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Abstract

The Perfectly Matched Layer (PML) has become a widespread technique for pre-
venting reflections from far field boundaries for wave propagation problems in both
the time dependent and frequency domains. We develop a discretization to solve
the Helmholtz equation in an infinite two dimensional strip. We solve the interior
equation using high-order finite differences schemes. The combined Helmholtz-PML
problem is then analyzed for the parameters that give the best performance. We
show that the use of local high-order methods in the physical domain coupled with
a specific second order approximation in the PML yields global high-order accuracy
in the physical domain. We discuss the impact of the parameters on the effectiveness
of the PML. Numerical results are presented to support the analysis.
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1 Introduction

The Helmholtz equation

∆u + k2u = 0, (1)

describes a wide variety of wave propagation phenomena including electromag-
netic waves and acoustics. To solve this equation in an unbounded domain on
a computer, one approach is to truncate the unbounded domain and intro-
duce a boundary condition on the artificial outer surface. For many years the
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standard boundary condition was a local absorbing condition that was a gen-
eralization of the Sommerfeld radiation condition e.g. [4], but in recent years a
number of models based on the PML (Perfectly Matched Layers) scheme have
become popular. These layers minimize the reflections caused by the artificial
boundary.

Berenger [5],[6] was the first to introduce a PML for the time dependent
Maxwell equations. Abarbanel and Gottlieb [1] proved that this approach is
not well posed and since then several other approaches generalizing the ideas
of Berenger have been suggested. A survey of PML layers is to be found in
[8]. Turkel and Yefet [16] showed that several of these approaches are linearly
equivalent. The solvability and the uniqueness of the PML equation for the
Helmholtz equation was analyzed by Turkel and Tsynkov in [13]. In their
paper, the decaying function inside the PML was assumed to be, for conve-
nience of the analysis, a constant. This choice is not suitable for numerical
computations.

We are interested in obtaining high accuracy for the approximation to the
Helmholtz equation. In particular we shall consider both fourth and sixth
order accurate approximations in the physical domain. Hence, we shall use a
PML in the far field to minimize reflections and so hopefully maintain the high
accuracy of the interior scheme. We extend [13] and search for a practical set of
parameters in the PML layer based on an analysis of the error in the combined
problem. We also analyze the solvability and accuracy of the PML schemes
for this problem. The physical PML-Helmholtz scheme, which we develop, is
then solved by using high order finite differences schemes specially designed
for the Helmholtz equation. For a constant value of k in (1) we developed a
sixth order accurate scheme (and a fourth order accurate scheme for a variable
k [9]). We analyze the effect of the use of these schemes on the solution and we
find conditions required for convergence. We also verify the assumption made
in [13] that the overall accuracy of the Helmholtz-PML scheme depends only
of the order of accuracy inside the physical domain where we solve the pure
Helmholtz equation. We support our analysis with numerical results.

In order to invert the linear system one frequently uses iterative solvers. In the
last section we construct a preconditioner specially tailored for the combined
problem. This preconditioner can be used with any Krylov space method.

In designing and analyzing the PML-Helmholtz equation, we use the two di-
mensional notation of acoustics [13] and [16] for a waveguide. In two space
dimensions this is equivalent to the TE version of Maxwell’s equations. De-
noting u as the pressure, we get (see for example [16])

∂

∂x

(
Sy

Sx

ux

)
+

∂

∂y

(
Sx

Sy

uy

)
+ k2SxSyu = 0. (2)
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where

Sx = 1 +
σx

ik
, Sy = 1 +

σy

ik
and σx and σy are functions of only x, y respectively. When σx = σy = 0
this reduces to the Helmholtz equation (1). In the rest of the paper we only
consider the strip so σy = 0 and hence Sy = 1.

Fig. 1. The x-aligned semi infinite waveguide

2 The infinite strip problem

We consider a semi-infinite x-aligned waveguide from x = 0 to x = ∞ with
width π in the y direction, see Figure 1. We wish to solve the Helmholtz
equation (1) in this semi-infinite strip with the boundary conditions:

u (x, 0) = u (x, π) = 0,

and

u (0, y) = f (y) , 0 ≤ y ≤ π , f (0) = f (π) = 0

and specify that u is outgoing at +∞. Using the sine Fourier series expansion
in the y direction we get

u (x, y) =
∞∑

n=1

2

π

(∫ π

0
f (y) sin (ny) dy

)
e−i

√
k2−n2x sin ny.

To simplify the analysis of the PML layer we assume the boundary condition
at the entrance to the waveguide is

f (y) = sin (my) (3)
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where m is an integer. Then we get the exact solution which we label uexact

uexact (x, y) = e−i
√

k2−m2x sin my. (4)

In the case m > k (evanescent wave) we get

uexact (x, y) = e−
√

m2−k2x sin my

3 Constructing the PML

Since we cannot solve the semi-infinite problem on a computer we instead
solve in a bounded domain: [0, L1] × [0, π], and construct a PML. We first
analyze an infinite PML and then a PML with width L2 − L1, see Figure 2.

Fig. 2. The PML layer in the strip

In the interior of the strip (vacuum) we solve the Helmholtz equation and in
the PML we solve equation (2). In this case we choose σy = 0 in the PML and
so Sy =1 and (2) becomes

∂

∂x

(
1

Sx

ux

)
+

∂

∂y
(Sxuy) + k2Sxu = 0, Sx = Sx(x). (5)

Using the Fourier series expansion in y we get

d

dx

(
1

Sx

dû (x, n)

dx

)
+ Sx

(
k2 − n2

)
û (x, n) = 0. (6)

We set

Sx (x) =

 1 0 ≤ x ≤ L1

1 + σx

ik
x > L1

(7)
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We generalize this by considering Sx (x) = A + σx

B+ik
. Our computational

results show that the error deteriorates when A differs appreciably from 1.
Choosing B non-zero only slightly improves the accuracy. Equation (6) repre-
sents û in the entire space (vacuum + PML). Substituting

t =
∫ x

0
Sx (r) dr

and labeling
Yn (t) = û (x, n)

we get for Yn (t) an equation with constant coefficients

d2

dt2
Yn (t) +

(
k2 − n2

)
Yn (t) = 0.

The solution is

û (x, n) = c+ei
√

k2−n2
∫ x

0
Sx(r)dr + c−e−i

√
k2−n2

∫ x

0
Sx(r)dr (8)

where c+ and c− are arbitrary constants. The solution for (6) in an infinite
PML is found when we add the condition that only the right-traveling waves
are present in addition to the condition in x = 0.

Using (3) we get the solution for (5) which we label uI−pml (Infinite-PML):

uI−pml (x, y) =


e−i

√
k2−m2

∫ x

0
Sx(r)dr sin my if m < k

e−
√

m2−k2
∫ x

0
Sx(r)dr sin my if m > k

. (9)

Comparing (4) with (9) we get for 0 ≤ x ≤ L1 :

uI−pml (x, y) = uexact (x, y)

which shows that the PML is perfectly non-reflecting.

When solving the problem on a computer we need to truncate the semi-infinite
domain at L2. We choose the boundary condition as u = 0 at x = L2. Choosing
other types of boundary conditions at x = L2 does not significantly change
the solution. Hence, instead of c+ = 0 in (8) we need to solve (6) with the
boundary condition û (L2, n) = 0. For our choice of f (y) = sin (my), with
n 6= m, û (x, n) = 0 and boundary conditions

û (0, m) = 1 û (L2, m) = 0.

we get

û (x, m) = c+ei
√

k2−m2
∫ x

0
Sx(r)dr + c−e−i

√
k2−m2

∫ x

0
Sx(r)dr
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Solving for c+ and c−

c+ =
−1

η − 1
c− =

η

η − 1

where

η = e2i
√

k2−m2
∫ L2
0

Sx(r)dr. (10)

Uniqueness is not guaranteed when η = 1. Otherwise

2i
√

k2 −m2

∫ L2

0
Sx (r) dr = 2i

√
k2 −m2

(
L2 +

1

ik

∫ L2

L1

σx (r) dr

)

since σx (x) > 0 for x ∈ (L1, L2], then for k 6= m it follows that Re
(
2i
√

k2 −m2
∫ L2
0 Sx (r) dr

)
6=

0 and η 6= 1 and uniqueness follows. Henceforth, we assume that k 6= m .

Labeling this unique solution uF−pml (Finite PML) we find

uF−pml =

(
−1

η − 1
ei
√

k2−m2
∫ x

0
Sx(r)dr +

η

η − 1
e−i

√
k2−m2

∫ x

0
Sx(r)dr

)
sin my (11)

and for the case m < k (travelling)

error(x, y) = uI−pml − uF−pml

=
1

η − 1

(
ei
√

k2−m2
∫ x

0
Sx(r)dr − e−i

√
k2−m2

∫ x

0
Sx(r)dr

)
sin (my)

=
2i

η − 1
sin

(√
k2 −m2

∫ x

0
Sx (r) dr

)
· sin (my) .

We are interested in the solution in the interior and so we examine the error
when 0 ≤ x ≤ L1

‖error(x, y)‖∞ (12)

= max
0≤x≤L1, 0≤y≤π

∣∣∣∣∣ 2i

η − 1
sin

(√
k2 −m2x

)
· sin (my)

∣∣∣∣∣
=

∣∣∣∣∣ 2

η − 1

∣∣∣∣∣ .
Our goal is to minimize the error and so we choose a suitable function σx (x)

that will minimize the value of
∣∣∣ 2
η−1

∣∣∣. We wish η in (10) to satisfy |η| >> 1.

For the case m > k (evanescent) we get
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error(x, y) = uI−pml − uF−pml

=
η

η − 1

(
e−
√

m2−k2
∫ x

0
Sx(r)dr − e

√
m2−k2

∫ x

0
Sx(r)dr

)
sin (my)

=− 2η

η − 1
sinh

(√
m2 − k2

∫ x

0
Sx (r) dr

)
· sin (my)

and in the interior

‖error(x, y)‖∞ '
∣∣∣∣∣ η

η − 1
e
√

m2−k2L1

∣∣∣∣∣ . (13)

In this case we wish in (10) that |η| << 1.

4 Minimizing the error

The function σx : [L1, L2] → R is chosen so that it has the following properties:

σx (x) > 0 for x ∈ (L1, L2]

σx (L1) = 0

σx (x) is smooth in [L1, L2] .

A suitable choice for this function is

σx (x) = σ
(

x− L1

L2 − L1

)p

(14)

where σ is a positive constant and p ≥ 1. When evanescent waves are present
it may be more advantageous to use an exponential fit for σx. In this study
we shall only consider the polynomial fit. Integrating we get

∫ x

L1

σx (r) dr =
σ (L2 − L1)

p + 1

(
x− L1

L2 − L1

)p+1

and

uF−pml = sin my · (15)

−1
η−1

ei
√

k2−m2x + η
η−1

e−i
√

k2−m2x 0 < x ≤ L1

−1
η−1

e
i
√

k2−m2L1+
√

1−ε
σ(L2−L1)

p+1

(
x−L1

L2−L1

)p+1

+

η
η−1

e
−i
√

k2−m2L1−
√

1−ε
σ(L2−L1)

p+1

(
x−L1

L2−L1

)p+1 L1 < x ≤ L2
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where ε =
(

m
k

)2
and

η = e2i
√

k2−m2
∫ L2
0

Sx(r)dr = e2i
√

k2−m2L2+
2σ
√

1−ε(L2−L1)

p+1 . (16)

For m < k we get

|η| = e
2σ
√

1−ε(L2−L1)

p+1 >> 1

and for m > k
|η| = e−2

√
m2−k2L2 << 1,

which are the desired results for (12) and (13). Using the estimate (12) we get
for m < k

‖error(x, y)‖∞ =

∣∣∣∣∣ 2

η − 1

∣∣∣∣∣ '
∣∣∣∣∣2η
∣∣∣∣∣ = 2e−

2σ
√

1−ε(L2−L1)

p+1 (17)

and for m > k using (13) we get

‖error(x, y)‖∞ '
∣∣∣∣∣ η

η − 1
e
√

m2−k2L1

∣∣∣∣∣ ' ∣∣∣ηe
√

m2−k2L1

∣∣∣ = e
−
√

m2−k2(2L2−L1)

.

We see that for evanescent waves, m > k, the norm of the error does not
depend on σx. To decrease the error we can only increase the length of the
PML region, i.e. 2L2 − L1. When m < k the error depends exponentially on
the value of 2σ(L2−L1)

p+1
. From this continuous analysis we conclude that the

parameters should be chosen to satisfy the following criteria. A large value
of σ, a wide PML (extend L2 − L1) and p = 1. Further analysis (below) for
the numerical algorithm demonstrates that one should be more careful when
choosing these parameters especially p.

We need a scheme to approximate the uF−pml solution. We use high-order
finite differences schemes in the interior. To reduce the size of the matrices we
wish to minimize the number of points in the artificial perfectly matched layer.
In the next sections we present these schemes and analyze their influence on
the error. We will also see that the choice of a large value of σ and a small
value of p is inaccurate.

5 Finite differences

Let φi,j be the numerical approximation to the uF−pml (xi, yj) solution. We
wish to have a symmetric stencil in both directions x and y. A scheme having
this property has the form

A0φi,j + Asσs + Acσc = 0
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where
σs = φi,j+1 + φi+1,j + φi,j−1 + φi−1,j

is the sum of the values of the mid-side points and

σc = φi+1,j+1 + φi+1,j−1 + φi−1,j−1 + φi−1,j+1

is the sum of the values at the corner points.

In the PML we need to solve a variable coefficient problem

∂

∂x
(Aux) +

∂

∂y
(Buy) + k2Cu = 0. (18)

In our strip problem

A =
1

Sx

B=C =Sx

We have not found a compact formula which keeps the self-adjoint form of the
equation (18) and is also more than second order accurate for non-constant
A, B, C. Instead, we use high-order accurate self-adjoint schemes in the inte-
rior and automatically switch to a second order accurate scheme in the PML
layer while preserving the self-adjoint property. Since the PML is artificial
we are only interested in preserving the global high accuracy in the interior
domain. Using a general second order accurate scheme in the PML usually
corrupts the high order accuracy used in the interior, and yields an overall
low accuracy. Thus, matching the schemes between the interior and the PML
is very important.

We start with the standard second order three point symmetric approximation

Dx (Aux)j =
Ai+ 1

2
,j (ui+1,j − ui,j)− Ai− 1

2
,j (ui,j − ui−1,j)

h2
. (19)

We construct a more general divergence free form by averaging this approxima-
tion in the j direction. So we take [Aux]x = αDx (Aux)j + 1−α

2
(Dx (Aux)j+1 +

Dx (Aux)j−1) and a similar formula in the y direction. The approximation to
Cu is a general nine point formula

[Cu] = (1− 4βs − 4βc) Ci,jui,j (20)

+βs

Ci+1,jui+1,j + Ci−1,jui−1,j+

Ci,j+1ui,j+1 + Ci,j−1ui,j−1


+βc

Ci+1,j+1ui+1,j+1 + Ci−1,j+1ui−1,j+1+

Ci+1,j−1ui+1,j−1 + Ci−1,j−1ui−1,j−1
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Thus, for A=B=C =1 we get

A0 = −4α + (1− 4βs − 4βc) (kh)2 (21)

As = 2α− 1 + βs (kh)2 , Ac = 1− α + βc (kh)2

where h is the grid-size of the stencil. This approximation is guaranteed to be
O (h2) for all values of α, βs, βc. Choosing α = 1, βs = 0, βc = 0 recovers the
standard pointwise representation which is second order accurate with

A0 = −4 + (kh)2 , As = 1, Ac = 0. (22)

We use higher-order schemes for the pure Helmholtz equation. Choosing

α =
5

6
, βs =

1

12
− γ

72
, βc =

γ

144

for an arbitrary constant γ we achieve an O (h4) scheme yielding

A0 = −10

3
+ (kh)2

(
2

3
+

γ

36

)
(23)

As =
2

3
+ (kh)2

(
1

12
− γ

72

)
, Ac =

1

6
+ (kh)2 γ

144
.

This stencil is fourth-order accurate also for variable k (x, y) as proved in
[9].Choosing γ = 14

5
and adding O((kh)4) terms to the coefficients one can

achieve sixth order accuracy [12]. In particular, for arbitrary δ, choosing

α =
5

6
, βs =

2

45
+

3− 2δ

720
(kh)2 , βc =

7

360
+

δ

720
(kh)2

A0 = −10

3
+

67

90
(kh)2 +

δ − 3

180
(kh)4 (24)

As =
2

3
+

2

45
(kh)2 +

3− 2δ

720
(kh)4

Ac =
1

6
+

7

360
(kh)2 +

δ

720
(kh)4 .

yields a O (h6) scheme for constant k.

Hence, when we use one of the schemes (22, 23 or 24) for the combined prob-
lem, the scheme is locally high order accurate in the interior and is second
order accurate in the PML layer. The accuracy in the PML is physically irrel-
evant. Hence, we wish that the use of the low-order accuracy in the PML will
not destroy the global high-order accuracy in the interior.
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6 Exploring the numerical error

Using a Taylor expansion in the approximation (19) we get

Dx (Aux)j =
∂

∂x
(Aux) +

h2

24

(
∂3

∂x3
(Aux) +

∂

∂x
(Auxxx)

)
+ O

(
h4
)
.

Averaging in the y direction yields

[Aux]x = αDx (Aux)j +
1− α

2

(
Dx (Aux)j+1 + Dx (Aux)j−1

)
=

∂

∂x
(Aux) + νh2 + O

(
h4
)

where

ν =
1

24

(
∂3

∂x3
(Aux) +

∂

∂x
(Auxxx) + 12 (1− α)

∂2

∂y2

∂

∂x
(Aux)

)
.

Using the Taylor expansion we find that approximation (20) satisfies

[Cu] = Cu + h2 (βs + 2βc)
(
(Cu)xx + (Cu)yy

)
+ O

(
h4
)
.

Therefore, the finite difference formula is equivalent to

∂

∂x

(
ux

Sx

)
+

∂

∂y
(Sxuy) + k2Sxu + Θh2h2 + O(h4), (25)

where

Θh2 = 1
24

(
∂3

∂x3

(
ux

Sx

)
+ ∂

∂x

(
uxxx

Sx

)
+ 2Sxuyyyy

)
+

1−α
2

(
∂2

∂y2
∂
∂x

(
ux

Sx

)
+ ∂2

∂x2 (Sxuyy)
)

+

k2 (βs + 2βc) ((Sxu)xx + Sxuyy) .

(26)

In order for the approximation to be accurate we require that h2Θh2 << 1.

Using u = uF−pml in (26), assuming for the analysis m << k and k >> 1, and
collecting the O (k4) terms we get

Θh2 ' c±
(
k2 −m2

)2
(

1

12
− µ

)
S3

xe
±
√

k2−m2
∫ x

0
Sx(r)dr (27)

where

µ =
(βs + 2βc)

1− ε
, ε =

(
m

k

)2

.
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Using the choice of σx (14), the exact values of the constants c± in the solution
uF−pml (15) and denoting

z =
x− L1

L2 − L1

, 0 ≤ z ≤ 1, (28)

we get inside the PML the approximation

|Θh2| '
(
k2 −m2

)2
(

1

12
− µ

)
e−
√

1−ε
σ(L2−L1)

p+1
zp+1

(
1 +

(
σ

k

)2

z2p

) 3
2

.

Fig. 3. Value of |Θh2 | for k = 8, m = 1, σ = 50, L2 − L1 = π
4

Fig. 4. Value of |Θh2 | for k = 8, m = 1, σ = 150, L2 − L1 = π
4
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Fig. 5. Value of |Θh2 | for k = 8, m = 1, σ = 50, L2 − L1 = π
8

Fig. 6. Value of |Θh2 | for k = 12, m = 1, σ = 50, L2 − L1 = π
4

Fig. 7. Value of |Θh2 | for k = 8, m = 3, σ = 50, L2 − L1 = π
4
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We see in figures 3-7 the behavior of |Θh2 | for various values of p. In these
figures the x-axis of the graph is the variable z, defined in (28). We set βs +
2βc = 0 which is what is used in the standard pointwise representation (22).
In most cases p should be set as 2 or 4. Increasing the value of σ increases
also the value of |Θh2|. These two facts contradict our desire to decrease the
error (17). Increasing L2−L1 decreases the value of |Θh2| as well as the error,
but increases the work. A thick PML requires more storage and CPU and also
means a harder task for the linear solvers.

An interesting result is found when examining the value of |Θh2| near the
intersection between the vacuum and the PML layer, i.e. z → 0+. At this
point we can find a lower bound of |Θh2| and get

|Θh2| '
(
k2 −m2

)2
(

1

12
− µ

)
. (29)

Combining this result with Figures 6 and 7 we conclude that as (k2 −m2)
2

increases, the schemes become more inaccurate independent of the values of
the other parameters, σ, p and L2 − L1. This requires one to refine the grid.

We can also decrease the value of |Θh2| by choosing µ → 1
12

. When we examine
the value of µ in the high-order schemes (23, 24) we get

1

12
− µ =

1

12

m2

k2 −m2
.

Hence, for high order accurate schemes, (27) is not valid and we get instead

|Θh2| ' σp

12 (L2 − L1)

√
1− ε

(
k2 − 4m2

)
e−
√

1−ε
σ(L2−L1)

p+1
zp+1

zp−1

√
1 +

(
σ

k

)2

z2p.

(30)

Fig. 8. Value of |Θh2 | in the high-order schemes for
k = 8, m = 1, σ = 50, L2 − L1 = π

4
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Fig. 9. Value of |Θh2 | in the high-order schemes for
k = 8, m = 1, σ = 150, L2 − L1 = π

4

Fig. 10. Value of |Θh2 | in the high-order schemes for
k = 8, m = 1, σ = 50, L2 − L1 = π

8
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Fig. 11. Value of |Θh2 | in the high-order schemes for
k = 12, m = 1, σ = 50, L2 − L1 = π

4

In Figures 8-11 we find similar results to the ones we found in the case of the
second order schemes. We see that the dependence on the value of (k2 −m2)
is reduced, which means better performance for large values of k (compare
Figures 6 and 11). Another quality, which we see from these figures and also
from (30) is that p = 1 is a very poor choice, because |Θh2| achieves its
maximum when z → 0+. This does not occur when p > 1.

7 The modified equation

Another approach to analyze the numerical solution is the modified equation.
We start with (25) and (26), find the analytical solution for the equation

∂

∂x

(
ux

Sx

)
+

∂

∂y
(Sxuy) + k2Sxu +

h2


1
24

(
∂3

∂x3

(
ux

Sx

)
+ ∂

∂x

(
uxxx

Sx

)
+ 2Sxuyyyy

)
+1−α

2

(
∂2

∂y2
∂
∂x

(
ux

Sx

)
+ ∂2

∂x2 (Sxuyy)
)

+k2 (βs + 2βc) ((Sxu)xx + Sxuyy)

 = 0

When the input boundary condition is sin(my) then the only Fourier coefficient
that does not vanish is U = û (x, m). We recover the ODE
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(
U ′

Sx

)′
+
(
k2 −m2

)
SxU + (31)

h2


1
24

((
U ′

Sx

)′′′
+
(

U ′′′

Sx

)′
+ 2m4SxU

)
−

1−α
2

m2

((
U ′

Sx

)′
+ (SxU)′′

)
+

k2 (βs + 2βc)
(
(SxU)′′ −m2SxU

)

 = 0,

with the boundary conditions

U (0) = 1, U (L2) = 0.

Because our main interest is in the high-order schemes we choose

α =
5

6
, βs + 2βc =

1

12

(for the O (h6) we take βs + 2βc = 1
12

+ O (k2h2)). So, (31) becomes

(
U ′

Sx

)′
+
(
k2 −m2

)
SxU (32)

=−h2

24


(

U ′

Sx

)′′′
+
(

U ′′′

Sx

)′
−

2m2
(

U ′

Sx

)′
+ 2 (k2 −m2)

(
(SxU)′′ −m2SxU

)
 .

If p=1 then Sx is not differentiable near x=L1. Hence, we assume that p ≥ 2.
In the interior Sx =1 and the right hand side of the equation becomes

−h2

12

(
U (4) −m2U ′′ +

(
k2 −m2

) (
U ′′ −m2U

))
=−h2

12

(
d2

dx2

(
U ′′ +

(
k2 −m2

)
U
)
−m2

(
U ′′ +

(
k2 −m2

)
U
))

and we can rewrite (32)(
1 +

h2

12

(
d2

dx2
−m2

))(
U ′′ +

(
k2 −m2

)
U
)

= 0

which leads to
U ′′ +

(
k2 −m2

)
U = 0.

which is the Fourier expansion of the Helmholtz equation and so in the interior,
we solve the Helmholtz equation through O(h2). Unlike (6) we have not found
the exact solution to (32). When h2 << 1 we look for a perturbed solution in
the form of

U = e±i
√

k2−m2
∫ x

0
Sx(r)(1+h2q±(r))dr. (33)
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Inserting this into (32) and collecting all the terms with O (h2) yields a differ-
ential equation for q±

±i
√

k2 −m2q′± − 2
(
k2 −m2

)
q±Sx

=
k2 −m2

24

(
±2i

√
k2 −m2S ′xSx + 3S ′′x +

1

±i
√

k2 −m2

(
S ′′x
Sx

)′)
.

In the interior the right hand side of this equation vanishes. This emphasizes
that only the O (h2) factor comes from the PML approximation. Labeling
g± (x) = ±i

√
k2 −m2

∫ x Sx (r) dr and multiplying the equation with the inte-
grating factor e2g±(x) we get

(
q±e2g±

)′
= − 1

24

(
2g′′±g′± + 3g′′′± +

(
g′′′±
g′±

)′)
e2g±

Integrating by parts yields

q± =
−1

24

(
±i
√

k2 −m2S ′x +
S ′′x
Sx

)
+ d±e∓2i

√
k2−m2

∫ x

0
Sx(r)dr

with constants d±. Inserting into (33) we obtain an estimate for the numerical
solution using the high-order schemes

û (x, m) = c+ei
√

k2−m2
∫ x

0
Sx(r)dr−h2

48
Ψ+(x) + c−e−i

√
k2−m2

∫ x

0
Sx(r)dr−h2

48
Ψ−(x). (34)

where δ± are constants and

Ψ+ (x)= −
(
k2−m2

)
S2

x (r) |x0 +i
√

k2−m22S ′x (r) |x0 +δ+e−2i
√

k2−m2
∫ x

0
Sx(r)dr

Ψ− (x)= −
(
k2−m2

)
S2

x (r) |x0 −i
√

k2−m22S ′x (r) |x0 +δ−e+2i
√

k2−m2
∫ x

0
Sx(r)dr

In the interior Sx =1 and so (S2
x)
′
and S ′′x vanish. So for x ∈ [0, L1]

û (x, m) = c+ei
√

k2−m2x−h2

48
δ+e−2i

√
k2−m2x

+ c−e−i
√

k2−m2x−h2

48
δ−e2i

√
k2−m2x

. (35)

To find the constants c± and δ± we use the boundary conditions

û (0, m) = 1 + 0 · h2 û (L2, m) = 0 + 0 · h2

and the approximation

ea(x)+h2b(x) ' ea(x)
(
1 + h2b (x)

)
. (36)
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Using (34, 35) near the boundaries

û (0, m) = c+e−
h2

48
δ+ + c−e−

h2

48
δ− ' c+

(
1− h2

48
δ+

)
+ c−

(
1− h2

48
δ−

)

and

û (L2, m)

= c+ei
√

k2−m2
∫ L2
0

Sx(r)dr−h2

48
Ψ+(L2) + c−e−i

√
k2−m2

∫ L2
0

Sx(r)dr−h2

48
Ψ−(L2)

' c+ei
√

k2−m2
∫ L2
0

Sx(r)dr

(
1− h2

48
Ψ+ (L2)

)
+

c−e−i
√

k2−m2
∫ L2
0

Sx(r)dr

(
1− h2

48
Ψ− (L2)

)
.

Solving these equations we find that the values of c+ and c− are the same as
in the formula for uF−pml (11), and

δ+ = 4i
√

k2 −m2S ′x|L2
0

η

η − 1
δ− = 4i

√
k2 −m2S ′x|L2

0

1

η − 1

where the value of η is given in (16). Inserting into (35), approximating us-
ing (36) and rearranging, we get the approximate solution of the high-order
schemes in the interior, which we label uN−pml

uN−pml (37)

=

 −1
η−1

ei
√

k2−m2x + η
η−1

e−i
√

k2−m2x

−ih2

12

√
k2 −m2S ′x|

L2
0

η

(η−1)2

(
ei
√

k2−m2x − e−i
√

k2−m2x
)
 sin my

= uF−pml +
h2

6

√
k2 −m2S ′x|L2

0

η

(η − 1)2 sin
(√

k2 −m2x
)

sin my.

Using our choice for Sx:

|uN−pml − uF−pml| (38)

=
h2

6

√
k2 −m2

∣∣∣∣∣ σp

ik (L2 − L1)

η

(η − 1)2 sin
(√

k2 −m2x
)∣∣∣∣∣

' h2

6

σ
√

1− εp

(L2 − L1)
e−

2σ
√

1−ε(L2−L1)

p+1

One of our goals was to show that the use of the second order approximation
inside the PML layer does not corrupt the high-order accuracy in the interior.
We can prove this for the O (h4) schemes (23) from the error estimate (38).

19



Taking a large value of 2σ
√

1−ε(L2−L1)
p+1

then the term 2e−
2σ
√

1−ε(L2−L1)

p+1 is expo-

nentially small and so is negligible compared with O (hr) for all integers r. As
σ becomes large the exponential term dominates and the accuracy improves.
However, we should not choose σ large that σh2 is large. Thus, in the interior

uN−pml = uF−pml + O
(
h4
)

= uexact + O
(
h4
)

+ O
(
h2
)
e−

2σ
√

1−ε(L2−L1)

p+1 (39)

where O (h4) comes from the accuracy of the scheme. For the O (h6) scheme
numerical computations demonstrate a similar error estimate

uN−pml = uexact + O
(
h6
)
.

8 Numerical results

We present computational results for the Helmholtz equation in the semi-
infinite strip. The region to the right of L1 is replaced by a PML equation which
is then truncated at L2. In each computation we wish to demonstrate one of
the properties that has been analyzed. For all the results we use a uniform
grid-size, where n denotes the number of gridpoints along the y axis, so h = π

n
.

We measure the error in the maximum norm in the square [0, π]× [0, π] and so
L1 ≥ π. The numerical approximation is denoted by φ. We use a standard LU
factorization to solve the linear systems that arise from the finite differences
schemes. For fine grids a LU solver is not efficient.

8.1 The case m > k: evanescent waves

We wish to verify our error estimate e
−
√

m2−k2(2L2−L1)
. For the test case we

consider

m = 5, k = 4.5, L1 = π, L2 =
6

5
π, p = 2, σ = 20, n = 32. (40)

In this case

e
−
√

m2−k2(2L2−L1) ' 6.87× 10−5

We solve the problem with the O (h6) solver (24) with the parameter γ = 1.
The computed solution φ approximates uN−pml and satisfies:

err = ‖uexact − φ‖ = 6.53× 10−5

Refining the gridsize, taking n = 64 we get computationally

err = 7.19× 10−5
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which shows that we cannot improve the accuracy of the computation because
we reached our desired level of accuracy.

Choosing instead L2 = 1.6π in (40) we get

e
−
√

m2−k2(2L2−L1) ' 4.29× 10−7

and with n = 32 we get computationally

err = 1.09× 10−6,

with n = 64
err = 2.01× 10−7,

and with n = 128
err = 2.13× 10−7.

Now, the first refinement of the grid improves the result, but we cannot im-
prove it further, as we can see in the second refinement. That is because we
again reached our lower bound.

For a second test case we choose default values

m = 5, k = 1, L1 = π, L2 =
3

2
π, p = 2, σ = 20,

n = 32, O
(
h6
)

scheme with γ = 1.

We have the lower error bound

e
−
√

m2−k2(2L2−L1) ' 4.28× 10−14

and choose as our base error

errbase = 8.18× 10−7

which is far from the lower error bound. In Table 1 we see the effect of param-
eter changes from the base case. We list only the changes from the default.

• The independence of the error on the values of p (results 1,2), σ (result 3)
and 2L2 − L1(result 10).
We see (result 9) that if we change m, k in such a way that we preserve the
value of m2− k2, the error changes. We can explain this by the assumption
that as m increases the accuracy of the numerical schemes decreases.

• The efficiency of our high-order scheme for these problems. We can clearly
verify the O (h6) behavior versus the O (h4) one (results 4-8).

• The value of γ in the high order schemes is of minor importance and affects
the parameter c in the leading order of the error ch4 or ch6.

• We maintain the same behavior even for k → 0 (result 11).
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no. parameter changed value of err

1 p = 1 errbase

2 p = 4 errbase

3 σ = 100 errbase

4 n = 64 1.28× 10−8 '
(

1
2

)6 · errbase

5 n = 128 1.99× 10−10 '
((

1
2

)6)2
· errbase

6 O
(
h6
)

scheme with γ = 3 8.06× 10−7

7 O
(
h4
)

scheme with γ = 1, n = 32 6.16× 10−6

8 O
(
h4
)

scheme with γ = 1, n = 64 3.46× 10−7 '
(

1
2

)4 ·#7

9 m = 7, k = 5 3.58× 10−6

10 L1 = 5
4π, L2 = 13

8 π errbase

11 k = 0.0000001 8.51× 10−7

Table 1
The Case m > k

In a real problem we cannot control the value of m (the input boundary
condition). In the Fourier series expansion we have a complete set of non-zero
values. We concentrate on the leading mode value.

8.2 The case m < k: traveling waves

8.2.1 The dependence on the accuracy of the scheme

We wish to computationally verify our proof that the global behavior in the
interior depends only on the local accuracy used in the interior. We examine
the high-order schemes as well as the standard O (h2) scheme on a test case.
To check this behavior we have to exclude errors that arise from other ap-

proximations. Thus, we take in (17) 2e−
2σ
√

1−ε(L2−L1)

p+1 → 0 and make sure that
h2

6
σ
√

1−εp
(L2−L1)

e−
2σ
√

1−ε(L2−L1)

p+1 in (38) is negligible.

We take as our base test case

m = 6, k = 8, L1 =
5

4
π, L2 =

7

4
π, p = 2, σ = 25

In this case

2e−
2σ
√

1−ε(L2−L1)

p+1 ' 6.03× 10−8
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n PT HO-4 γ = 0 HO-4 γ = 2 HO-6 γ = 0 HO-6 γ = 2

16 1.72× 100 5.91× 10−2 3.15× 10−1 4.25× 10−2 1.46× 10−1

32 4.85× 10−1 4.21× 10−3 1.97× 10−2 6.86× 10−4 2.32× 10−3

48 2.17× 10−1 8.54× 10−4 3.93× 10−3 6.98× 10−5 2.07× 10−4

64 1.23× 10−1 2.73× 10−4 1.25× 10−3 1.49× 10−5 3.72× 10−5

80 7.86× 10−2 1.13× 10−4 5.12× 10−4 4.74× 10−6 9.89× 10−6

96 5.46× 10−2 5.45× 10−5 2.47× 10−4 1.93× 10−6 3.38× 10−6

112 4.02× 10−2 2.95× 10−5 1.34× 10−4 9.07× 10−7 1.38× 10−6

128 3.08× 10−2 1.73× 10−5 7.85× 10−5 4.71× 10−7 6.47× 10−7

Table 2
err = ‖uexact − φ‖∞ for m = 6, k = 8, L1 = 5

4π, L2 = 7
4π, p = 2, σ = 25

and
σ
√

1− εp

6 (L2 − L1)
' 3.5

and if n ≥ 16

h2 =
(

π

n

)2

≤
(

π

16

)2

' 3.8× 10−2

and

h2 σ
√

1− εp

6 (L2 − L1)
≤ 0.14 .

Thus, our high-order schemes should yield good results. In Table 2 we see the
value of err = ‖uexact − φ‖∞ resulting from the use of the schemes: PT (22),
HO-4 (23) and HO-6 (24). Increasing the value of n decreases the value of the
gridsize h in both directions. We assume that for small values of h,

err ' C (k) n−r =
C (k)

πr
hr

where r is the order of the scheme, i.e.

r =


2 for PT scheme

4 for the schemes EB,HO

6 for the schemes EB-6,HO-6

Hence, if n = 2l

− log2 (err) ' l · r − log2 C (k) .

We calculate r, the order of accuracy, by measuring the slope of the curve (in
figure 12). This computationally verifies our hypothesis.
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Fig. 12. − log(err) by log(n) for the finite differences schemes

The computing time required for all of these scheme, applied on a given prob-
lem, is the same when we use Gaussian elimination. This fact emphasizes the
benefit of using the high order schemes.

8.2.2 Convergence to the modified solution

We wish to confirm the modified equation’s solution (37) which we labeled
uN−pml. We start with the O (h4) approximation with γ = 0, and solve the
problem with

m = 1, k = 5, L1 =
5

4
π, L2 =

3

2
π, p = 2, σ = 20.

In this case the lower error bound is rather poor and we get

2e−
2σ
√

1−ε(L2−L1)

p+1 ' 7× 10−5.

Let φ be the computational approximation, uexact be the exact solution to the
combined Helmholtz-PML problem and uNPML given by (37). We measure
two kinds of errors

errex = ‖uexact − φ‖∞
and

errho = ‖uN−pml − φ‖∞
Our goal is to show that the scheme converges to the uN−pml solution with
O (h4). We collect the results in Table 3. We see that the scheme approximates
the uN−pml solution and

errho (n = 32)

errho (n = 16)
' errho (n = 64)

errho (n = 32)
' errho (n = 128)

errho (n = 64)
'
(

1

2

)−4
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n errex errho

16 3.05× 10−2 3.04× 10−2

32 2.00× 10−3 1.93× 10−3

64 1.85× 10−4 1.19× 10−4

128 7.67× 10−5 7.41× 10−6

Table 3
Convergence to uho for m=1, k=5, L1 = 5

4π, L2 = 3
2π, p=2, σ=20 with HO-4 scheme

n errex errho

16 6.19× 10−3 6.12× 10−3

32 5.64× 10−4 4.93× 10−4

64 9.91× 10−5 2.88× 10−5

128 7.18× 10−5 1.76× 10−6

Table 4
Convergence to uho for m=1, k=5, L1 = 5

4π, L2 = 3
2π, p=2, σ=20 with HO-6 scheme

n errex = errho

16 1.81× 10−3

32 6.29× 10−5

64 3.33× 10−6

128 1.99× 10−7

Table 5
Convergence to uho for m=1, k=5, L1 = 5

4π, L2 =2π, p=2, σ=20 with HO-6 scheme

which is consistent with our analysis. The analytic solution is uexact. To con-

verge to uexact we set the parameters such that the exponent 2e−
2σ
√

1−ε(L2−L1)

p+1

is small enough.

We solve the same problem with the O (h6) scheme with γ = 0 (results in
Table 4). Again, we see that we approach uN−pml and not uexact, but this time

we do not get a O (h6) approximation. For instance errho(n=64)
errho(n=32)

'
(

1
2

)−4
and

not
(

1
2

)−6
. To find the cause we change L2 to 2π, to achieve better damping

in the PML. (Table 5). This time errho(n=64)
errho(n=32)

'
(

1
2

)−4.48
, and in other problems

(last subsection) we do get O (h6) . The problem is that the evaluated uN−pml

is not what we are approximating in the O (h6) scheme. In the analysis of the
modified equation we approximated the O (h2) term and neglected the O (h4)
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n errex = errho

16 4.77× 10−3

32 1.15× 10−5

64 1.87× 10−7

128 2.98× 10−9

Table 6
Convergence to uho for m = 1, k = 5, L1 = 5

4π, L2 = 7
4π, p = 4, σ = 200 with HO-6

scheme

term. However, this high order term is significant in some problems and in
others is negligible. Choosing p = 2 can be accurate for some problems (see
Table 2), however, we should choose p ≥ 4 for the O (h6) scheme. For instance
in Table 6 , we do get the desired approximation

errho (n = 64)

errho (n = 32)
' errho (n = 128)

errho (n = 64)
'
(

1

2

)−6

.

8.2.3 Selecting the parameters in the function σx

We wish to check the influence of the parameters we choose in the approxi-
mation, L1, L2 − L1, p and σ, on a given problem.

8.2.3.1 Value of L1 : The error estimates we obtained imply that the
value of L1 is relatively unimportant (we approximated | 2

η−1
| that depends on

L1 by | 2
η
|). We check this with the test case

m = 1, k = 10, L1 − L2 =
π

4
, p = 4, σ = 100,

n = 32, O
(
h6
)

scheme with γ = 0.

The value of
∣∣∣ 2
η

∣∣∣ = 2e−
2σ
√

1−ε(L2−L1)

p+1 ' 5.36× 10−14. We summarize the results
in Table 7.

8.2.3.2 Width of the PML, L2 − L1 : To support our theory we show
that the accuracy increases as we take a thicker PML layer. Taking

m = 1, k = 10, L1 =
5π

4
, p = 4, σ = 100, O

(
h6
)

scheme with γ = 0, (41)
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L1

∣∣∣ 2
η−1

∣∣∣ err

1 4.91× 10−14 3.01× 10−3

1.25 4.73× 10−14 3.33× 10−3

1.5 4.53× 10−14 2.85× 10−3

1.75 4.30× 10−14 3.44× 10−3

2 4.03× 10−14 2.68× 10−3

2.25 3.75× 10−14 3.54× 10−3

2.5 3.44× 10−14 2.50× 10−3

Table 7
The error dependance on the value of L1

L2 − L1 2e
− 2σ

√
1−ε(L2−L1)

p+1
err

n = 32

err

n = 64
π
16 8.08× 10−4 3.13× 10−1 8.53× 10−3

π
8 3.26× 10−7 5.92× 10−2 6.08× 10−5

π
4 5.31× 10−14 3.33× 10−3 3.34× 10−5

π
2 1.41× 10−27 2.16× 10−3 3.33× 10−5

π 9.98× 10−55 2.16× 10−3 3.33× 10−5

Table 8
The error in the HO-6 scheme as a function of the width of the PML

L2 − L1 k = 2.5 k = 5 k = 13
π
16 1.68× 10−1 2.42× 10−1 4.21× 10−1

π
8 1.34× 10−2 2.16× 10−2 1.10× 10−1

π
4 5.16× 10−5 1.78× 10−4 1.26× 10−2

π
2 1.03× 10−7 1.23× 10−5 1.44× 10−2

π 1.80× 10−8 1.24× 10−5 1.44× 10−2

Table 9
The error in the HO-6 scheme as a function of width of PML and k, for n = 32

we summarize the results in Table 8. We verify that as the mesh becomes
finer we maintain the O (h6) accuracy if the PML is thick enough. Increasing
the width of the PML beyond a certain limit does not improve the accuracy
while requiring more storage and computational time. For small values of h
we obtain more accurate results, but need a thicker PML as seen in Table 9.

Our main interest is to take a thin PML, while maintaining the accuracy. We

control this by increasing the value of σ. In Table 10 we set 2e−
2σ
√

1−ε(L2−L1)

p+1 =
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L2 − L1 σ
err

n = 32

err

n = 64
π
8 400 1.7× 10−1 9.73× 10−4

π
4 200 5.04× 10−3 3.36× 10−5

π
2 100 2.16× 10−3 3.33× 10−5

π 50 2.16× 10−3 3.33× 10−5

Table 10
The error in the HO-6 scheme for a constant value of 2e

− 2σ
√

1−ε(L2−L1)

p+1

n σ L2 − L1 HO-4 HO-6

16 18.75 π
2 9.66× 10−1 1.40× 10−1

32 37.5 π
4 5.15× 10−2 3.02× 10−3

64 75 π
8 3.62× 10−4 9.16× 10−4

Table 11
Results for 8 points inside the PML with m=2, k=10, L1 = 5π

4 , p=2, σ(L2−L1)
p+1 = 25π

8

n σ L2 − L1 HO-4 HO-6

16 31.25 π
2 1.06× 100 1.08× 10−1

32 62.5 π
4 5.14× 10−2 1.79× 10−3

64 125 π
8 3.14× 10−3 7.83× 10−5

Table 12
Results for 8 points inside the PML m=2, k=10, L1 = 5π

4 , p=4, σ(L2−L1)
p+1 = 25π

8

1.41× 10−27 for the test problem (41). We conclude that as long as the PML
is not too thin and we have enough points in the PML, we get the desired
accuracy.

8.2.3.3 Fixed number of points in the PML: Computational practice,
is to set a fixed number of points inside the PML. Thus, when we decrease the
gridsize, we change the physical width of the PML. In the above computations
we choose the physical width of the PML as constant. We want to see if this
influences our results. To check the behavior we set a problem with

m = 2, k = 10, L1 =
5π

4

and for different values of gridsize h, use the same number of points inside the
PML. In the first test (tables 11 - 13) we use 8 points in the PML, and in
the second test (Table 14 and 15) 16 points. We see that we lose the O (h6)
accuracy when p = 2 (tables 11 and 14), but maintain the O (h4) behavior.
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n σ L2 − L1 HO-4 HO-6

16 18.75 π
2 1.01× 100 1.34× 10−1

32 37.5 π
4 5.16× 10−2 1.64× 10−3

64 75 π
8 3.17× 10−3

3.06× 10−5

(2.55× 10−5 towards uN−pml)
Table 13
Results for 8 points inside the PML. m=2, k=10, L1 = 5π

4 , p=4, σ(L2−L1)
p+1 = 15π

8

n σ L2 − L1 HO-4 HO-6

16 9.375 π 9.94× 10−1 1.23× 10−1

32 18.75 π
2 5.16× 10−2 1.67× 10−3

64 37.5 π
4 3.21× 10−3 1.19× 10−4

Table 14
Results for 16 points inside PML with m=2, k=10, L1 = 5π

4 , p=2, σ(L2−L1)
p+1 = 25π

8

n σ L2 − L1 HO-4 HO-6

16 15.625 π 9.94× 10−1 1.24× 10−1

32 31.25 π
2 5.17× 10−2 1.65× 10−3

64 62.5 π
4 3.17× 10−3 2.52× 10−5

Table 15
Results for 16 points inside the PML with m=2, k=10, L1 = 5π

4 , p=4, σ(L2−L1)
p+1 = 25π

8

This is because for the O (h6) scheme we have to choose p ≥ 4 and have
a sufficiently wide layer (compare with the results in the last section). For
thin PML layers it is noticed (Table 12) that we cannot maintain the O (h6)
behavior if we choose a large σ, but by taking smaller value of σ we lose the
approximation to uexact and maintain the O (h6) accuracy towards the modified
equation solution uN−pml. Thus, if we wish to work with a fixed number of

points inside the PML we should set the parameters such that 2e−
2σ
√

1−ε(L2−L1)

p+1

is small enough and choose p ≥ 4 for HO-6 and p = 2 for HO-4.

We denote n pml as the number of points in the PML

2e−
2σ
√

1−ε(L2−L1)

p+1 = 2e−
2h·n pml·σ

√
1−ε

p+1 .

If we know the minimal value of h á priori (In tables 11-15 it is π
64

), we can

set n pml and σ to satisfy a desired estimate for 2e−
2h·n pml·σ

√
1−ε

p+1 . Hence, when
we refine the interior grid to increase the accuracy we also need more points
in the PML.
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k 8 7 6.5 6.25 6.1 6.05

error 6.86 10−04 2.44 10−04 1.16 10−04 .00138 .0182 .069
Table 16
m = 6 and k approaches m with L1 = 5π

4 , L2 = 7π
4 , σ = 25 with 32 points

p
estimate

(17)

err

n = 32

err

n = 64

err

n = 128
err32
err64

err64
err128

1 1.32× 10−68 1.19× 10−1 2.08× 10−2 4.86× 10−3 5.7 2.1

2 1.12× 10−45 1.98× 10−3 7.70× 10−5 7.59× 10−6 25.7 25.1

3 2.30× 10−34 2.22× 10−3 3.50× 10−5 6.21× 10−7 63.4 56.3

4 1.41× 10−27 2.16× 10−3 3.33× 10−5 5.21× 10−5 64.9 63.9

5 4.74× 10−23 2.16× 10−3 3.33× 10−5 5.21× 10−5 64.9 63.9

10 4.56× 10−13 2.02× 10−3 3.33× 10−5 5.21× 10−5 61.2 63.9

30 8.35× 10−5 7.23× 10−2 5.24× 10−4 7.69× 10−4 138.0 < 1
Table 17
Results for different values of p for m = 1, k = 10, L1 = 5π

4 , L2 = 7π
4 , σ =

100, O
(
h6
)
with γ = 0

As m and k get closer we approach the evanescent limit and the PML is less
effective. The error is shown in table (16).

8.2.3.4 Value of p : We solve the test problem with various values of p
(Table 17) with

m = 1, k = 10, L1 =
5π

4
, L2 =

7π

4
, σ = 100, O

(
h6
)

scheme with γ = 0.

We clearly see the bad behavior of the case p = 1 and the need for sufficient
derivatives in Sx as seen in Figures 8-11. In the O (h6) case we should choose
p ≥ 4. Moreover, we do not benefit from taking larger values of p than four.

8.2.3.5 Value of σ : Taking as a test problem with various values of σ,

m = 1, k = 10, L1 =
5π

4
, L2 =

3π

2
, p = 4, O

(
h6
)

scheme with γ = 0.

We present the results in Table 18. We conclude that the value of σ does not
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σ
estimate

(17)

err

n = 32

err

n = 64

err

n = 128
err32
err64

err64
err128

10 8.77× 10−2 9.54× 10−2 9.23× 10−2 9.16× 10−2 1.0 1.0

20 3.85× 10−3 4.59× 10−3 3.94× 10−3 3.88× 10−3 1.2 1.0

40 7.43× 10−6 2.03× 10−3 3.39× 10−5 7.43× 10−6 59.8 4.6

80 2.75× 10−11 3.24× 10−3 3.34× 10−5 5.21× 10−7 97 64.1

160 3.81× 10−22 9.28× 10−3 3.35× 10−5 5.21× 10−7 277 64.3

320 7.25× 10−44 1.20× 10−2 3.42× 10−5 5.30× 10−7 350 64.5

103 1.31× 10−136 3.63× 10−2 4.21× 10−5 5.89× 10−7 86.6 71.5
Table 18
Results for different values of σ for m=1, k=10, L1 = 5π

4 , L2 = 3π
2 , p=4, O

(
h6
)
γ=0

g -10 -6 -4 -3 -1 0

err 2.73 10−3 6.75 10−4 6.66 10−4 6.70 10−4 6.81 10−4 6.86 10−4

g 1 3 4 5 6 10

err 6.87 10−4 6.83 10−4 6.76 10−4 6.68 10−4 6.72 10−4 2.72 10−3

Table 19
Error varying g in Sx =1 + σx

g+ik . L1 = 5π
4 , L2 = 7π

4 , m=6, k=8, 32 points, σ= 25

influence the accuracy of the approximation as long as 2e−
2σ
√

1−ε(L2−L1)

p+1 is small
enough. Thus, a natural choice of σ should be σ > k such that

2e−
2σ
√

1−ε(L2−L1)

p+1 ˜10−q

where q is the number of the desired significant digits accuracy. We choose the
smallest σ that satisfies this.

We next consider a more general formula for Sx given by Sx = 1 + σx

g+ik
. The

original formula corresponds to g = 0. In table (19) we present the error as a
function of g. We consider L1 = 5π

4
, L2 = 7π

4
, m = 6, k = 8 with 32 points and

σ = 25. We see that indeed the smallest error occurs for g = −5.0. However,
the differences are so small that there is no practical purpose in trying to
choose a nonzero g. Hence, we continue to use the original g = 0.

9 Iterative Techniques

For very fine meshes in two dimensions and coarser meshes in three dimensions
an LU decomposition becomes very expensive. Hence, we consider the use of
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an iterative solver. We examine Krylov subspaces methods such as CGNR,
GMRES, QMR and BiCG on the combined problem and found that they
converge to the solution very slowly. Hence, we need to use a preconditioner
for the problem. A preconditioner for the pure Helmholtz equation was con-
structed in [3]. The preconditioner was based on the inverse of the Laplacian
operator computed with one sweep of SSOR.

The major difficulty of this preconditioner on the combined problem is that
the PML introduces a different equation. k = 0 in the PML does not give
the Laplace equation. Instead, we construct a preconditioner, that will act as
the inverse Laplacian operator in the interior, and behave as an approximate
inverse in the PML. We do not calculate M−1 but we approximate the solution
of My = z, by applying a few sweeps of SSOR or damped Jacobi (DJ). In the
PML we cannot choose k = 0 because of the definition of Sx. For the Helmholtz
equation with small but nonzero k the operator is still positive definite. Thus,
to apply the preconditioner M we use the standard approximation of the
combined problem with a small value of k which we denote k̃.

αDx (Aux)j +
1− α

2
(Dx (Aux)j+1 + Dx (Aux)j−1) +

αDy (Buy)i +
1− α

2
(Dy (Auy)i+1 + Dy (Auy)i−1) +

(1− 4βs − 4βc) Ci,jui,j

+βs

Ci+1,jui+1,j + Ci−1,jui−1,j+

Ci,j+1ui,j+1 + Ci,j−1ui,j−1



+βs

Ci+1,j+1ui+1,j+1 + Ci−1,j+1ui−1,j+1+

Ci+1,j−1ui+1,j−1 + Ci−1,j−1ui−1,j−1

 .

Where A = 1
Sx

, B = Sx, C = k̃2Sx. The resulting matrix M̂ is complex and
cannot be applied as a preconditioner for two reasons. It is not symmetric and
it is not real and positive definite. It does have these two properties in the
interior, but not in the PML.

To overcome these two difficulties we set the PT values: α=1, βs =βc =0 in
the preconditioner. This choice makes the approximation complex-symmetric.
It is also useful because it involves only 5 unknowns in each equation instead
of 9. To change the matrix to a real symmetric positive definite matrix we
make the change:

Mi,j =


∣∣∣M̂i,j

∣∣∣ i = j

−
∣∣∣M̂i,j

∣∣∣ i 6= j
for every 1 ≤ i, j ≤ N.
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n
σ̃ = 10

p̃ = 1

σ̃ = 10

p̃ = 2

σ̃ = 1

p̃ = 4

σ̃ = 10

p̃ = 4

σ̃ = 100

p̃ = 4

σ̃ = 10

p̃ = 6

16 211 206 208 200 204 204

32 832 811 927 807 807 871

64 4022 3911 4683 3766 3857 4421
Table 20
Number of iterations in the Left Preconditioned CGNR with diagonal scaling using
4 sweeps of DJ with ω = 0.7 applied on the combined preconditioner with k̃ = 0.1.

n with diagonal scaling without diagonal scaling

16 351 877

32 1732 12823

64 8646 116744
Table 21
Number of iterations non preconditioned CGNR with and without diagonal scaling

In the interior Mi,j = M̂i,j. Because k̃ is small in the interior, the approxima-
tion is a small perturbation of the Laplacian. We call this preconditioner the
combined preconditioner. Note, that as in the pure Laplacian operator precon-
ditioner, this preconditioner corresponds to a second order accurate operator
even when the scheme in the interior is higher order accurate.

Table 20 shows the number of iterations for the CGNR preconditioned algo-
rithm with the new combined preconditioner. We choose k̃ = 0.1. The best
value of p in the preconditioner is the same as used for the approximation.
σ̃ should be small, but not too small. The benefit of the preconditioner is
demonstrated comparing the convergence with that of the non-preconditioned
algorithm in Table 21. As shown in [3] as k gets larger the preconditioner is
less effective. This can be improved as in [15].

10 Conclusions

We construct a PML for the two dimensional Helmholtz equation in a strip.
We prove that the combined Helmholtz and PML layer has a unique solution
and that this solution is a good approximation to the interior Helmholtz equa-
tion. We find a bound for this error and show that one can control the error
by changing the PML parameters. We describe high-order finite differences
schemes for the combined Helmholtz PML equation and apply them on the
strip problem. We analyze the numerical error governed by the use of these
schemes and show that for a proper choice of parameters, the combined scheme
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maintains the high-order accuracy of the interior approximation. A variety of
numerical results is presented to support the analysis.

We also investigate the use of iterative methods to solve the resultant linear
equations. We develop a preconditioner Krylov algorithms to solve the com-
bined problem. We conclude that the parameters should be chosen so that:

• The length of the interior, L1, should be as small as the physical problem
permits because it does not influence the accuracy but has a significant
impact on the size of the linear system.

• The width of the PML, L2 − L1, should be as thin as possible to decrease
the size of the linear system. Numerical tests show that we cannot make
the layer too thin relative to the interior grid. For the interior grids used in
this study we could use 16 grid points in the PML and still get high order
accuracy. If the grid is refined than one needs more points in the PML.

• The degree of the polynomial in the PML, p, (see (14)) should be 2 for the
fourth order accurate scheme and 4 for the sixth order accurate scheme.

• σ, the maximum of σx (x) (see (14)) should be set to the lowest value which

maintains the desired accuracy determined by e−
2σ
√

1−ε(L2−L1)

p+1 (see (17)).
• If both travelling and evanescent waves are present then the size of the PML

should be chosen to damp the evanescent waves. Then the other parameters
are chosen to efficiently damp the traveling waves. The difficult situation is
travelling waves near resonance.
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