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LOCAL PRECONDITIONERS FOR STEADY AND UNSTEADY FLOW APPLICATIONS

ELI TURKEL! AND VEERN. VATSAZ

Abstract. Preconditioners for hyperbolic systems are numerical artifacts to accelerate the convergence to a steady state.
In addition, the preconditioner should also be included in the artificial viscosity or upwinding terms to improve the accu-
racy of the steady state solution. For time dependent problems we use a dual time stepping approach. The preconditioner
affects the convergence rate and the accuracy of the subiterations within each physical time step. We consider two types
of local preconditioners: Jacobi and low speed preconditioning. We can express the algorithm in several sets of variables
while using only the conservation variables for the flux terms.
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INTRODUCTION

Preconditioning methods for low speed, steady flows have been available for almost 20 years [15]. Because such precondi-
tioners are designed to modify the path to a steady state, they were originally not appropriate for time dependent calculations. It
was later found that, within the context of dual time steps, one can apply these techniques for unsteady flows while maintaining
temporal accuracy [7,13,28,31]. Preconditioning was originally used to improve the convergence to a steady state for low speed
flows. In this case the ratio of the largest to the smallest eigenvalue is very large and preconditioning can reduce this disparity.
Subsequently, it was shown [18] that an appropriate preconditioning can also improve the accuracy of the steady state for low
speed flows. In particular, it was proven [18] that a necessary condition for the convergence, as a reference Mach number goes
to zero, of a discretization of the compressible equations to that of the incompressible equations is a condition on the scaling
of the artificial viscosity and upwinding terms. This can be accomplished by multiplying the pressure gradients in the artificial
dissipation by a term proportional fd2. Most classical finite difference/volume/element methods do not satisfy this condition
and, hence, behave poorly for low Mach flows. Including a preconditioning in the artificial viscosity changes the upwinding
to satisfy this condition. Numerous computations verify that the preconditioning not only improves the convergence rate to a
steady state for low speed flows but also dramatically improves the accuracy of the resultant steady state [15, 21, 29]. We shall
investigate which of these properties are also true for dual time-stepping schemes. We shall refer to this preconditioner as the
low speed preconditioner.

Consider the hyperbolic system of the unsteady Euler equations appended with pseudo-time derivativdenatet the
physical time, whiler denotes the pseudo-time used to drive each physical time step to a pseudo-steady state. In quasilinear
form we have

ow ow ow a_w

ow
E+£E+A%+Ba_y+cﬁz_0 (1)

wherew refers to a vector of dependent variables. The flux Jacobian matlicBsC are symmetric (or simultaneously
symmetrizable). We are interestedrin— co. For physically steady state problegs: 0, while for time dependent problems
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£=1. We discretize the physical time derivative with a backward difference formula (BDF)

ow cew" Tt — B(w™, w1t L)

ot At @

wherec, is a constant that depends on the order of the temporal scheme. We precondition the system by replacing (1) by

ow ow ow ow ow
Pl — ¢~ +A—+B— — = 3
ar TS TG T8, T, 70 3)
The equations are advanced in pseudo-time by a multistage Runge-Kutta (RK) scheme. Let supeatsoope the last
artificial time andk be the most recent stage of RK. ebe the last physical time step calculated and 1 the next physical
time step.R* denotes the spatial derivative terms of the residual at the last #tafjeypical stage of the RK scheme takes the
form
n+1 _ E(w™. ...
wk-‘rl :wo_akATP(Rk+ CtWw At (w ) ))
whereqy, are the coefficients of the RK scheme. We use a simplified RK scheme where each stage depends on the original
w? and the residual at the previous stage. The order of accuracy in physical time is only determined by the BDF scheme. In
practice, only the inviscid portion a&* is updated at each stage. The viscous portion is updated, for a five stage scheme, only
on the odd stages. The difficulty is that*! is not known. So we replace + 1 by k + 1 (i.e., current stage of RK). We
reformulate this as

crwk — B(w™,...) (w’H'1 —wk

At At ) @
The term%{wk was first suggested by Melson and Sanetrik [10] to make the scheme implicit in the Runge-Kutta algorithm.

whtl = w0 — ozkATP(Rk + ) — apctATP

(R)* = R* + crw® —ft(w”, ) 5)
denotes the total pseudo-residual that we drive to zero within each physical time step. Thus, within each subiteration we
march the pseudo-timeto infinity until R* is zero. We call this solution at the end of a physical time step the pseudo-steady
state. In practice, we take only a finite number of subiterations within each physical time step so that the pseudo-residual is
sufficiently small. In the present study we choose a fixed number of subiterations. However, the goal is to automate the number
of subiterations required for achieving consistently small global errors. We then rewrite (4) as

Wkl _ ok

whtt = w® — ap ATP(R*)F — akctATP(T)
The last term in this equation is included to increase the the point implicitness of the scheme. This term vanishes in the steady
state. Collecting terms, we have

AT

A
A Pttt = u” - ap ATP(RY + akctszwk (6)

(I + ager

The spatial discretization is a central difference formula plus a matrix valued artificial dissipation using second and fourth

differences [5, 14, 17]. We describe the second difference formulation for the artificial viscosity. The fourth differences are
treated similarly. We express the dissipation in terms of derivatives rather than differences for presentation only. Consider

ow + or + oG + ol _ artificial viscosity terms
ot T or "oy Tz y

As an example, on the numerical level, the residual intllégection would be

oF 0 -1 ow
€5 IS a scaling factor in the artificial viscosity is the Jacobian of" with respect tav. The absolute value of a matrix is found
by diagonalizing the matrix and taking absolute values of the eigenvalues (with cutoffs).
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We Fourier transform (3) in space and replageby (2). Define( = % and

G(wl,WQ,W3) =P [—CI + i(Aw1 + BWQ + de)} (8)

with w} + w3 + w? =1. The condition number is defined as

cond# = max

Wi

9)

Amin(G)

where\ denotes an eigenvalue of the matrix. Note that the eigenvalugsief, + Bws + Cws) are pure imaginary since

the matrices are symmetric. Physically, the condition number (§vit0) can be interpreted as the ratio of the fastest speed

to the slowest speed in any direction. If viscous terms are included, then we have additional negative real matrices in (8). We
stress that ifAt is sufficiently small, then the condition number is close to 1. The methods proposed here will not improve the
condition number of such problems and, hence, will not improve the convergence rate to a pseudo-steady state. For the Euler
equations, the condition number is approximately inversely proportional to the Mach number. Hence, for low speed steady
flows, the preconditioner is expected to be very effective for convergence acceleration.

With a local preconditioner we change the discrete equations at individual grid nodes without introducing new coupling
between neighboring nodes. Hence, this technique makes sense only for a system of equations. For a scalar equation, local
preconditioning is simply a rescaling of the time variable and has no effect on the numerical solution. This approach is distinct
from incomplete LU (ILU) decomposition based preconditioning techniques which couple all the nodes together and, therefore,
require more expensive inversion techniques. We choose the Pasiixas to improve the condition number of the equations
at the node point. The assumption is that the better the system is conditioned, the faster the iteration process will approach a
steady state. For well-posedness the marishould be symmetric positive definite.

For time dependent problems where the physical time scale is sufficiently small, ansllacge, preconditioning can harm
the convergence rate. For such problems the preconditioning in the update stage should be turned off and should only affect the
artificial viscosity or the upwinding [11,24]. In this study we consider two different local preconditioners, Jacobi and low speed,
to alleviate stiffness associated with disparate characteristic speeds and from a poor condition number. We then formulate a
composite preconditioner that combines the complementary properties of the Jacobi and low speed preconditioners to achieve
an efficient scheme for solving flows with embedded low speed flows.

1. CHOICE OFVARIABLES

We consider the following sets of variables defined by

we = (p, pu, pv, pw, E)
Q = (p7 u’ fU’ w7 T) (10)

dp

wO:(p,u,v,w,S),dwoz( )
pc

du, dv, dw, dS)

We shall refer taQ as the primitive variablesy,. as the conservation variables anglas the entropy variables. We evaluate
the flux ' and the physical time derivatives in conservation variables so that we obtain the correct shock jumps. One implemen-
tation of (6) is to use the conservation variables throughout the equation. As the Mach number decreases to zero, the density
usually becomes constant and so the conservation variables become less useful. The primitive @yiafgldsequently used
for incompressible flow and are more useful when solving for slightly compressible flow.
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If we change from conservation variables@ovariables in the artificial viscosity, we replace (7) by

Rq = g—i - ACC%(GQF_1|PQAQ|?9—§) (11)
k n
(Ry)* = Rl + e —i“t(wmm)
P, = g—ipc%g
-l = %gpél, F:PQSSC = gfc .
Multiplying (6) by 5 and sinceAw, = 2% AQ, we get
(I+ oé,cct%PQ)Q’f+1 = Q% — a, ATT(RY)* + akct%PQQk (12)

After each stage, we calculaté’*! using the nonlinear relation betwean and Q. Once the artificial time derivative ap-
proaches zero, the resultant equation is in conservation form, including the physical time derivative. If the physical time
derivative were also transformed € variables, then we might lose the conservation form and, hence, the correct jump con-
ditions at a shock. The pseudo-residigdl should also be cast in conservation form so that we get the correct pseudo-steady
state at convergence. Preconditioning destroys conservation in the midst of the pseudo-time iteration process, but recovers the
conservation form fof?* when the pseudo-time iteration process converges. Bedgystepends on bothyg andw. when

using( variables, we do not include the terﬁfzt;wk in the update scheme. In this case we must include the physical time
step,At, in the determination of the pseudo-time step.

A third possibility is to consider a mixture of conservation &pdariables. When evaluating the artificial viscosity we use
Q variables as given by (11). However, when updating the variables, we reverpariables. We then get

Ar

A Puw” (13)

I+ akcti—;P)w’;H =w? — ozkATP(R*Q)’C + gt
This is the same as (6), except that the artificial viscaBity w, variables is replaced b, based o) variables. Hence,
equations (6) and (12) have different numerical pseudo-steady states but equations (12) and (13) have the same numerical
pseudo-steady state.
Computations confirm that the variables used in the artificial viscosity have a much larger effect on the pseudo-steady state
than the choice of variables used to update the solution. We shall demonstrate that we can efficiently solve the preconditioned
equations (6) and (13).

2. Low SPEEDPRECONDITIONING

2.1. Implementation

For low Mach number flows, the ratio of acoustic to convective speeds is large, which results in an ill-conditioned and
stiff system. Hence, we introduce a preconditioner to alleviate this stiffness. BePahased on conservation variables
is a full matrix, we make use of entropy variables, in which the energy equation decouples from the rest of the governing
equations. Furthermore, the Jacobian matrix is sparse in these variables. The simplest preconditipuariébles is given
by (see [15, 16,19, 21])

ﬁ—goooo
0 1 000
Po'=]0 010 0
0 0010
0 00 01

[ is a parameter which should be of the order of the Mach number as to approximately equalize all the eigen¥gldgs of
2
Letc?= =, ¢@?=u? +v2+w?andg’= % Then the Jacobians that connect these variables are
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¢ (1-yu (1-y)v (1-y)w ~-1
o —u % 0 0 0
8"“”0: —2 0 1 0 0
e —w 0 0 1 0
~2 p2 P
@—c (1-7u (1-7)v (I-yw -1
= 0 0 0 -—%
ow z p 0 0 —
5 c=|% 0 p 0 -%
wo L 0 0 »p —%2
C% pu  pv  pw _zvg

C2

whereh =
y—1

+ g is the specific enthalpy. The preconditiod®rin conservation variables is then givenBy=

Odwo
ow. "

dw,
awg Po

The preconditioner appears in the form of the matrix multiplying a vector. We calcBlatames an arbitrary vectar =

(z1, 22, 23,24, x5) IiN Stages. So

P.i =1+ (3% — 1)y 2 (14)
e o 1 .
P i=7+ (ﬁ Dy Z
wherey; = 76_21 [gazl — (uxzg + vrs + wxy) + x5 | and

1
u
Z=1w
w
h

In (6) we need to evaluatd + d - P..)~* times a vector wherd=

oy 3% This is accomplished by

(]_HZ.P)—lszeylg :(1_4[32)62
‘ 1+d 1+ 62d
For the primitive variablesy, we have
32 0000
0 10 00
Pq = 0 01 00
0 0 010
2
G=UT ¢ o o 1
CpP
wherec, = 24 Define
1
0
v=| o
0
O-=1T
p

As above in equations (12) or (13), we need to eval(Ate d - P.)~' times a vector. This is accomplished by

A Z+er1y

I+d-Po) ld= -
( Q) 1+4d

d(1-p%

S 1+d-p?
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2.2. Choice of Parameters

We need to choosg? and the pseudo-time step. When we ignore the té?ﬁit‘—wk in (4), the RK scheme is explicit for
the physical time derivative; however, it requires that the pseudo-time step also include a physical time step contribution. The
precise form of this term is given in (19). The present analysis is done on the continuous level, except for the source term
that arises from discretization of the physical time derivative by a BDF formula. The amplification matrix for a RK scheme
is a polynomial in a stage amplification matrix. The total scheme is stable when all the eigenvalues of the stage amplification
matrix lie within the stability region of the particular RK scheme. The stage amplification matrix in pseudo-time for the Euler
equations inbg variables, in generalized coordinates, is given by

CtVOI
At

G(wl, w2, W3) = P() - + i(wlA + (JJQB + W3C) (15)

where\ol is the cell volume andi,B,C are the Jacobian matrices of the inviscid flux vectors in the generalized coordinate
space dimensions. Matrices B,C' are symmetric inlw, variables, and so this is a symmetric hyperbolic system. We denote
the surface area of the cell &5; where the first subscript refers to the direction of the normal and the second is the projection
of that normal in each direction. Define the contravariant velocity components as

U =uSzs + Sy + WSy
V =uSys + vSyy +wSy: (16)
W =uS., +vS.y +wS,.

Then (15) becomes

ﬂ2U ﬁ2cszz ﬁ2cszy ﬁ2cszz 52‘/ /82CSy:r /82CSyy ﬁQCSyz
Glwr,ws, ws) = _CtPoV0|_H.w ¢Sy U 0 0 o cSya Vv 0 0
bR AL "1eSey 0 U 0 2les,, 0 v 0
¢Sp. 0 0 U ¢S,. 0 0 v
52W ﬁ2cszw BQCSzy ﬁQCSzz
Fiw ¢S,y w 0 0
31 ¢S,y 0 w 0
cS.. 0 0 w
Let
lg| = VU2 4+ V2 4+ W2
and
U \%4 w
w1 — W2 — W3 —
lq| lq] 4|
Thereforew? +w3 +w? =1. Define
4|
Vo SeyU + Sy, V + S, W
lq]
i SesU 45,2V + 8. W
lq|

42202+V2+W2
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whereU, V, W depend on the velocity componentsy, w and the geometry metrics. This gives

32D B2cU  B2cV 32w

| U D 0 0
Tl evo0 D 0
cW 0 0 D
where,
CtVOI .
D=-
Ay Tl
17
The eigenvalues arg, =D and
241 2 1\?
Ai:ﬁTJrDi\/<ﬁ 5 ) D2+ 3%¢242 (18)

BecauseD is a complex number, so is.. We define);,, = max(|]A|,|A-|). The artificial time step is determined by
demanding thah be within the stability domain of the RK scheme. Siriceis a complex number, this leads to a condition
that depends on the details of the stability curve. Hence, we replace this by a condition on the real and imaginary parts
separately. We use a similar argument to account for viscous terms in the eigenvalues and the artificial time step [23]. The
formula we use for calculating the artificial time stey; ~ % is given by

11K,
AT o ATSS Cy At

(19)

whereArgs is the steady state (without dual time-stepping) artificial time step which is a sum of inviscid and viscous contri-
butions. For most of the results presented in this pafier= 1. Using an implicit formula for the physical time derivative
as derived above allow&”, = 0. However, for robustness, we usually chodée= 1. Even whenk. = 0, AT depends on
the physical time step)t, through) which is a function of3?. For preconditioning based on primitive variables, we do not
include% in (4) and so we choose a higher value foy =2.

The major difficulty in determining is thatD is a complex number. Hence, we cannot choose ga¢al(approximately)
equalize the eigenvalueg and . Ignoring 32 compared with 1, we would lik@? to be approximately equal t6%c242.
However, one term is real and the other term is complex. Furthermore, the square root of a complex quantity combines the real
and imaginary parts in every term. For inviscid steady state flow, all the terms are “imaginary,” and so we can cancel “i” and

deal only with real quantities3?,, is chosen so thatcg=|D|=|q|. For low Mach numbers3? is small and so\,. ~ 1*—2‘/5D.

We then choosgi,, as a term that depends @nplus a cutoff to prevent from becoming too small. This cutoff depends on a
global quantityM;e;. We choose

2
q
5i2nv = Kl@ + K2M7“28f

ﬂgs = KS(RGA)@%\V (20)

For a uniform Cartesian meslg% reduces ta\/2. The formula for3? with dual time stepping is then given by

(21)

ciVol \?
8 =+ Ky (i)

|SPAt

whereK, K», K3, K5 are constantse is the cell Reynolds number, angl|? is a sum of the squares of all surface metrics
(6 in two dimensions and 9 in three dimension).is the local Mach number and,..; is a reference Mach number, which is
representative of the free stream Mach number for low speed flows. We recaleijlgt@fter each physical time step. Based
on numerical experimentatiop,:% in (21) yields the most consistent results. Note ffatlepends onAl—t even when using an
implicit method for the time derivative term. We also account for viscous effects in comgi#ifa$] throughK;. Because we
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do not let3? exceed unity, the preconditioning is turned off locally in the farfield for external problems, where the cell volumes

are large. Similarly, whert is small enough, then preconditioning is turned off globally.

When the contribution of the physical time step is large enough, then the preconditioning does not improve the convergence
of the subiterations, but it is still useful for improving the accuracy of the numerical solution. Hence, we use different values of
0 for the preconditioning for the update procedure and for the artificial viscosity. We dendfg"iﬁyhe value ofK 3 in (21)

when used within the artificial viscosity. For dual time stepping this will generally be smaller than the vaiﬁ)}édﬁti*used in
the update procedure.

3. RESIDUAL SMOOTHING

Implicit residual smoothing is a technique to smooth the residuals and allow a larger time step [6]. It also changes the
damping characteristics of the scheme. In continuous form, it is given by

92 .
(I o > Rsmoothed: Rongmal

e
02

Re"9nal corresponds tR*)* in (6). This is done in each coordinate direction and at each stage of the RK update. For a one
dimensional steady state problesms chosen to be

2
€= i [(%) — 1] (22)

where) is the CFL number of the smoothed scheme ahib the CFL number of the unsmoothed scheme. Hekitshould be
determined by the stability theory of the RK method being used. For the five stage RK method usatl-h8rg48. However,
for the various preconditioners, we frequently redu¢drom its theoretical value. In multi-dimensions, we also account for
the ratios of the spectral radius in various directions [9, 30].

For dual time steps we need to reanalyze the determinatiansf before, we denote the physical time#tand the artificial
time by 7. We consider the one dimensional scalar equatign= u, — z5u. We apply residual smoothing to the change
E=uF —° at the k-th RK stage. This yields

Uil — Uj—1 Ct
E;—e(Biy1 — 2B+ Ej_q) = Ar | =1 L
7 E( i+1 z+ 7 1) T( ZALC At)
Using Fourier transform, we get
() = iAsin(0) — %
1+ 2¢(1 — cos(h))

z is the Fourier transform of the variable being updated in the RK scheme. By standard ODE analysis, the scheme is absolutely
stable ifz lies within the stability domain of the RK scheme. We have a difficulty sincea complex quantity, and so the
stability is dependent on the details of the shape of the stability domain. Instead, we replace this requirement by the simpler one
that we only look at the imaginary and real parts @hd demand that they lie within the appropriate intervals on the imaginary
and real axes, respectively. This yields

Asin(6)
< *
1+2e(1 —cos(d))| — AT
AT
ctE < A*R

1+2e(1 —cos(d)) —

whereA} and\}; are the limits of the RK stability region along the imaginary and negative real axis, respectively. Usually we
chooséd) so as to maximize the first term. This yields

2e
1+ 2¢

cos(f) =
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and as a consequence we get

€=

Substituting this into the second requirement we get

(1 + 2€)Ct£

t< N\
14 4e =R
Definer = 2£_. Then we require
Ct At
< 1—r
e< -
= 2(2r—1)
So in addition to the usual condition @nwe have a new restriction that
ARAL 2e
AT < 1 23
T=T <+1+2a) (23)

In practice, we have found that instead of restrictixiigto satisfy (23), we can reduce the value\df For non-preconditioned
steady flow computations, we skt=23.748 in (22) for the five stage RK scheme. For a low speed preconditioned steady state
calculation, this is reduced to" = 3.25. For dual time steps with Jacobi preconditioning, this is changed 162.4. When us-
ing dual time steps with low speed preconditioning, this is further reducgti+®.0. As shown above, the residual smoothing
parameter should be proportionali@.

4, JACOBI PRECONDITIONING

The Jacobi preconditioning is based on adding a matrix-based artificial viscosity and then clivoSemthe terms on the
diagonal (i.e., the coefficient a#;;). The result for a central difference scheme i

Pyt =(I+|Al+ Bl +|C| (24)

This approach has been proposed by Allmaras [2] and Pierce and Giles [12] for steady state flows. The good high frequency
damping characteristics of the Jacobi preconditioner make it an ideal candidate for coupling with a multigrid scheme. Because
this formulation connects the preconditioning with the artificial viscosity (or upwinding), the nfaigaffected by the details

of the discretization. However, equation (24) has also been used with other artificial viscosities such as CUSP (see Caughey
and Jameson [3]). We prefer to view the preconditioner represented by equation (24) as a matrix or characteristic inverse time
step (see [25] for a similar view). A multistage, non-preconditioned RK scheme uses an artificial time step given by

B CFL
~ (+p(A) + p(B) + p(C)

Ar (25)

wherep is the spectral radius an@dF'L is a number chosen to achieve stability. A matrix time step for the Jacobi preconditioner
replaces this by

At = CFL(CI+|A|+|B] +|C])~" (26)
In calculating the absolute value of the matrices, one needs to cutoff the eigenvalues to prevent them from becoming too small.
We do this by not allowing any eigenvalue to be less than a given percentage of the maximum eigenvalue. Within the artificial
viscosity we cutoff the acoustic eigenvalues at 30% and the convective eigenvalue at 10% of the maximum [14]. Within the
Jacobi preconditioning all eigenvalues are cutoff at 30% of the maximum eigenvalue.

The preconditioning techniques described here have been incorporated in the TLNS3D code [26,27]. The standard TLNS3D
code solves the generalized thin layer Reynolds-averaged Navier-Stokes equations, and uses residual smoothing and multigrid
to accelerate the convergence to a steady state. We wish to include all of these acceleration techniques when using the Jacobi
preconditioning. Though some researchers have avoided the use of residual smoothing with the Jacobi preconditioner [12, 22],
we have found no difficulty in including both the residual smoothing and the Jacobi preconditioning. In fact, they complement
each other since the Jacobi preconditioning is local while the residual smoothing is global in nature due to the implicit operators
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in each coordinate direction. This is especially important in the presence of high aspect ratio cells, which are essential for

resolving boundary layers in viscous flows.
The Jacobi preconditioning for the k-th stage of a RK algorithm is given as

(CI +|A| + |B| + |C])Aw = oy, CFL - Res 27)

whereq;, is the stage coefficient of the RK scheme. For a three dimensional problem, each of the mafiges i#\s
suggested by Caughey and Jameson [8] and Hosseini and Alonso [4], we transform the equation to entropywgeiables

(%, du, dv, dw, dS). This has the advantage that the flux Jacobian matrices are symmetric and also that the entropy equation
reduces to a scalar equation that decouples from the others. Hence, we need only to operatexwitmatrix rather than a

5 x 5 system, which results in appreciable savings in computational costs. The formulas for the absolute values are presented
later. One then calculates the LU factors explicitly fara 4 matrix. Using a Cholesky decomposition for a symmetric matrix,

fewer elements need to be calculated. However, four square roots are evaluated in this approach (Caughey and Jameson [3]
reduced this to three square roots by clever programming). Computationally, we found that using the nonsymmetric LU form
required about the same computer time for this small matrix, since no square roots are required. The storage is larger for the
nonsymmetric decomposition. Since this matrix is not stored globally, it has an insignificant impact on memory requirements.
The extra work in the Jacobi preconditioning is mainly in defining the elements of the matrix rather than the inversion, and it
typically adds about0% to the total running time for a compressible turbulent flow code.

For viscous problems, Caughey and Jameson [3] replaced the entropy variables by a transformation suggested by Abarbanel
and Gottlieb [1]. This can also be expressed as using a different set of variables [21]. Even though symmetry is preserved, the
resultant absolute values constitute a fil5 matrix. Since this substantially adds to the computing time, we used the entropy
variables instead and approximate the viscous terms by a diagonal matrix corresponding to the additional term in the time step
calculation of the standard code. Hence, it is just an addition to the diagonal term in (26). For high Reynolds number flows, this
viscous correction is small enough that it does not justify the additional computational time required for invertingasfull
matrix at all nodes.

In generalized coordinates we define the contravariant velbtiyS,, + vS., + wS,. wheresS;; are the elements of the
surface area tensor. In entropy variables, the flux Jacobian mtsixgiven by

U ¢Spz cSpy ¢Sz 0
A=|e¢Sey 0O U 0 0
¢Sy 0 0 u o
0 0 0 0 U
Let A1, A2 be the eigenvalues of and define
A+ A
R, = Ml ! Az
A=A
R, = Ml . | Az
Rs =R, — |U]|
and|S| = /52, + S2, + SZ,. Define the normalized surface metrics
4 S 4 Sy 4 S
Sz _ Pz 51 _ Pay Sz _ Pzz
5] s 5]
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Then the absolute value is given by (symmetric terms suppressed)

Ry Sy Ry gsz S. Ry 0
UI+8.° Ry S.S,Rs  SuS.Rs 0

Al=| . . U|+8,°Rs  S,8.Rs 0 (28)
U+S." Ry 0
: U]

To get a better intuition of the matri¥i| we consider the subsonic case wWith< «, v, w < ¢. In Cartesian coordinates we
haveS,, =1, Szy=S5:-=0. ThenR; =¢, Ry =u, R3=c — v and

c u 0 0 O
uw ¢ 0 0 0
[Al=]10 0 » 0 0
0 0 0 u O
0 0 0 0 u

Let d be the number of dimensions (2 for 2-D and 3 for 3-D flows). Then

d-c u v w 0
U vtwtc 0 0 0
Al + B+ [C|=| v 0 u+w+c 0 0
w 0 0 u+v+c 0
0 0 0 0 utv+w
Foru,v,w <<c¢
(Al +|Bl+Ic) 1diag(1 1,1,1 C)
c d) b |u| + |/U‘ + |w|
The inverse of the Jacobian is a diagonal matrix (up to erro€3(af)). On the other handyr ~ -1, So
Al+|B -1 ) d
(AHBIHCD ™ d,ag(l,d,M )
AT [ul + o] + [w]

Hence, for most of the variables (except for entropy), there is a (maximum) facfordf, 3 variation in the time step. Thus,
as a matrix time step, Jacobi preconditioning mainly affects the entropy equation. However, the major advantage of the Jacobi
preconditioning is the damping of the high frequencies, which is useful for multigrid convergence [20].

5. PRECONDITIONING SQUARED

Let 5 be given by (21). We consider the simplest low speed preconditioning given in entropy variables by
Py = diag(#%,1,1,1,1) (29)

We combine the low speed preconditioning with Jacobi preconditioning by starting with an artificial viscosity based on the
low speed preconditioning for increased accuracy and then forming the Jacobi preconditioning for better convergence rates [20].
Let P be the low speed preconditioning, and let the physical time derivative be represented by (2). Then the preconditioned
scheme (showing only the second-order dissipation) is given by

Pt =Py (CPy + |RyA| + | Py Bl + |PoC))

n+1 — E(w™ n—1
PlAw =2 X’; W) g Gy 4 H, (30)

— = (P PoAlwz)s + (P~ |[PoBlwy)y + (P ' |PoClw.).] = Res
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We redefine the entropy variables for the preconditioned scheme so as to iAcl8de

dp
oy = (—— T 1
dwO (pﬁc7u7v7w’ ) (3 )

In these variables the matric&s and| Py A| + | Py B| + |P,C| are symmetric. The eigenvalues of each matrix are given by

(B2 + 1)U £ /(8% — 1)202 + 4322

Ay =

2
(8% + D|U|+ /(82 — 1)2U? + 4322
>\max:
2
Define
|A+| = maX(|)\+‘7 En)\max) ‘A7| = max(|)\7|, EnAmax) |A[)| = maX(|U‘, El)\max)
b O DAL DA o Oy DA -0 DA
! A — A ! A — A
A —|A_
R2 = BC% R3 = Sl — |A0|

whereU is the contravariant velocity in each direction arydande; are constants. Typical values are=0.3 ande; =0.1 for
the artificial viscosity and,, = ¢; =0.3 within the Jacobi preconditioning. Then

Ry S. Ry SyRo S. Ry 0
Aol +S.°Rs S8, Rs S.S.Ry 0
[PoAl= | . Aol+8,°Rs  S$,5.Ry 0 (32)
Aol +S.°Rs 0
: Ao

The same formulas hold foP, B| and| P, C| with the appropriate surface metrics. The update scheme, (27), then becomes

Aw = 22 () + 1Py A+ |PoB| 4 1P,CD) ™ 20y ArRes (33)
8w0 ow

6. REsSuULTS

The results are computed using TLNSD, a finite volume central difference code augmented by a matrix artificial viscosity.
The equations are advanced in time with a dual time stepping scheme. A five stage RK scheme, accelerated by residual
smoothing and multigrid [5, 14, 26], is used for advancing the solutions in pseudo-time. Second order BDF formulation is used
for discretizing the physical time derivatives. Without low speed preconditioning, we use a RK scheme with the coefficients
(.25, .16667, .375, .5, 1.0). With low speed preconditioning, the RK coefficients are chosen as (.25, .18, .40, .51, 1.0). The
artificial viscosity is partially updated only on the odd stages of the multistage method using fractions of .56 and .44 on the
third and fifth stages, respectively. There is also a small difference in the dependéhae thfe viscous terms for the artificial
viscosity [23]. The other parameters are identical with the exceptiqﬁn @fi (22) as described above. The residual smoothing
coefficients depend on the aspect ratio [9, 30]. For all preconditioning ga&gs: M2..

6.1. RAE2822 airfoil

We first examine the use of both Jacobi and low speed preconditioners for steady flow. We consider a two-dimensional
RAE2822 airfoil using &20 x 64 C grid. We first consider a transonic case with an inflow Mach numbeg,= 0.73, and
an angle of attacky =2.79°. The Reynolds number is 6.5 million, and the turbulent flow is simulated with a Baldwin-Lomax
turbulence model. We use a FMG multigrid with 50 iterations on each of the three coarse meshes and 300 iterations on the
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finest mesh. The only algorithmic change associated with the Jacobi preconditioner is in the update stage where the residual is

multiplied by the low speed preconditioning matri, followed by eitherAr or else by(|PA| + |PB|)~!. In Figure 1(a) we

compare the convergence rate for the standard code with that produced with Jacobi preconditioning. The residual shown reflects
the change from n to n+1 ipu for the conservation variable andirfor the primitive variable formulation of preconditioning.

Since the density is almost constant at low Mach numbers, these residuals are comparable in magnitude. For the transonic flow
case, we do not use low speed preconditioning. The Jacobi preconditioning results in an improvement in the convergence rate.
In Figure 1(b) the drag coefficient for the same case also shows improved convergence with Jacobi preconditioning. The Jacobi
preconditioning has no impact on the final value of the drag, as expected.

We next compute a low speed case with, = 0.2. In Figure 2(a) we compare the impact of low speed preconditioning
without Jacobi preconditioning on the convergence of the residuals. The low speed preconditioning improves the convergence
rate significantly. The two preconditioners based on the different set of variables are almost indistinguishable. In Figure 2(b)
we show the results using the Jacobi preconditioner both by itself and combined with low speed preconditioning. The Jacobi
preconditioning improves both the non-preconditioned and the low speed preconditioned cases. The cpu time required for the
low speed preconditioned code is approximately an additional 20% of the total run time compared to the baseline code. This
includes both the contributions to the update and the artificial viscosity. The Jacobi preconditioning requires an additional
10% cpu time. The gains in residual convergence are more significant with Jacobi preconditioning, especially if one wishes
to reduce the residual to very low levels. In Figures 3(a) and 3(b) we show the convergence of the drag. The steady state
drag is the same for the non-preconditioned algorithm and Jacobi preconditioning since we only change the update procedure
but not the residual. However, the low speed preconditioning is included in the artificial dissipation and so the low speed
preconditioning changes the steady state numerical solution. Turkel, Fiterman and van Leer [18] have proven that only the
low speed preconditioned residual gives the correct solution as the Mach number approaches zero. The theory is based on a
linearized system and so it does not distinguish between preconditioning using conservation or primitive variables.

We conclude, in Figures 4(a) and 4(b), with results for an inflow Mach number of 0.05. Since both preconditioners produced
similar results, we include only the one based on primitive variables. We see that the Jacobi preconditioning by itself helps
relatively little for this low Mach number flow. In contrast, using the low speed preconditioning gives a large improvement
in the residual convergence. The combined low speed and Jacobi preconditioning gives a dramatic improvement, yielding 8
orders of magnitude decrease in the residual in 300 multigrid cycles. The pressure residual is reduced by about 11 orders of
magnitude. For a five stage RK formula, this is equivalent to 1500 explicit sweeps through the grid. Such rapid convergence
represents a significant improvement for low-speed, viscous, turbulent flow computations on high aspect ratio grids.

10 0.04
10° —— No prec. i —— No prec.
rrrrrrrrrrrr Jacobi prec. -~ Jacobi prec.
10" 1 0.03 |
107 4
-
S
2 107° 4 = i
»n 0 o 0.02
s
107 .
10° 4 0.01 8
10° ¢ .
10‘7 L L | | 0 L L | |
0 100 200 300 400 500 0 100 200 300 400 500
CYCLES Cycles

(a) Residual (b) Drag
FIGURE 1. RAE2822 convergence histod,, =0.73
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6.2. Vortex

We now consider time dependent flow using dual time steps. We begin with an inviscid case for which the exact solution is
known, and so we can assess the effect of the preconditioners on the accuracy. We solve for an inviscid vortex propagating in
thex direction. We first define several quantities in terms@fwhich represents the center of vortex at time 0, andcy and
c1, which are free parameters.

1/)0 22
2y po @
arg=1— (z —x¢ — cot)* — 42

CQ—

The exact solution for this problem in the non-dimensional variables of TLNS3D code is as follows:

u(z,y,t) = co (1 — crye®® 79)
v(x,y,t) = cocr(z — o — cot)e®® 9
p(z,y,t) =po (1l - 026”9)%
p(z,y,t) = po (1 — CQe“’"g)ﬁ

With the constants

This vortex also satisfies the incompressibility conditigr-v, =0. We defineCFLpnys = C"At . The computational domain
ish <z <35, —5 <y < 5with auniformly spaced Cartesian grid with 97x33 nodes yleldlrmg: Ay =.3125. We discretize
the Euler equations using a fourth order difference. We chaése0.05. So CFL=1 corresponds tad\t = $25 ~ 5.28. We

Vid
perform 50 subiterations at each physical time step.
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In Table 1(a) we present thi, errors inu for a fixed physical time of 60 (i.e. 60 physical time stepC#tL = 1). So,

analytically the center of the vortex moves horizontally from 10 to  =28.75. This enables us to see the growth of the errors

for a larger time. In Table 1(b) we present the error after 10 physical time steps. Hence, diffé¥enbrrespond to different
physical times. We compare the non-preconditioned and preconditioned algorithms where the preconditioned algorithm is
based on conservation variables. Use of primitive variables did not change the results very much.

1
Note that ford = 0.05 flow at a physical time step corresponding to CFL312 ~ 2.5 x 10~3 while (Cfé‘léoAlt) ’

3.8x 107t Thus, the physical time term dominates other contributions in the calculatign(21), by two orders of magnitude
On the other hand for the same time step we hg\lfe ~ .53, while £ Y
step to the artificial time step in (19) is small. AIthougI:; 0is stable we choos&’ =1in (19) for improved robustness.

As described above, we consider the use of two separate valugs fior the convergence acceleration and the artificial
dissipation. The only difference in (20) is the constant To distinguish them, we denote K%"‘S the constant which affects
the magnitude of the artificial viscosity. Normally, we chodfég’iS as small as possible without destroying convergence so

as to gain accuracy. The constdfi Pdate ;sed in the update stage does not affect accuracy and is chosen only to improve the
convergence rate. We choak&***°=0.3 for all the cases. The standard value chosetkf@fs=0.015, which is more than an

order of magnitude smaller thai“***®and, therefore, it minimizes the magnitude of the artificial viscosity. Incredsg1g

for these larger physical time steps reduces the error for the preconditioned case to be similar to the non-preconditioned scheme.
Hence, the formula (21) gives the minimusrin the artificial viscosity for stability but not necessarily the optimal value. For

CFL < 1 the optimaIKf;"iS is the smallest for which the subiterations are stable. However, for a larger physical time step,

we get better accuracy with a larger coefficient in the artificial viscosity than the minimum required. Hence, preconditioning
improves the accuracy far'FLphys < 1 but the accuracy deteriorates for larger physical time steps.

CFLpnys | N0 precondition precondition CFLgnys | NO precondition precondition
.25 4.54710~% 2.048 10 * .25 7.101107° 3.442 107°
.50 4.235107% 1.972 1074 .50 1.000 10~ 3.958 10~ °
1.0 4.480 10~* 3.808 10 * 1.0 1.581 10~ ¢ 5.285 10~°
2.0 6.854 10~ 4 1.038 10—3 2.0 3.402 10~ ¢ 3.858 10~
3.0 9.062 10— 1.238 1073 3.0 6.666 10~* 7.976 10~
4.0 1.006 103 1.265 1073 4.0 8.865 104 1.045 1073
5.0 1.011 1073 1.17310°3 5.0 1.011 1073 1.17310°3

(a) Error in u at T=60 (b) Error at 10 physical time steps

TABLE 1. Vortex Motion: M=0.05

6.3. Time Dependent NACA0012

We next consider turbulent flow around a NACAO012 airfoil. The grid is an O mesh Mithx 61 nodes. The angle
of attack isa = 30°, and the inflow Mach number i87., = 0.05. The high angle of attack causes the flow to be unsteady
especially in the wake region. We use the Spalart-Allmaras one equation turbulence model. The solution is calculated for 600
physical time cycles. We compute 50 cycles (each a 5 stage RK with multigrid and residual smoothing) within each physical
time cycle. In Figure 5(a) we show the lift as a function of the physical time. We see that for smaller times, the solutions
are essentially the same. However, for longer times, the preconditioning results differ from that of the non-preconditioned
code. We stress that the use of preconditioning affects the accuracy of the solution and so changes the values of the lift and
drag. There is no analytic solution for this problem and, hence, no easy way to determine the correct solution. The proof of
Turkel, Fiterman and van Leer [18], that preconditioning improves the accuracy for low Mach number flows, applies to steady
state flows. Nevertheless, the analysis applies to time dependent flows based on similar scaling arguments. This lends some
credence to the results obtained with the preconditioned code. There are also smaller differences between the preconditioned
codes based on primitive or conservation variables. In Figure 5(b) we display the same case where only 10 subiterations are
done for each physical time step. As time progresses we see that in all cases, the lift begins to differ. However, the differences
are much smaller with the preconditioned algorithm, implying that the preconditioned algorithm is more robust with respect to
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lowering the number of subiterations. This is important when the number of iterations is computed based on some error criteria

rather than being fixed in advance. The differences in lift are caused by the different level of artificial viscosity between the
non-preconditioned and preconditioned schemes. To see this even more clearly, we vary the galuseofin the artificial
viscosity of the preconditioned scheme. The coefficientirin (20) used in the update procedure is fixed(#date: 0.3.
In Figure 6 we vary betwee g"‘sz 0.015 (standard) td(g"‘sz 0.1to Kg‘"sz 1.0. We compare the preconditioning scheme,
based on primitive variables, with the various valuegfand the non-preconditioned code. We see that at the highest level,
Kg‘"s = 1.0, the preconditioned and non-preconditioned values:fobasically coincide. As with the vortex, the dominant
1

term in (21) is the physical time dependent te@gﬁf%) * which varies between 0.2 and 1.3 in the computational domain.
Hence, whean"iS = 0.015, the preconditioning is changing the artificial viscosity. However, WF@?S = 1.0, then 32
becomes greater than 1 over large portions of the domain and is capfige=at. This means there is no preconditioning in
the artificial viscosity over much of the domain. The contribution of the physical time step, including the volume of the cell,
towards the artificial time step (19) also varies over the grid. At other grid points it is comparable or smaller than the steady state
contributions. As a consequence we chéSe = 1 for preconditioning with conservation variables even though an implicit
formula was used. For the primitive variables, we do not use the implicit Eékﬁ@;ﬁ in (4) and so chos& . = 2. Even
though this decreases the artificial time step, nevertheless, we still achieve a better convergence rate within the subiterations.

In Figure 7 we display the lift for the case with 50 subiterations per physical time step. We see that the preconditioning
changes the calculated value of lift. All the methods converge the lift to within graphical accuracy. However, the precondition-
ing is still converging faster. In Figure 8(a) we display the residual for the case with 50 subiterations per physical time step (
residual for preconditioning based on primitive variables amdesidual for all other cases). The residuals are normalized so
that they start at 1.0. The time frame period is about half way through the 600 physical time cycles. Low speed preconditioning
improves the convergence. There is a negligible difference between the two preconditioners based on either conservation or
primitive variables. Furthermore, we see that displaying the residual®ppu makes no difference. We next add Jacobi pre-
conditioning to the previous computations, with and without low speed preconditioning. To avoid too many graphs, we display
only the low speed preconditioning based on primitive variables. In Figure 8(b) we see that adding the Jacobi preconditioning
improves the convergence rate of both the non-preconditioned and low speed preconditioned algorithms.

In conclusion for this time dependent case the low speed preconditioning improves the convergence rate of the residual.
Jacobi preconditioning further improves the convergence rate. No difference between various sets of variables was found.
However, both the preconditioning and the set of variables did affect the value of the lift and drag.

3 3 \
—— No prec. (50 subiter)
—— No prec. - No prec. (10 subiter)
-2 — Prec. cons. var. i 25 ---- Prec. prim. var. (50 subiter)
' —-— Prec. prim. var. ' ——~ Prec. prim. var. (10 subiter)

cl

0.5 ! !
0 200 400 600 0 200 400 600

Physical time-steps Physical time-steps

(a) 50 subiterations . .
(b) 10 subiterations

FIGURE 5. Time history ofcy, for NACA0012,a = 30°
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7. CONCLUDING REMARKS

Jacobi and low speed preconditioning techniques have been developed for a central difference algorithm to treat both steady
state and time dependent problems. Jacobi preconditioning is shown to improve the efficiency of the baseline TLNS3D code for
steady flow over a RAE 2822 airfoil at transonic Mach numbers. The efficiency gain is obtained on top of the efficiency gained
by the residual smoothing and multigrid acceleration techniques which are integral parts of the TLNS3D code. For lower speed
flows, the low speed preconditioning improves the convergence rate while the Jacobi preconditioner by itself does not improve
the convergence rate. The convergence rate is significantly improved by combining the Jacobi and low speed preconditionings.
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In addition, for low Mach number flows, the low speed preconditioning improves the accuracy of the steady state solution while

the Jacobi preconditioning does not affect the steady state.

If the physical time step, within dual time stepping, is sufficiently small, then the preconditioning does not improve the
convergence rate. In this case, we cho@se 1, thereby turning off the preconditioning in the update stage. However,
for typical parameters, as used in a NACA 0012 test case, the low speed preconditioner did improve the convergence of the
subiterations towards the pseudo-steady state. The Jacobi preconditioner further improved the convergence rate within each
physical time step. In all cases the low speed preconditioning affects the artificial viscosity. To minimize the magnitude of the
artificial viscosity, we use different values 6fin the update stage and the artificial viscosity.
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