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Abstract

The Maxwell equations contain a dielectric permittivity e that describes the particular media. For homogeneous mate-
rials at low temperatures this coefficient is constant within a material. However, it jumps at the interface between different
media. This discontinuity can significantly reduce the order of accuracy of the numerical scheme. We solve the Maxwell
equations, with an interface between two media, using a fourth-order accurate algorithm. We regularize the discontinuous
dielectric permittivity by a continuous function either locally, near the interface, or globally, in the entire domain. We
study the effect of this regularization on the order of accuracy for a one-dimensional time-dependent problem. We then
implement this for the three-dimensional Maxwell equations in spherical coordinates with appropriate physical and arti-
ficial absorbing boundary conditions. We use Fourier filtering of the high frequency modes near the poles to increase the
time-step.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Electromagnetic waves propagate in both free space and in bodies, which may be inhomogeneous media.
For instance, a cellular phone sends signals from a building to the closest antenna to register its location.
Another example is a sensor that emits electromagnetic pulses into the ground to check for land mines. These
can be simulated by the solution of Maxwell’s equations with discontinuous coefficients. A discontinuity in
coefficients occurs at an interface between media with different dielectric and magnetic properties.

The Maxwell equations for ~E, ~D, ~H and ~B are:
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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o~B
ot
þr�~E ¼ 0 (Faraday’s Law),

o~D
ot
�r� ~H ¼ �~J (Ampere’s law)

ð1Þ
coupled with Gauss’ law
r �~B ¼ 0; r � ~D ¼ q;
where ~J is the electric current density vector and q is the electric charge density.
For linear materials we relate the magnetic flux density vector~B to the magnetic field vector ~H and the elec-

tric flux density vector ~D to the electric field vector ~E using
~B ¼ l~H ; ~D ¼ e~E.
We assume the dielectric permittivity e and the magnetic permeability l are given scalar functions of space
only. Both parameters are positive and describe the dielectric and magnetic characteristics of the material.
We set e = e0 Æ er and l = l0 Æ lr where l0 ¼ 4p � 10�7 H

m and e0 ¼ 1
c2l0

F
m are the free space permeability and per-

mittivity, respectively (c � 3.0 · 108 m/s is the speed of light). Different materials have different dielectric char-
acteristics. For very high frequencies (more than 10 GHz) these characteristics become frequency dependent.
However, for lower frequencies, at room temperature, many materials have a constant relative dielectric per-
mittivity er P 1 and relative permeability lr = 1 (if they are non-metallic). In Table 1 we display er for several
materials.

As functions of space e and l may be discontinuous across the interface between different materials. This
discontinuity may reduce the accuracy of a numerical scheme and may also make it unstable. The present
‘‘state-of the-art’’ in the numerical solution of the Maxwell equations with discontinuous coefficients by finite
difference methods does not go beyond second order of accuracy confirmed for simple cases (see, for instance
[1,3,7] and review in [12]). High-order accurate modelling of general dielectric bodies with meshes that are not
aligned with the body remains an open challenge to be addressed in future work. Hence, in this study we shall
only consider bodies aligned with the mesh.

The paper is organized as follows: We first discuss the general properties of the fourth-order accurate finite
difference scheme for the solution of the time-dependent Maxwell equations and compare it to the widely used
second-order accurate Yee algorithm. Afterwards, we consider the one-dimensional time-dependent Maxwell
equations with piecewise continuous coefficients and describe various methods for their regularization. We
compare these methods numerically and discuss the influence of the regularization on the accuracy of the finite
difference scheme. Finally, we show an application of the previously discussed regularization algorithms,
together with other special techniques, for the numerical solution of the three-dimensional Maxwell equations
in spherical coordinates with a dielectric interface in the radial direction, i.e., the body is still aligned with the
mesh.
2. Fourth-order accurate scheme

The classical finite difference time domain (FDTD) method was introduced by Yee [28] in 1966. It uses a
second-order central difference scheme for integration in space and the second-order leapfrog scheme for
1
e permittivities for different materials
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integration in time. This is a staggered non-dissipative scheme in both space and time. This method is
implemented in most of the commercial and open source solvers of the time-dependent Maxwell equations.
However, because of the second-order accuracy, it requires a dense grid to model various scales. This dense
mesh reduces the allowable time-step since stability requirements demand that the time-step be proportional to
the spatial mesh size. Hence, a fine mesh requires both a lot of computer storage and also a long computer
running time. If we define N as the maximal number of grid points in one direction, then for the three-
dimensional problem the storage will grow with O(N3) and the computational cost with O(N4).

Instead, we implement a fourth-order accurate FDTD scheme for the solution of the Maxwell equations
suggested by Yefet and Turkel [30]. This scheme has a number of advantages over the second-order scheme
(see, for instance, [12,25]). The high order method only needs a coarse grid. This is especially important for
three-dimensional numerical simulations and for long time integrations. A comparison of different fourth-
order schemes can be found in [18,25].

There are several ways to treat a discontinuity for high-order accurate schemes. The important question is
how to preserve the global order of accuracy. One of the approaches to the solution of Maxwell equations is
based on one-sided finite difference formulae, approximating the differential equation from both sides of the
interface (see, for example, [7]). However, for multi-dimensional problems it is difficult to achieve higher-order
accuracy for an interface not aligned with the grid. Another drawback of this approach is the violation of
Gauss’ law at the interface that can lead to the spurious solutions (see, for example, [16]).
2.1. Spatial discretization

The scheme we use to approximate the spatial derivatives is a compact implicit scheme with the same stag-
gering as the Yee scheme. Gottlieb and Yang [11] and Turkel [25] have shown that a staggered scheme is more
accurate than a co-located scheme for the same order of accuracy (it has smaller constant in the error term).
Staggering also simplifies the construction of the boundary conditions when fewer components are located on
boundaries. The compact implicit scheme is a good compromise between an unconditionally stable implicit
scheme that requires the inversion of large dense matrices and an explicit scheme that has a stability condition
imposed on the time-step. The scheme in one dimension is derived using a Taylor expansion (see also [26]):
uiþ1=2 � ui�1=2

h
¼ u0i þ

h2

24
Dhhðu0iÞ þOðh4Þ;
where Dhh ¼ ð�Þiþ1�2ð�Þiþð�Þi�1

h2 is a second-order accurate finite difference operator for approximation of second
derivative. A fourth-order compact implicit scheme for the approximation of the spatial derivatives is then
derived [26] as in Fig. 1:
ðDuÞiþ1 þ ðDuÞi�1

24
þ 11

12
ðDuÞi ¼

uiþ1
2
� ui�1

2

Dx
. ð2Þ
At the first and last nodes and half-nodes we use fourth-order accurate one-sided approximations based on the
operators:
D1
hh ¼

2ð�Þ1 � 5ð�Þ2 þ 4ð�Þ3 � ð�Þ4
h2

; Dp
hh ¼

2ð�Þp � 5ð�Þp�1 þ 4ð�Þp�2 � ð�Þp�3

h2
.

The total spatial portion of the scheme, in matrix form, is given in Fig. 1.
Fig. 1. Approximation of the spatial derivatives at the nodes/half-nodes.
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Here ‘‘*’’ denotes the direction of differentiation, p is the number of grid points in one direction and U is a
differentiated component of the Maxwell equations. Carpenter et al. [5,6] have shown in a similar case that the
scheme is stable in spite of the one-sided stencil near the boundary. This scheme uses the same 3-point stencil
as Yee scheme. The almost tridiagonal system is solved using an LU decomposition (Thomas’ algorithm) with
O(N) operations.

Yefet [29] gives a comparative analysis of the fourth-order compact implicit scheme and the second-order
central difference scheme used in the Yee algorithm. He found that the compact implicit scheme as well as the
Yee scheme (see also [22]) have pure imaginary eigenvalues so both schemes are non-dissipative but dispersive.
Kashdan and Galanti [19] discuss an effective parallelization strategy for the compact implicit scheme applied
to the spatial discretization of the three-dimensional time-dependent Maxwell equations based on an alternat-
ing domain decomposition.

2.2. Fourth-order approximation of the temporal derivative

For integration in time we replace the second-order leapfrog scheme by a fourth-order accurate Runge–
Kutta scheme (f is a spatial finite difference operator):
U ð1Þ ¼ Un þ Dt
4

f ½U ðnÞ�;

U ð2Þ ¼ Un þ Dt
3

f ½U ð1Þ�;

U ð3Þ ¼ Un þ Dt
2

f ½U ð2Þ�;

U ðnþ1Þ ¼ U n þ Dtf ½U ð3Þ�.

ð3Þ
This is a co-located, in time, second-order accurate scheme for general ODEs, but preserves fourth-order accu-
racy for linear equations [31].

We have the following comparison of the four-stage Runge–Kutta method (3) versus the leapfrog scheme
[25]:

(1) Time-step. Without staggering in time, (3) has a time-step (CFL condition) that is potentially 2.8 times
larger than leapfrog. Since the Yee algorithm is staggered in time, the Runge–Kutta scheme loses a
factor of two, but still has a time-step 1.4 larger. The Runge–Kutta scheme requires four times more
computations per time-step than leapfrog.

(2) Dissipation. The leapfrog method is not dissipative, while the four-stage Runge–Kutta scheme is dissipa-
tive. Dissipativity of the scheme causes a leak of energy from the system. However, this dissipation helps
to stabilize the numerical solution in simulations of high frequency wave propagation. The Runge–Kutta
scheme is in general more robust especially at discontinuities.

(3) Numerical dispersion. Both schemes are dispersive. The leapfrog scheme has a phase lead for time-steps
within the stability limit. The Runge–Kutta scheme has either phase lag or phase lead depending on the
choice of the time-step. For time-steps near the CFL limit there is a phase lag.

3. One-dimensional time-dependent problem

Our goal is to build a three-dimensional time-dependent code for simulations of electromagnetic phenom-
ena in various media. This requires the analysis of the order of convergence, stability and robustness of the
numerical scheme. This analysis is easier in one dimension though the applications are to three-dimensional
time-dependent wave propagation. Hence, we consider the system of the one-dimensional Maxwell equations:
e
oE
ot
¼ oH

ox
; l

oH
ot
¼ oE

ox
. ð4Þ
As the material interface model we consider a dielectric body (e2) surrounded by free space (e1 = l1 = 1) as
shown in Fig. 2.



Fig. 2. Two interface model.
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At each interface L1 and L2 we supplement (4) by the jump conditions:
Eþ ¼ E�; Hþ ¼ H�;

1
l

oE
ox

� �þ
¼ 1

l
oE
ox

� ��
; 1

e
oH
ox

� �þ ¼ 1
e

oH
ox

� ��
:

ð5Þ
The one-dimensional model shown in Fig. 2 can be considered as a part of the periodically structured dielectric
media. An example of such media is photonic crystals (see, for example, [17]). These artificial materials are
used in devices ranging from dielectric mirrors and reflective coatings to DFB lasers.

4. Regularization of discontinuous functions

The idea of regularization is the replacement of the discontinuous function by a continuous approximation.
We develop our algorithm based on this approach. A straightforward calculation shows that a central differ-
ence scheme preserves a zero divergence of ~E or ~B Gauss’ Law even when the coefficients vary spatially. An
important question is what function to regularize: e or 1

e, l or 1
l. Regularization is based on averaging of the

piecewise-continuous function at the discontinuity. However, algebraic, geometric and harmonic averages
yield different values which affect the accuracy of the numerical solution. Another aspect of the regularization
is connected to the angle of incidence of the electromagnetic wave to the interface. Andersson [1] shows, using
the integral formulation of Ampere’s Law, that in order to preserve the second-order accuracy of the Yee
scheme the tangential, to the interface, components should be approximated using arithmetic averaging.
On the other hand, for the normal components the harmonic averaging should be used.

The electric and magnetic field vectors are mutually perpendicular. So one should use different types of
averaging when both e and l are discontinuous at the interface. We divide regularization techniques into local
and global methods. We also pay attention as to whether the regularization should be monotonic.

We denote the errors by Q since E represents the electric field. The numerical implementation of regulari-
zation introduces two types of errors: Q1 is the error caused by replacement of the discontinuous problem by
the regularized problem (‘‘regularization error’’) and Q2 the error from the numerical discretization of the reg-
ularized problem (‘‘numerical error’’). The total error is Q1 + Q2. Clearly, Q1 becomes smaller when the length
of the regularization region decreases (d! 0). However, d! 0 increases the error Q2. The behavior of both
regularization and numerical errors as a function of the grid resolution was studied by Kashdan in [18]. A
numerical and asymptotic study of high-order accurate methods for the solution of the frequency space
Maxwell equations and Helmholtz equation with discontinuous coefficients is given by Kashdan in [18] and
Kashdan and Turkel in [20].

4.1. Local regularization

4.1.1. Simple averaging

Consider simple averaging of the dielectric permittivity e at the discontinuity as a particular case of local
regularization. We choose several types of averaging:
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� arithmetic averaging: e(L1) = e(L2) = 0.5(e1 + e2);
� harmonic averaging: eðL1Þ ¼ eðL2Þ ¼ 2e1e2

ðe1þe2Þ
.

4.1.2. Hermite cubic spline
We choose e as either e1 or e2 far away from the discontinuities (see Fig. 2). We choose d > 0 and connect e1

and e2 with a smooth function for |x � x0| < d. We also connect e smoothly to the constant states at
x � x0 = ±d. As an example of a connecting function we construct the Hermite cubic spline. Any cubic spline
can be written as
eðxÞ ¼ c1 þ c2ðx� xkÞ þ c3ðx� xkÞ2 þ c4ðx� xkÞ3. ð6Þ
We then define in the interval xk�1/2 6 x 6 xk+1/2 the following parameters:
c1 ¼fkþ1=2;

c2 ¼f 0kþ1=2;

c3 ¼
3Sk � f 0kþ1=2 � 2f 0k�1=2

Dx
;

c4 ¼�
2Sk � f 0kþ1=2 � f 0k�1=2

ðDxÞ2
and
Sk ¼
fkþ1=2 � fk�1=2

Dx
;

where f is equal to e at the half-nodes. These conditions are derived in [15], where it is shown that the most
accurate approximation can be achieved if the derivative f 0 is approximated using a high-order accurate
implicit finite difference scheme.

We try improving the quality and accuracy of the approximation by enforcing monotonicity to remove
non-physical oscillations. The following criteria, [15], allows the addition of a monotonicity restraint to the
approximation
f 0k ¼
min½maxð0; f 0kÞ; 3 minðSk�1; SkÞ�; minðSk�1; SkÞ > 0;

max½minð0; f 0kÞ; 3 maxðSk�1; SkÞ�; maxðSk�1; SkÞ < 0;

0; Sk�1 � Sk 6 0:

8><
>: ð7Þ
4.1.3. High-order polynomial

As an alternative to a cubic spline one can consider a high-order polynomial smoothly connecting the
known el and er at a distance d from the interfaces. Let z ¼ x�x0

d be the normalized distance from the interface
x0. We define the polynomial
eðxÞ ¼ el þ er

2
þ el � er

2

315

128
z 1� 4z2

3
þ 6z4

5
� 4z6

7
þ z8

9

� �
; ð8Þ
where f(x) and its first four derivatives are continuous at x0 � d and x0 + d. Moreover, this function is mono-
tone since f 0 ¼ 315

128
ð1� z2Þ4 P 0 for �1 6 z 6 1.

4.1.4. Vanishing of moments

Tornberg and Engquist [24], for the Poisson equation, and Andersson and Engquist [2], for the Maxwell
equations, have presented a local regularization technique based on polynomial connecting functions that
satisfy one or more vanishing moment conditions:
Mn ¼
Z d

�d
½e� eðxÞ�xn dx ¼ 0; n P 0. ð9Þ
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In the numerical experiments in [2] the authors used linear, third-order and fifth-order polynomials satisfying
the vanishing of up to four moments (9).

4.2. Global regularization

For global regularization (e approximated throughout the physical domain) by an implicit fourth-order
accurate (Padé) interpolation. Based on a Taylor expansion we have:
fiþ1=2 þ fi�1=2

2
¼ fi þ

h2

8
f 00i þOðh4Þ;

fiþ1 þ fi�1

2
¼ fi þ

h2

2
f 00i þOðh4Þ.
Eliminating the error term we obtain
fiþ1 þ fi�1

8
þ 3

4
fi ¼

fiþ1=2 þ fi�1=2

2
þOðh4Þ. ð10Þ
In the first and the last rows (away from the interface) a one-sided third-order accurate approximation is used
according to:
�5f 2 þ 4f 3 � f4

8
þ 5

4
f1 ¼

f1=2 þ f3=2

2
;

�fp�4 þ 4f p�3 � 5f p�2

8
þ 5

4
fp ¼

fp�3=2 þ fp�1=2

2
.

ð11Þ
We choose f = e. The algorithm uses a tridiagonal solver to find the new values of e. Hence, the updated e at
a single node depends on the original e at all the grid points. This does not necessarily preserve
monotonicity.
5. Experimental results

5.1. Model problem I

For most physical systems l is fairly constant across an interface. However, for l constant and variable e
there is, in general, no explicit solution to be used for calculating errors. Hence, for mathematical reasons, we
consider the case l = e. The explicit solution of the Maxwell system (4) is then given by:
Eðx; tÞ ¼ A � f t þ
Z x

0

eðsÞds
� �

þ B � g t �
Z x

0

eðsÞds
� �

;

Hðx; tÞ ¼ A � f t þ
Z x

0

eðsÞds
� �

� B � g t þ
Z x

0

eðsÞds
� �

;

ð12Þ
where e can be approximated by the analytic function:
eðxÞ � eðx; gÞ ¼ e1 þ ðe2 � e1Þ
tanh½gðx� L1Þ� � tanh½gðx� L2Þ�

tanhðgL1Þ þ tanhðgL2Þ
; �1 < x <1.
In Fig. 3 we present e as function of x for various g.
Numerical experiments [18] show that for g P 100 further increasing g changes the solution on the level of

the machine error. In the numerical experiments we set g = 200 for calculating the exact solution. We choose
L = 4p, L1 = 0.375L , L2 = 0.625L. We study the connection between the accuracy of the numerical scheme
and the size of the jump in e on the interface. We choose e2 = 3, 7, 11 and compare the errors in the numerical
solution on grids with 129, 257 and 513 nodes. We choose the explicit solution as:
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Fig. 3. Approximation of relative permittivity by continuous function for model problem.
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E ¼ sin t þ
Z x

0

eðsÞds
� �

� sin t �
Z x

0

eðsÞds
� �

¼ 2 cosðtÞ sin

Z x

0

eðsÞds
� �

;

H ¼ sin t þ
Z x

0

eðsÞds
� �

þ sin t �
Z x

0

eðsÞds
� �

¼ 2 sinðtÞ cos

Z x

0

eðsÞds
� �

.

ð13Þ
The initial conditions are given by (13) with t = 0. This solves Maxwell’s equations (4) together with the jump
conditions (5). We solve numerically the dimensionless equations (c = 1) and E and H are normalized to have
the same magnitude. In the following plots we show the L2 error of the approximation of E as function of
time. The error in H behaves similarly. We locate the interface at a node so only the electric field component
is located on interface. The ‘‘regularization’’ error Q1 between the continuous solution based on variable e and
piecewise continuous e (denoted as elim) is given by
Q1 ¼ 2 cosðtÞ sin

Z x

0

eðsÞds
� �

� sin

Z x

0

elimðsÞds
� �� 	









 6 4 sin

Z x

0

eðsÞ � elimðsÞ
2

ds
� 	









. ð14Þ
We have verified that for constant e the scheme discussed in Section 2 is fourth-order accurate. However, we
expect a reduction of accuracy driven by the regularization of the piecewise continuous permittivity.

5.1.1. Averaging
We compare the arithmetic and harmonic averaging of e on the interface for both the Yee and the fourth-

order algorithm.
In all the figures in this section we display the error between the numerical solution and the solution of the

original continuous problem with piecewise constant coefficients, i.e., the total error.
One observes from Figs. 4 and 5 that arithmetic averaging reduces the order of accuracy to second for

fourth-order scheme and to 1.5 for Yee scheme. The harmonic averaging is only first order accurate, both
independent of the size of the jump. As expected, the L2 error of Yee scheme is larger than the error of the
fourth-order scheme for the same grid resolution. Hence, even when a discontinuity occurs it is more efficient
to use the fourth-order implicit scheme rather than Yee scheme.

5.1.2. Spline

A study of the local regularization in [18] shows that the physical length of the d-interval can be chosen the
same for all the grids. In all the numerical tests in this work we choose d = p/32. This allows the use of at least
four points from the discontinuity for the spline construction. We compare the regularization with and with-
out the monotonicity restraint on the spline as given by (7).

The plots in Fig. 6 show that local regularization with splines is second-order accurate and confirms the
results from the frequency domain given in [18,20]. The monotonicity restraint does not improve the error
behavior and order of accuracy.
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5.1.3. High-order polynomial
We choose two kinds of d-interval: fixed physical length for all grids d = p/32 and four mesh points but

variable physical length. At the edges of the regularization region, the high-order polynomial is smoother than
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the cubic Hermitian spline. However, in the interior of the regularization region the spline is closer to the
original piecewise continuous function.

One observes from Fig. 7 that the regularization of the discontinuous function with a high-order polyno-
mial is only second-order accurate for the variable physical length of the d-interval and the method does not
converge to the analytic solution when the physical length of the d-interval is fixed (more points are used for
construction of the polynomial on grids with increasing resolution). We conclude that a high-order monotonic
polynomial yields results similar to that for the cubic spline for variable physical length of d-region. Hence,
monotonicity is not important. Furthermore, the requirement of four continuous derivatives on the bound-
aries of the d-interval seems to be unnecessary.

The numerical experiments in [2], using a fourth-order accurate scheme with a local regularization based on
the vanishing moments condition (9), lead the authors to similar accuracy observations. The order of accuracy
is reduced, with subsequent mesh refinement, to 1.5–2 even when preserving high-order moments. In [20] it is
conjectured that the reason for the lower-order accuracy for very fine meshes is that the optimal regularization
occurs within one mesh width and so is not represented by a standard finite difference technique.

5.1.4. Global regularization

We next apply an implicit fourth-order accurate (Padé) interpolation as given by (10) + (11) to regularize e
and 1/e. The CFL condition for the largest discontinuity is set equal to 0.5 because of stability considerations.
The plots in Fig. 8 show that the global regularization of e allows an average order of accuracy of 2.8, while
the regularization of 1/e is only second-order accurate. For the largest jumps the regularization of 1/e yields an
unstable solution.

Finally, we apply Padé interpolation with the second-order accurate Yee scheme. Comparing simple aver-
aging (Fig. 4) with global regularization for Yee’s scheme (Fig. 9) one observes that global regularization of e
yields an improvement in accuracy especially for large jumps. Global regularization based on 1/e, with the Yee
scheme, does not converge to the analytic solution. Comparing Fig. 9 to Fig. 8 we see that the compact impli-
cit scheme is always much more accurate than the Yee scheme. The oscillating behavior of the error in time for
the Yee scheme (Figs. 4 and 9) is caused by numerical dispersion. On the other hand the fourth-order scheme
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Fig. 8. Global regularization of e and 1/e using Padé interpolation.
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Fig. 7. Regularization of dielectric permittivity on interface by high-order polynomial with fixed (f) and variable (v) length of d-interval.
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has much better dispersive characteristics and a smaller truncation error [29]. From formula (14) we see that
the regularization error is time dependent. Therefore, the balance error between the regularization error and
the discretization error varies in time for a given grid.
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5.1.5. Estimation of the regularization error

As shown in [18,20], the regularization error Q1 (see Section 4), caused by the replacement of the problem
with a piecewise continuous coefficient by a smooth function, may reduce the order of accuracy. For fine grids
the regularization error is a large percentage of the total error. In order to estimate the regularization error we
substitute the regularized e into the first of Eq. (13) and approximate the indefinite integral using a Newton–
Bessel interpolation with order of accuracy O(Dx7), which is more than sufficient for our needs. This is then
compared with the explicit solution for the piecewise continuous e (see also (14)).

Table 2 shows the Q1 error for global regularization of e, i.e., the error between the analytic solution of the
continuous problem with discontinuous coefficients and the analytic solution of the continuous regularized
problem, see (14). We also list the order of convergence and the ratio (percent) of the regularization error
to the total error. We define rate as the relation between errors on two consecutive grids and display the order
of convergence as log2(rate).

Table 2 shows that the role played by the regularization error increases with the mesh refinement. For very
dense grids, when the total error is dominated by the regularization error, the order of convergence of global
Table 2
Regularization (Q1) error for various e2

e2 Number of nodes Dx kQ1kL2
Rate Order of convergence Percent in total error

3 129 0.098 1.6094 · 10�4 30.3
257 0.049 2.8777 · 10�5 5.5927 2.4835 37.4
513 0.025 5.1017 · 10�6 5.6406 2.4958 48.8

7 129 0.098 9.9137 · 10�4 13.9
257 0.049 1.8864 · 10�4 5.2554 2.3938 19.6
513 0.025 3.3989 · 10�5 5.5500 2.4749 24.9

11 129 0.098 2.2362 · 10�3 6.7
257 0.049 4.7243 · 10�4 4.7333 2.2428 12.1
513 0.025 8.7584 · 10�5 5.3941 2.4314 16.6
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regularization is limited by 2.5. When the jump in e increases at the material interface, the total error increases
and the numerical error Q2 is the main factor in the total error.

5.2. Model problem II

We consider the more realistic case, where l is constant and only e is discontinuous. Consider l1 = l2 = 1
and e2 equal to 2, 5 and 10. Choose, in Fig. 2, L = 12, L1 = 0.375L, L2 = 0.625L. We solve the one-dimen-
sional Maxwell equations with an initial field of the form:
Table
Total e

e2

2

5

10

Table
Total e

e2

2

5

10
Eðx; 0Þ ¼
0; 0 < x < x1;

f ðxÞ; x1 6 x 6 x2;

0; x > x2;

8><
>:

Hðx; 0Þ ¼ 0.
The signal is f(x) := A Æ [sin(x � x1) Æ sin(x � x2)]4, x1 6 x 6 x2, and zero otherwise. This is a smooth function
with compact support. We no longer have an explicit solution with discontinuous e and these initial/boundary
conditions.

The physical domain [0,L] is surrounded by a perfect electric conductor (PEC), E(0) = E(L) = 0. Since we
no longer have an explicit solution we base the error on the numerical solution for a very fine grid. Based on
model problem I we expect convergence and so this is reasonable. We compare the numerical solution on grids
with 129, 257 and 513 nodes inside the physical domain with the ‘‘reference’’ solution, to the original piecewise
constant coefficient problem, constructed on a very fine grid with 2049 nodes. We compare the solutions at the
analytically computed time when the right moving wave reaches the end of the physical domain (t = 9).

For the global regularization we approximate e using the scheme (10) + (11). The CFL condition is chosen
0.5 for largest jump in e. For local regularization we use a Hermite cubic spline (6) as the connecting function
without the monotonicity restraint (7). All regularizations are for e and not 1

e.
3
rror using global regularization for various e2

Number of nodes Dx kErrorkL2
Rate Order of accuracy

129 0.094 2.7 · 10�3

257 0.047 2.4674 · 10�4 11.0106 3.4608
513 0.023 3.4487 · 10�5 7.1547 2.8389

129 0.094 5.8 · 10�3

257 0.047 6.3582 · 10�4 9.0530 3.1784
513 0.023 1.1239 · 10�4 5.6574 2.5001

129 0.094 9.4 · 10�3

257 0.047 9.0180 · 10�4 10.3760 3.3752
513 0.023 1.8947 · 10�4 4.7596 2.2508

4
rror using local regularization for various e2

Number of nodes Dx kErrorkL2
Rate Order of accuracy

129 0.094 3.0 · 10�3

257 0.047 3.3194 · 10�4 9.0704 3.1812
513 0.023 6.2276 · 10�5 5.3301 2.4142

129 0.094 6.8 · 10�3

257 0.047 1.0 · 10�3 6.7146 2.7473
513 0.023 2.1249 · 10�4 4.7563 2.2499

129 0.094 1.2 · 10�3

257 0.047 2.0 · 10�3 6.1268 2.6151
513 0.023 4.0399 · 10�4 4.8496 2.2779
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From Table 3 we see that the numerical scheme has an order of accuracy higher than three for the coarse
grids. However, it is reduced to second order for the finest mesh of 513 nodes. Comparing Tables 3 and 4 we
observe that global regularization yields the smaller error.

6. 3D computations

6.1. Formulation of the 3D problem

Any coordinate system that is not aligned with the bodies has the disadvantage that the body cannot be
represented exactly. A general body in a Cartesian coordinate system gives rise to stair-casing and its resultant
errors (see, for instance, [4,14]). In this paper we only consider bodies aligned with the coordinate system and
so staircasing does not occur. Consider a PEC sphere surrounded by two different homogeneous media
separated with an interface in the radial direction. Each medium has its own dielectric permittivity e (the
outermost medium is free space). This problem shown in Fig. 10 has no explicit solution.

The Maxwell equations in spherical coordinates (r,h,u) are given by:
e
oEr

ot
¼ 1

r sin h
o

oh
ðsin hHuÞ �

oH h

ou

� 	
;

e
oEh

ot
¼ 1

r sin h
oH r

ou
� 1

r
o

or
ðrHuÞ;

e
oEu

ot
¼ 1

r
o

or
ðrH hÞ �

oH r

oh

� 	
;

l
oH r

ot
¼ � 1

r sin h
o

oh
ðsin hEuÞ �

oEh

ou

� 	
;

l
oH h

ot
¼ � 1

r sin h
oEr

ou
þ 1

r
o

or
ðrEuÞ;

l
oHu

ot
¼ � 1

r
o

or
ðrEhÞ �

oEr

oh

� 	
.

ð15Þ
In addition to the time dependent equations we have Gauss’ law. In the absence of sources both the divergence
of ~E and ~H are zero:
div~E ¼ 1

r
o

or
ðr2ErÞ þ

1

r sin h
o

oh
ðsin hEhÞ þ

1

r sin h
oEu

ou
¼ 0;

div~H ¼ 1

r
o

or
ðr2H rÞ þ

1

r sin h
o

oh
ðsin hH hÞ þ

1

r sin h
oHu

ou
¼ 0.

ð16Þ
Fig. 10. Propagation of electromagnetic pulse in inhomogeneous media.
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In order to obtain the high-order accurate solution of this problem one should overcome a number of diffi-
culties [18]:

(1) Discontinuity in the dielectric permittivity e. The presence of the interface implies that the Maxwell equa-
tions have discontinuous coefficients. The modelled problem can be considered ‘‘quasi-one-dimensional’’
– the discontinuity appears in one direction only. However, our goal is to handle it with the minimal lost
of accuracy.

(2) Formulation of artificial boundary conditions to emulate an unbounded domain in the radial direction.
(3) Singularities at the poles. Eqs. (15) and (16) become singular when h = 0, p.
(4) The grid in spherical coordinates is non-uniform and becomes very dense near the poles. The time-step

allowed by stability is proportional to sinh which is very small near the poles.

6.2. Numerical scheme

We implement the fourth-order accurate scheme discussed in Section 2. We define the staggered location of
the components on the grid and follow this convention in the code. We choose the following location of the
components:
Er ! fiþ 1=2; j; k; tg;
Eh ! fi; jþ 1=2; k; tg;
Eu ! fi; j; k þ 1=2; tg;
H r ! fi; jþ 1=2; k þ 1=2; t þ Dt=2g;
H h ! fiþ 1=2; j; k þ 1=2; t þ Dt=2g;
Hu ! fiþ 1=2; jþ 1=2; k; t þ Dt=2g.

ð17Þ
6.3. Regularization

Since the discontinuity is only in the r direction we can use a one-dimensional global regularization based
on (10) + (11). However, due to the staggering of the spatial stencil (see also (17)) the regularization of e that
appears with each component of electric field should be treated separately. We define er as the permittivity
sharing the same grid with Er, eh is associated with Eh and eu with Eu.

The most difficult case to be resolved is when the component is located at the interface, where the associated
dielectric permittivity is not defined. This problem is modelled in Section 4. If we put the interface at the node
(iDr), then according to (17), such a situation happens with eh and eu. So, both of them are approximated using
the global regularization, when the values of e that appear in RHS of (10) are defined at half-nodes through
the entire computational domain.

6.4. Construction of artificial boundary conditions in spherical coordinates

To prevent reflections from the outer artificial boundary in the radial direction we implement a perfectly
matched layer (PML). We consider the generalization of the uniaxial PML, derived by Gedney in [8], to
spherical coordinates. We convert the Maxwell equations to Fourier space as Teixeira and Chew [23] have
suggested:
ixe
~r
r

� �2

Er ¼
1

r sin h
o

oh
sin h

~r
r

Hu

� �� 	
� o

ou
~r
r

H h

� �� �
;

ixesr
~r
r

Eh ¼
1

r sin h
o

ou
srH rð Þ � 1

r
o

or
r

~r
r

Hu

� �� 	
;

ixesr
~r
r

Eu ¼
1

r
o

or
r

~r
r

H h

� �� 	
� o

oh
srH rð Þ

� �
;

ð18Þ
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where
sr ¼ 1þ r
ix
; r� ¼ 1

r

Z r

rdr;
~r
r
¼ 1þ r�

ix
. ð19Þ
The two artificial conductivities r and r* are equal to zero inside the physical domain. In the PML region r
and r* increase towards the external boundary for instance, as a polynomial. Different profiles have been
promoted (see, for instance [9]) for scaling r. However, the polynomial profile
rðxÞ ¼ rmax

x
LPML

� �p
has proved its effectiveness and it is implemented in many codes. There are three parameters that have to be
provided for the polynomial scaling: LPML = NDx – the thickness of the PML, rmax and p. For larger p, r
grows more rapidly towards the outer boundaries of the PML. In this region the field amplitudes of the waves
have sufficiently decayed and so reflections due to the discretization error contribute less. However, if p is too
large, the decay of the field emulates a discontinuity and amplifies the wave reflected by the PEC boundary
towards the physical domain. We choose p = 4, see also [9]. Artificial conductivity r* is computed exactly
using (19). We introduce new variables:
E�r ¼ srEr; P r ¼
~r
r

Er; E�h ¼
~r
r

Eh; E�u ¼
~r
r

Eu
and similarly for ~H . Substituting this into (18) we have:
ðixeþ r�ÞP r ¼
1

r sin h
o

oh
sin hH �u
� �

� o

ou
ðH �hÞ

� 	
;

ðixþ r�ÞE�r ¼ ðixþ rÞP r;

ðixeþ rÞE�h ¼
1

r sin h
o

ou
H �r �

1

r
o

or
ðrH �uÞ;

ðixeþ rÞE�u ¼
1

r
o

or
ðrH �hÞ �

o

oh
ðH �r Þ

� 	
ð20Þ
and similarly for ~H . We replace~E by~E� and add two variables Pr and Qr. This is converted to the time-domain
using ix! o

ot. This yields:
e
oP r
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1

r sin h
o

oh
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ð21Þ
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Inside the physical domain, where r = r* ” 0, system (21) is equivalent to (15) (~E� 	 ~E and ~H � 	 ~H ). Hence,
we need only 8 variables inside the PML instead of the 12 that were suggested in [23] or 10 that were suggested
in [27]. Gedney in [9] derives a spherical uniaxial medium that leads to similar equations to that presented here
(there are misprints in the formula in the book).
6.5. Singularity at the poles

Eqs. (15) and (16) become singular when h is equal to 0 or p. However, this is only a coordinate singularity.
In particular we assume that all components of the electric and magnetic fields have at least one continuous
derivative at all points including h = 0 and h = p. Because of the geometry, the solution is independent of u at
the poles and so all derivatives with respect to u are zero at the poles. This was first analyzed by Holland [13],
where he used an integral form of Maxwell equations at the poles to avoid the singularity. We shall use a
different approach [21]. The solution can be bounded at the poles both analytically and numerically only if
the coefficient 1

r sin h is equal to zero. In such a case L’hôpital’s rule can be applied. This yields from (15) (when
h = 0, p):
Eu ¼ Hu ¼ 0;

o

or
ðrH hÞ �

oH r

oh
¼ 0;

o

or
ðrEhÞ �

oEr

oh
¼ 0.
Using (16), we get at the poles:
Eh ¼ Eu ¼ H h ¼ Hu ¼ 0;

oEr

oh
¼ oHr

oh
¼ 0.
Thus, the system (15), when h = 0, p, can be written as:
e oEr
ot ¼ 1

r
oH/

oh ; l oHr
ot ¼ � 1

r
oE/

oh ;

Eh ¼ 0; H h ¼ 0;

E/ ¼ 0; H/ ¼ 0:

ð22Þ
Distributing the grid nodes according to (17) we need to resolve only the Er component at the poles. We define
Hu as an odd function at h = 0, p.
6.6. Fourier filtering

The grid in spherical coordinates is non-uniform and becomes very dense near the pole. The time-step
allowed by stability is proportional to sinh. To increase the time-step, which can be very small (see for example
[10]), we introduce Fourier filtering in the h direction near the poles (see also [18]) according to the algorithm
presented in Fig. 11, where the exponential filter has the form e�2hð~rþ~uÞ. The 2D FFT is applied in the r and u
directions for fixed h. Implementation of the algorithm, shown in Fig. 11, requires the determination of several
parameters:

� Nf – the frequency of application (in number of iterations).
� Nl – the percentage of h-layers affected by the filter.
� Ne/Nk – the percentage of frequencies completely eliminated/kept in each layer.

The number of frequencies removed in the h direction depends on the distance from the pole. Near the pole
only a small fraction of the total frequencies are kept, while away from the pole all the allowable discrete modes
are kept. This effectively reduces the high frequencies in circular layers near the pole and allows a significant



Fig. 11. Algorithm of the Fourier filtering.

18 E. Kashdan, E. Turkel / Journal of Computational Physics xxx (2006) xxx–xxx

ARTICLE IN PRESS
increase in the time-step. We have chosen the following set of parameters: Nf = 10, Nl = 25 (near each pole), Ne

decreases from 50% to 0% away from the pole and Nk increases from 34% to 100% away from the pole. This
allowed us to increase the time-step by at least a factor of two.
6.7. Graphical representation of results

To check the algorithm described in the previous sections, we consider the following 3D test example. A
PEC sphere of radius r = 1 is surrounded by two media separated by an interface located 0.5 from the sphere
surface. The uniaxial PML is implemented to absorb waves leaving the physical domain. The number of layers
is set equal to 12 and the artificial conductivity r increases as a third degree polynomial. The piecewise con-
tinuous dielectric permittivity is regularized using the global regularization approach ((10) + (11)). The media
closest to the sphere has a relative dielectric permittivity er = 2 and it is externally bounded by free space
(er = 1). The point source, in the form of the Gaussian pulse, is located in free space at a distance 0.75 from
the surface of the PEC sphere. To make the results ‘‘understandable’’ we convert the solution to Cartesian
coordinates and visualize the solution using Data Explorer. The picture in Fig. 12 shows the Ex component
at time T = 2.8 (when the waves reach the internal sphere). The unit PEC unit sphere of radius r = 1 is
centered at r = 0 and the source is located at (�1.66, 0, �0.54).

The transparent sphere in Fig. 12 is a sphere filled with PEC. The ‘‘red’’ discus includes the interface and the
areas adjacent to it consisting of free space and the dielectric. In this figure one can distinguish between dif-
ferent parts of the solution. For example, Ex inside the transparent (PEC) sphere in the center of the domain
and also the red colored oscillations in Ex in the vicinity of the interface.

In Fig. 13 we show a slice of the E/ component in the h direction (taken at the source). This shows that
some of the waves are reflected by the interface. The physical explanation of this phenomena that refraction
causes the waves to change direction and to move from the selected slice, needs do be combined with the
numerical problem of under-resolution since the Gaussian pulse includes a full spectrum of wavelengths.
When the waves travel through a medium with a smaller speed of light then some of the waves can be only
be represented on a finer grid.
Fig. 12. Converted to Cartesian coordinates. Ex component of the total electric field over entire physical domain.



Fig. 13. The slice of Eu component in h-direction, taken at source point.
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7. Concluding remarks

We have performed detailed computations for the time-dependent Maxwell system in one dimension with a
discontinuity in some of the coefficients across the interfaces between the media. We use a compact implicit
fourth-order accurate method on a staggered grid to solve the equations.

We show that regularization can be considered a reasonable approach to the solution of the Maxwell equa-
tions with discontinuous coefficients. The global regularization based on an implicit (Padé) interpolation yields
almost third-order accuracy, which is one order less than the basic accuracy of the scheme. A drawback of the
global regularization is the reduction of the CFL constant for large jumps in the discontinuities. Local
regularization does not require a reduction of the time-step, however, it reduces the global accuracy of the
algorithm to second-order. An application of the regularization techniques and the high-order accurate finite
difference algorithm is a very effective tool for the modelling photonic band gaps (PBG) (see, for instance, [17])
and other phenomena rising from electromagnetic wave propagation through periodic dielectric structures.

For problems in a spherical coordinate system we regularize e in the r direction. We Fourier transform the
variables and then remove the higher frequencies near the poles. This allows the use of a larger time-step. A
PML in the far field is used to reduce reflections back into the domain. We use L’hôpital’s rule to derive
boundary conditions at the poles.

Future work will extend this to the scattering of electromagnetic waves by multi-dimensional dielectric
bodies that are not aligned with the mesh.
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