

360
(Fxxxx + 4Fxxyy + Fyyyy) +O

�
h6
�
:

For arbitrary F we need a fourth order accuracy approximation for Fxx+Fyy
and a second order accuracy approximation for Fxxxx + 4Fxxyy + Fyyyy: This
is easily done, but requires more than nine points and we cannot put the
approximation in the form (2). In many problems F = 0, and we can write
in our notation

A0 = �
10

3
+ (kh)2

 
46

45
� (kh)

2

12
+
(kh)4

360

!
(14)

As =
2

3
� (kh)

2

90
; Ac =

1

6
+
(kh)2

180
:

We call this approximation EB-6.

6 Divergence Form

The last two schemes developed have a di¢ culty. In some problems we want
to use the schemes in an unbounded domain, with a PML (Perfectly Matched
Layer) to absorb the outgoing waves at in�nity [6]. In the PML we need to
solve a variable coe¢ cient problem

@

@x
(Aux) +

@

@y
(Buy) + Ck

2u = F (15)

where A;B;C are functions of x; y. We have not found a formula which keeps
the self-adjoint form and is also fourth order accurate for non-constant A;B

6



and C. In the PML A;B;C are variable and in the interior of the domain,
A = B = C = 1: We want to use in the interior a symmetric stencil, and
automatically switch to a second order accurate stencil in the PML. In [4]
we show that one can use a lower order formula in the PML and still retain
the global high accuracy in the physical domain.
We start with the standard second order three point symmetric approxi-

mation

Dx (Aux)j =
Ai+ 1

2
;j (ui+1;j � ui;j)� Ai� 1

2
;j (ui;j � ui�1;j)

h2
:

We can construct a more general divergence free form by averaging this in the
j direction. So we take �Dx (Aux)j +

1��
2
(Dx (Aux)j+1 + Dx (Aux)j�1) and

a similar formula for Dy (Buy). The approximation to k2u can be a general
nine point formula. Thus, for A = B = 1 we get

A0 = �4�+ (1� 4�s � 4�c) (kh)
2 (16)

As = 2�� 1 + �s (kh)
2 ; Ac = 1� �+ �c (kh)

2 :

This approximation is guaranteed to be O (h2) for all values of �; �s; �c.
Choosing � = 1; �s = 0; �c = 0 recovers the pointwise representation (5). We
wish to construct higher order approximations that use this limited subset
of coe¢ cients. Unfortunately this cannot be done for either (10) or (14).

6.1 Fourth Order Divergence Form

To conserve the fourth order accuracy of the scheme achieved in section 4, we
need an O (h2) approximation for the term Fxx+Fyy�k2 (uxx + uyy)�2uxxyy
in (8). Instead of using (F � k2u) as the approximation for (uxx + uyy) we
can use

�
Dxx +Dyy +

h2

6
DxxDyy

�
u, yielding

�
Dxx +Dyy +

h2

6
DxxDyy

� 
1 +

(kh)2

12

!
u+ k2u

= F +
h2

12
(Dxx +Dyy)F +O

�
h4
�
:
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Rearranging, we get�
Dxx +Dyy +

h2

6
DxxDyy

�
u (17)

+k2
�
1 +

h2

12
(Dxx +Dyy) +

h4

72
DxxDyy

�
u

=F +
h2

12
(Dxx +Dyy)F +O

�
h4
�
:

The term h4

72
is fourth order, and can be multiplied by an arbitrary scalar,

chosen as 
2
. The same treatment can be done on the right hand side of

(17), choosing
�
h2

12
(Dxx +Dyy) + �

h4

144
DxxDyy

�
F (for arbitrary �) instead of

h2

12
(Dxx +Dyy)F; yielding

A0 = �
10

3
+ (kh)2

�
2

3
+


36

�
(18)

As =
2

3
+ (kh)2

�
1

12
� 

36

�
; Ac =

1

6
+ (kh)2



144

B0 =

�
2

3
+
�

36

�
h2; Bs =

�
1

12
� �

72

�
h2; Bc =

�

144
h2:

This approximation is the same as the Padé approximation developed in [2],
which is also valid for non-constant k.
This scheme is of the form (16) with

� =
5

6
; �s =

1

12
� 

72
; �c =



144

Hence, when used for problems with variable coe¢ cients the scheme will be
second order accurate. In regions where the coe¢ cients are constant the
scheme will increase to fourth order accuracy.

8



6.2 Sixth Order Divergence Form

Rearranging (13) we get 
Dxx +Dyy +

h2

6

 
1 +

(kh)2

30

!
DxxDyy

!
u = (19)

�k2u� k
2h2

12
(uxx + uyy) +

k4h4

360
(uxx + uyy) + F

+
h2

12

�
1� k

2h2

30

�
(Fxx + Fyy) +

h4

360
(Fxxxx + 4Fxxyy + Fyyyy) +O

�
h6
�
:

To preserve the sixth order accuracy we need a fourth order approximation
for the term k2h2

12
(uxx + uyy). Using (3,7) we get

uxx+uyy = (Dxx +Dyy)u�
h2

12

�
Fxx + Fyy � k2 (uxx + uyy)� 2uxxyy

�
+O

�
h4
�

or

uxx + uyy =

(Dxx +Dyy)u�
h2

12

�
Fxx + Fyy � k2 (Dxx +Dyy)u� 2DxxDyyu

�
+O

�
h4
�

= (Dxx +Dyy)

�
1 +

k2h2

12

�
u+

h2

6
DxxDyyu�

h2

12
(Fxx + Fyy) +O

�
h4
�
:

Inserting this fourth order approximation and
�
Dxx +Dyy � 

2
h2DxxDyy

�
u

as a second order accurate approximation to the term k4h4

360
(uxx + uyy) in (19)

we get 
Dxx +Dyy +

h2

6

 
1 +

(kh)2

30

!
DxxDyy

!
u =

� k2u� (kh)
2

12

�
(Dxx +Dyy)

�
1 +

k2h2

12

�
u+

h2

6
DxxDyyu�

h2

12
(Fxx + Fyy)

�
+
(kh)4

360

�
Dxx +Dyy �



2
h2DxxDyy

�
u

+ F +
h2

12

�
1� k

2h2

30

�
(Fxx + Fyy) +

h4

360
(Fxxxx + 4Fxxyy + Fyyyy) +O

�
h6
�
:
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or  
1 +

(kh)2

12
+
(kh)4

240

!
(Dxx +Dyy)u+

h2

6

�
1 +

7

60
(kh)2 +



120
(kh)4

�
DxxDyyu+ k

2u =

F +
h2

12

 
1 +

(kh)2

20

!
(Fxx + Fyy) +

h4

360
(Fxxxx + 4Fxxyy + Fyyyy) +O(h

6)

Assuming F = 0, we achieve

A0 = �
10

3
+
67

90
(kh)2 +

 � 3
180

(kh)4 (20)

As =
2

3
+
2

45
(kh)2 +

3� 2
720

(kh)4

Ac =
1

6
+

7

360
(kh)2 +



720
(kh)4 :

This approximation is in the form (16) with

� =
5

6
; �s =

2

45
+
3� 2
720

(kh)2 ; �c =
7

360
+



720
(kh)2

and is sixth-order accurate for all values of . We call this formulation HO-6.
Choosing  = 11

12
and using the notations in [1], we get

a1 = �
Ac
A0

=
1440 + 168 (kh)2 + 11 (kh)4

28800� 6432 (kh)2 + 100 (kh)4

a2 = �
As
A0

=
2880 + 192 (kh)2 + 7 (kh)4

14400� 3216 (kh)2 + 50 (kh)4
:

Expanding in a Taylor series we get

a1 =
1

20
+

17

1000
(kh)2 +

801

200000
(kh)4 +O

�
h6
�

a2 =
1

5
+
29

500
(kh)2 +

2549

200000
(kh)4 +O

�
h6
�

which is the same approximation, up to sixth order accuracy, achieved in [1].
The method developed in [1] describes a general methodology for deriving

10



high order discretizations for a large class of wave equations. That method-
ology involves a type of variational principal. From that viewpoint it is more
general than the present presentation which stresses the properties of The
Helmholtz equation. The main point of [1] is that optimal coe¢ cients of the
linear discretization formula can be found by minimizing the L2 norm of the
error for plane waves, integrated over all directions of incidence. This gen-
eral principal could �nd applications in other cases, such as at non-re�ecting
boundaries though these applications have not yet been explored.

7 Numerical results

We examine the behavior of the schemes developed on model problems. Both
model problems are the Helmholtz equation in a square coupled with a Dirich-
let boundary condition. Even though the numerical examples use the model
problems, they illustrate the bene�ts to be expected for more realistic prob-
lems.
The model problem used for both cases is

�u+ k2u = F (x; y)

in the square [0; �]� [0; �] with the boundary conditions

u (0; y) = u (�; y) = u (x; 0) = u (x; �) = 0:

We choose two di¤erent functions F (x; y), which are tailored to have explicit
exact solutions. We choose the exact solutions as

u (x; y) = sin ix sin jy (21)

where i; j are positive integers, chosen as 1 and 2 respectively. In this model
problem

F (x; y) =
�
k2 �

�
i2 + j2

��
sin ix sin jy

In the second problem we choose the exact solution as

u (x; y) = sinh�x sinh� (� � x) sinh �y sinh � (� � y) (22)

= (cosh�� � cosh� (� � 2x)) (cosh �� � cosh � (� � 2y))
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where � = 0:5;and � = 0:7. For this second problem

F (x; y) = k2 sinh�x sinh� (� � x) sinh �y sinh � (� � y)
� �2 cosh� (� � 2x) sinh �y sinh � (� � y)
� �2 cosh � (� � 2y) sinh�x sinh� (� � x)

The problems are solved using the second order accurate PT scheme (5), the
fourth order accurate schemes EB (10), and HO (18) with the parameter
 = 2, and the sixth order accurate schemes EB-6 (14) and HO-6 (20) with
 = 2 and  = �1. We use a uniform grid size h = �

N
where N is the number

of gridpoints in both x; y directions.
For the sixth-order schemes we need high order approximations for the

function F (x; y) and its derivatives. If the right hand side F is not known an-
alytically then one can approximate the derivatives with high order �nite dif-
ferences. However, the fourth order derivatives require a larger stencil. This
larger stencil is only for the known terms and does not a¤ect the band width
of the solver. Near boundaries the fourth order derivatives could be elimi-
nated lowering the local accuracy but not the global accuracy. To simplify the
model problem we use the exact values for Fxx+Fyy, and Fxxxx+4Fxxyy+Fyyyy
, however this is not an important issue.We compare the numerical solution
�i;j to u(xi; yj) where u is the exact solution (21) or (22). The error vector
e is

ei;j = u(xi; yj)� �i;j:
We measure the error in the l1 norm:

kek1 = max
0�i;j�N

ei;j:

In the following table we present the l1 norm of the error for the �rst problem
(21) with k = 6:4.

N PT EB HO  = 2 EB-6 HO-6  = 2 HO-6  = �1
4 2.20E-02 1.13E-02 3.80E-02 2.77E-03 2.39E-01 3.77E-03
8 5.92E-03 2.43E-03 2.39E-03 5.84E-05 2.81E-03 9.63E-05
16 1.51E-03 7.35E-05 1.49E-04 5.82E-07 4.27E-05 1.93E-06
32 3.79E-04 4.07E-06 9.29E-06 8.16E-09 6.65E-07 3.18E-08
64 9.49E-05 2.48E-07 5.80E-07 1.24E-10 1.04E-08 5.03E-10
128 2.37E-05 1.54E-08 3.63E-08 1.89E-12 1.62E-10 7.88E-12
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In all the schemes the norm of the error decreases, as the number of gridpoints
increases. We clearly see that the norm of the error behaves according to the
order of the scheme. As we multiply N by 2 (divide h by 2) the norm of the
error decreases by 4 in the PT scheme, by 16 in the EB and HO schemes
and by 64 in the EB-6 and HO-6 schemes. Similar results are found in the
second table, with the results for the second problem (22)

N PT EB HO  = 2 EB-6 HO-6  = 2 HO-6  = �1
4 4.34E-03 2.66E-04 5.03E-03 6.88E-04 5.74E-02 2.21E-01
8 1.90E-03 9.82E-04 4.14E-03 8.44E-05 2.43E-03 2.96E-03
16 2.74E-03 1.32E-05 1.21E-04 8.58E-07 5.25E-05 3.48E-05
32 2.78E-04 8.30E-07 7.77E-06 1.31E-09 9.06E-07 5.61E-08
64 6.51E-05 5.09E-08 4.87E-07 2.02E-10 1.43E-08 8.97E-09
128 1.61E-05 3.19E-09 3.04E-08 3.12E-12 2.24E-10 1.40E-10

We wish to computationally verify the order of the schemes, so we assume
that for small values of h,

kek1 ' C (k)N�r =
C (k)

�r
hr

where r is the order of the scheme, i.e.

r =

8<:
2 for PT scheme
4 for the schemes EB,HO
6 for the schemes EB-6,HO-6

Hence, if N = 2l

� log2 (kek1) ' l � r � log2C (k) : (23)

We calculate r, the order of accuracy, by measuring the slope of the curve.
We verify (23) using Figs. 1-5 (in all the HO schemes  = 2). All logarithms
in the �gures are to the base 2. Comparing �gures ?? with �gure 3 we see
that there is no basic di¤erence between the two cases. Hence, for the �gures
4 through 6 we only consider case 2 and increase k. In [7] it is shown, that
for the waveguide problem, the accuracy depends on the input boundary
mode. The exact solution of the model problem, (22), does not depend on
k. Hence, as k increases the error remains constant for the �ner meshes. For
small values of k our assumption (23) is correct. As k grows the accuracy of
the scheme deteriorates and the assumption is correct only �ne meshes, see
also [3]. For coarse meshes, we enter the asymptotic range for kh constant,
i.e. N behaves linearly in k for the point where the error begins to decrease
with �ner meshes.
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Figure 1: � log (kek1) in EB schemes, �rst problem, k = 1:6
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Figure 2: � log (kek1) in HO schemes, �rst problem, k = 1:6
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Figure 3: � log (kek1) in HO & EB schemes, second problem, k = 1:6
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Figure 4: � log (kek1) in HO & EB schemes, second problem, k = 6:4
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Figure 5: �log (kek1) in HO & EB schemes, second problem, k = 12:8
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Figure 6: �log (kek1) in HO & EB schemes, second problem, k = 25:6
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