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INTRODUCTION

We consider the solution of the steady state compressible
Navier-Stokes equations for both stationary and rotating turbo-
machinery. This is augmented by ak� ε turbulence model. The
body boundary is modeled using wall functions which allows the
use of grids of moderate large aspect ratios. To account for the
effect of rotation, we introduce a rotating frame of reference. To
simplify the boundary conditions we use the absolute velocity
components as the dependent variables. We use a generalized
coordinate system starting from cylindrical coordinates.

We solve these equations by marching the time dependent
equations in pseudo-time. A Runge-Kutta scheme is used with
local time-stepping and residual smoothing. The space differenc-
ing is a central difference finite volume scheme with an artificial
viscosity. The artificial viscosity contains a second difference
portion to prevent overshoots near shocks. This is turned off in
smooth regions of the flow. The fourth difference viscosity is
designed to reduce the high wave number components of the er-
ror. To prevent overshoots, this part is turned off near shocks.
This dissipation algorithm of Jameson, Schmidt and Turkel [3]
is based on a scalar coefficient, proportional to the largest eigen-
value of the Jacobian matrix in each direction. This has been im-
proved by the addition of both a matrix valued coefficient in the
artificial viscosity [7] and low speed preconditioning [8; 9; 12].
The preconditioning improves both the rate of convergence to a
steady state and also the accuracy for low Mach number flows.
Both the matrix viscosity and the preconditioning techniques are
based on the inviscid equations even though the results use the
Navier-Stokes equations [13]. Some early results for turboma-
chinery using preconditioning were presented in [14].

EQUATIONS
The Euler equations in cylindrical coordinates are given by
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We introduce a rotating coordinate systemθR = θ�Ωt with
v̂θ = vθ� rΩ where the subscriptR denotes the relative frame
of reference, ˆvθ denotes the relative tangential velocity andΩ is
the rotational speed of the rotor. By the chain rule it follows that
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Using the transformation (2) the equations in the rotating frame
of reference are

∂(rρ)
∂t

+
∂(rρvr)

∂r
+

∂(ρv̂θ)

∂θR
+

∂(rρvz)

∂z
=0

∂(rρvr)

∂t
+

∂(r
�
ρv2

r + p)
�

∂r
+

∂(ρvr v̂θ)

∂θR
+

∂(rρvrvz)

∂z
=ρv2

θ+p

∂(r2ρvθ)

∂t
+

∂(r2ρvθvr)

∂r
+

∂(r(ρvθv̂θ+p))
∂θR

+
∂(r2ρvθvz)

∂z
=0 (3)

∂(rρvz)

∂t
+

∂(rρvrvz)

∂r
+

∂(ρv̂θvz)

∂θR
+

∂
�
r(ρv2

z+ p)
�

∂z
=0

∂(rρE)
∂t

+
∂(rρHvr)

∂r
+

∂(ρHv̂θ+rΩp)
∂θR

+
∂(rρHvz)

∂z
=0

The dependent variables are based on the nonrotating veloc-
ity components even though the independent variables are the
rotating coordinates. The velocity in the rotating system, ˆvθ, ap-
pears in the differential terms along with the velocity in the fixed
frame,vθ. We note that the energy equation has an extra term
rΩp within the θR derivative. These are the equations that are
used for all the results presented.

MATRIX VISCOSITY
To derive a matrix viscosity [7] we first express the Euler

equations in primitive variables,w0 = (p;vr ;vθ;vz;S) whereS is
the entropy. We eliminate the total energy by the use of relation
(1) to introduce an equation for the pressure instead of the to-
tal energy. We also use the relationship between the entropy,S,
pressure,p and the density,ρ :

pdS= dp�c2dρ = dp�
γp
ρ

dρ

We stress that (1) depends on the non-rotated tangential velocity.
As before, we introduce the rotating system, define ˆvθ and use
the chain rule. We again find that theΩ term introduced by using
v̂θ instead ofvθ exactly cancels theΩ introduced by the chain
rule (see (2)). The result is
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or in matrix form,w0 = (p;vr ;vθ;vz;S)t
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The matricesA;B;C for the primitive variables are identical
to those in Cartesian coordinates except that the relative velocity
component ˆvθ appears rather then the absolute velocity compo-
nentvθ. In particular, the eigenvalues of the system depend on
the relative velocity components.

We present the artificial viscosity in the axial direction. The
total artificial viscosity is a sum of similar terms in all the coor-
dinate directions. We consider a generalized coordinateξ direc-
tion, ∆ξ = 1. Then

wt +Fi+1=2; j ;k�Fi�1=2; j ;k = di+1=2; j ;k�di�1=2; j ;k

Let A= ∂F
∂w and suppressing thej;k index we get
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∆2 is the second difference operator.ε(2) = ν(2)F(p) whereF(p)
is a function of the pressure that is close to one near shocks and
small in regions away from shocks.ε(4) = ν(4)G whereG is zero
near shocks and close to 1 in smooth regions. Hence, the first
difference is turned on near shocks while the third difference is
turned on in smooth regions of the flow. In addition, the artificial
viscosity in the boundary layer is completely eliminated, based
on turbulence data, for the momentum and energy equations in
smooth flow. This guarantees that the artificial viscosity will not
overwhelm the physical viscosity within the boundary layer. The
artificial viscosity is furthered reduced in low speed regions by
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a Mach number dependent function. This prevents overshoots
near the leading and trailing edges. In all the cases presented we
choseν(2) = 1

2 andν(4) = 1
128.

σ(A) is a function of the matrix A. A scalar viscosity [3]
uses forσ the spectral radius ofA times the identity matrix. The
matrix viscosity [7] is based on the absolute value of the matrix
A. If we diagonalize the matrix A thenD=TAT�1. The absolute
value of A is defined asjAj= T�1jDjT. The eigenvalues ofjDj
can vanish near stagnation points and sonic lines. To prevent
this, we cutoff these values at a percentage of the spectral radius
of jDj. In one space dimension this would give for the diagonal
elements,di of jDj

d0=max(juj;Vl(juj+c)) d�=max(ju�cj;Vn(juj+c))

where u is the velocity andc is the speed of sound. When
Vn = Vl = 1:0 we recover the scalar artificial viscosity. Typical
values areVn=0:3 , Vl =0:1. T depends on the absolute veloc-
ity components while the diagonal elements ofD (eigenvalues)
depend on the relative velocity components. Thus, the matrix
artificial viscosity is similar to that given in [7]. The difference
is that the eigenvalues are based on relative velocities and the
matrix jBj contains a1

r term. In primitive variables,w0, we have
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wherec is the speed of sound. Rewriting the above in conserva-
tive variables,wc = (ρ;ρvr ;ρvθ;ρvz;E), we use∂wc
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depends on the relative velocity components while the Jacobians
∂wc
∂w0
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depend on the absolute velocity components.
The rationale for matrix viscosity is that it adds different

amounts of artificial viscosity to each wave. The scalar viscos-
ity adds dissipation proportional toq+c to all waves. However,
the matrix viscosity adds dissipation proportional toq to the en-
tropy and vorticity waves. Hence, one expects less diffusion of
the vorticity and entropy waves with the matrix valued viscosity
compared with the scalar viscosity.

PRECONDITIONING
It is known that when the Mach number becomes small that

the convergence to a steady state of standard compressible codes
becomes very slow. This occurs because of the stiffness in the
equations caused by the large ratio of the acoustic to convective
speed. The purpose of the preconditioner is to change the speeds

of the waves so that the ratio of the various speeds remains finite
as the Mach number approaches zero. We consider precondi-
tioning for the system in the rotating coordinate system (3) or
equivalently (4). The fluid dynamic equations are replaced by

P�1wt + fz+gr +hθ = R

We consider low speed preconditionings based on the ho-
mogenous Euler equations in the rotating coordinate system
given by (4). This preconditioning is the same as presented in
[8; 9; 12] except thatβ now depends on the relative velocity

P= diag(β2
;1;1;1;1)

In addition to a slowing of the convergence the accuracy of
the resultant numerical system deteriorates as the Mach number
becomes small. This is caused by an improper scaling of the
standard artificial viscosity or upwinding as the Mach number
approaches zero. So, the preconditioner improves both the ac-
celeration to a steady state and simultaneously improves the ac-
curacy of the numerical solution at the steady state as the Mach
number approaches zero [10; 12].

We shall only consider preconditioning coupled with a scalar
viscosity. One could also use a matrix viscosity that depends on
the preconditioning [12]. Since the preconditioning only equal-
izes wave speeds, it does not include effects of the lower or-
der terms. Thus, the preconditioning in Cartesian coordinates
and cylindrical coordinates is the same (accounting for the1

r
in the θR direction). With the rotating coordinate system it is
the rotated velocity components that appear in the precondition-
ing matrix for the primitive variables(p;u;v;w;S). Similarly
for (p;u;v;w;T) variables, whereT is the temperature, since
the transformation fromS to T depends only on thermodynamic
quantities. If the preconditioning matrix is written in conserva-
tion variables then both relative and absolute velocities appear
because the transformation from(p;u;v;w;S) variables to con-
servative variables depends on the absolute velocity components.

When β = 1 we revert to the standard equations. For the
ratio of the eigenvalues to become finite atM = 0 we require that
β�Mrel whereMrel is the relative Mach number.. This become
singular atMrel=0 which arises when the Mach number locally
approaches zero near the stagnation point. Hence, it is necessary
to preventβ from becoming too small. This rationale indicates
that we can cutoffβ at some very low level. Turkel has suggested
the following cutoff [8]

β2 = min
�
max(K1M2

rel;β2
min);1

�
β2

min= K2M2
re f K1 = 1:1

For external flow one usually choosesMre f based on the Mach
number at infinity. For turbomachinery the inflow is usually not
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constant and so it does not provide a good basis for a lower
bound. Instead, we chooseMre f equal to the largest value of the
relative Mach number in the initial flow.K2 seems to be problem
dependent which is still the main drawback to the robustness of
these methods. In most cases we chooseK2 = 1. This implies
thatβ is almost constant (βmin) for much of the region.

In low Mach number flows, the flow is almost incompress-
ible and the density is almost constant. Hence, conservative vari-
ables,wc, are not the best choice. Instead we evaluate the artifi-
cial viscosity and update the solution using(p;vr ;vθ;vz;T) vari-
ables. All physical fluxes are based on conservative variables.

RESULTS
Matrix viscosity and preconditioning are tested on a tran-

sonic rotor. The preconditioner is tested on selected blade rows
of a multistage compressor. Both machines have experimental
data available. Comparisons to data are made where possible.

ROTOR 35
To demonstrate the advantages of these improvements to the

code for a three dimensional case we consider a transonic ro-
tor that was designed, built and tested at NASA Glenn Research
Center [15; 16]. This geometry is called Rotor 35. The rotor has
36 blades spinning at 13;751RPMwhich corresponds to 80% of
design speed. The aspect ratio is 1:19 and radius ratio is 0:70.
The tip clearance gap is 0:74mmand is the distance between the
rotor tip and the shroud at the design condition. Overall per-
formance data from aerodynamic probe surveys were taken at
Station 1 and Station 4 which are indicated in Figure 1.

The mesh used to simulate Rotor 35 contained a total of
851;400 cells. In the axial direction, 70 cells are distributed
along the blade chord, 50 cells are distributed in the pitch-wise
direction and 86 cells are distributed from hub to the casing. The
last 12 cells from the casing are placed within the clearance gap
and model the clearance flow. We compare the results of the
simulations with data taken by Van Zante, et al. [15]. The exper-
iment had a small amount of flow leakage from the gap between
the stationary and rotating part of the hub upstream of the rotor.
The small amount of leakage was included in the simulations.
The operating point for the simulations is near the peak efficiency
condition. This was obtained by setting the static pressure at the
hub of Station 4. Station 4 is where the global computational grid
is terminated and is about one chord downstream of the blade.

We compare the original non-preconditioned scalar viscos-
ity, the matrix viscosity and preconditioning with a scalar vis-
cosity. The purpose of each of these improvements are different.
The matrix viscosity is designed to reduce the total artificial vis-
cosity and so improve the accuracy of the numerical solution.
We compare the matrix viscosity withVn= :3 andVl =0:1 to the
scalar artificial viscosity. Figure 2 is a plot of the pressure ratio

versus mass flow of both simulations compared to the experi-
mental data. The pressure ratio is defined as the mass-averaged
total pressure of the flow at station 4 normalized by the total pres-
sure at station 1. The open symbols evaluate the pressure ratio
using all the available mesh points. The solid symbols evalu-
ate the pressure ratio using only the radial locations at which
the experimental data was obtained. The pressure ratio of both
simulations underpredict the experiment. Note that the pressure
ratio computed using the radial locations at which the data was
obtained moves the pressure ratio toward the data. There is vir-
tually no difference in pressure ratio using the matrix viscosity
or the scalar viscosity. Both set of results are within 1:5% of
the measured pressure rise across the rotor. Figure 3 is a plot of
the computed efficiency versus mass flow compared to the ex-
perimental data. The efficiency is the ratio of ideal work input
to actual work input. The matrix viscosity shows an increase in
efficiency of:2% using all available mesh points over the scalar
viscosity. The increase in efficiency using the experimental re-
porting locations is:1%.

Figure 4 is a plot of the mass-averaged total pressure ratio
versus percent span for the scalar and matrix viscosity simula-
tions compared to the experimental data. There is very little dif-
ference between the simulations. However, figure 5 compares the
efficiency profiles and shows a fuller profile for the matrix vis-
cosity simulation in the lower span region Looking more closely
at the three dimensional flow field one finds that the matrix vis-
cosity decreases the size of the boundary layer and so decreases
the effective blockage in the rotor.

We next consider the same case using preconditioning and a
scalar viscosity. Because of the transonic flow we do not expect
to see much of a difference in the solution. Figure 6 shows vir-
tually no difference in the total pressure profile from the scalar
viscosity solution. There is also little difference in the conver-
gence rate using the preconditioner.

LSAC
To test the effectiveness of the preconditioner on low-speed

flows, the Inlet Guide Vane (IGV) and first rotor of the Glenn
Low Speed Axial Compressor (LSAC) were simulated as iso-
lated blade rows. LSAC is a four and a half stage machine, [16]
which is representative of the rear stages of a high pressure com-
pressor. The simulation of the rotor accounted for tip clearance
but did not include casing treatment over the first rotor which is
present in the experiment. Figure 7 is a drawing of the LSAC.
The IGV is between Stations 0:5 and 1:0 and the first rotor is
between Stations 1:0 and Stations 1:5. The inlet and exit loca-
tions of the computational domain were placed a chord length
upstream and downstream of the blade row under consideration.

Both the IGV and first rotor were simulated near the peak ef-
ficiency operating point. The inlet conditions of each blade row:
total pressure; total temperature; and flow angle were obtained
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from a data match of the experimental data. The exit conditions
were also obtained from this data match of the experimental data.
Inflow Mach numbers can go down to 0.05 in these simulations
and so we expect preconditioning to help both the convergence
to a steady state and accuracy of the steady state approximation.

In figure 8 the convergence rate for the IGV is plotted with
and without preconditioning. We see that the case without pre-
conditioning converged after 6000 iterations while the case with
preconditioning converged after about 1200 iterations. Hence,
the preconditioning leads to a factor of five improvement in the
number of iterations required for convergence. These simula-
tions were run on an SGI Origin 200 using 270Mhzprocessors.
The preconditioner on this processor requires an additional 40%
of CPU time compared to without preconditioning. Factoring
this into the iteration count, the preconditioning yields nearly a
four-fold speedup. This is shown in figure 9 where the normal-
ized iteration for the preconditioner is multiplied by a factor of
1:40, in effect, changing the comparison of the two cases to a
normalized CPU time.

In figure 10 we plot the total pressure coefficient as a func-
tion of span for the two cases with the experimental data at the
exit of the IGV. The total pressure coefficient is defined as the
total pressure normalized by the inlet dynamic pressure. The
simulation results are averaged in the pitch-wise direction. Both
profiles follow the experimental data for most of the span. Note
that the profile resulting from preconditioning follows the data
near the hub region closer than without preconditioning.

We next consider the first rotor of LSAC. The convergence
rate for the preconditioned case and non-preconditioner case is
plotted in figure 11 in terms of the total pressure coefficient at the
exit. Figure 12 is a plot of the convergence rate in terms of inlet
mass flow. In this case, the results are converged within 2500 it-
erations with preconditioning but are quite oscillatory even after
7000 iterations without preconditioning. To include the addi-
tional overhead of applying the preconditioner, we multiply the
preconditioner iteration count by a factor of 1:4. This results in
convergence of the preconditioner in 3500 normalized iterations.
This is shown in figure 13 for the massflow convergence. In fig-
ure 14 we display the pitch-wise, mass-averaged total pressure
coefficient at rotor exit while in figure 15 we present the absolute
flow angle at rotor exit. We again compare the results with and
without preconditioning to the experimental data. Now, the total
pressure coefficient profile from both simulations show similar
profiles. They both overpredict the hub and casing region. The
first rotor has casing grooves and leakage flow in the gap between
the rotating and stationary parts of the hub geometry. These were
not modeled and, at the high flow condition that was simulated,
the effect of these should be minimal. It is not clear what is caus-
ing these differences.

CONCLUSION

A matrix viscosity and low Mach number preconditioner
have been implemented into an existing flow solver used to simu-
late the flow through turbomachinery. The matrix viscosity is de-
signed to reduce the artificial viscosity level. The matrix viscos-
ity was tested on a transonic rotor and showed an improvement
in the efficiency of the machine relative to available experimen-
tal data. The preconditioner was tested on an IGV and rotor of a
low Mach number compressor and showed a sizable increase in
convergence rate in both simulations. The results of these tests
on isolated blade row geometries suggest these improvements be
further studied on multistage turbomachine geometriess.
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Figure 14. Total Pressure Coefficient in LSAC rotor
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Figure 15. Absolute Flow Angle in LSAC rotor
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