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LOCAL PRECONDITIONERS FOR STEADY AND UNSTEADY FLOW APPLICATIONS

ELI TURKEL 1 AND VEER N. VATSA 2

Abstract. Preconditioners for hyperbolic systems are numerical artifacts to accelerate the convergence to a steady state.
In addition, the preconditioner should also be included in the artificial viscosity or upwinding terms to improve the accu-
racy of the steady state solution. For time dependent problems we use a dual time stepping approach. The preconditioner
affects the convergence rate and the accuracy of the subiterations within each physical time step. We consider two types
of local preconditioners: Jacobi and low speed preconditioning. We can express the algorithm in several sets of variables
while using only the conservation variables for the flux terms.
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INTRODUCTION

Preconditioning methods for low speed, steady flows have been available for almost 20 years [15]. Because such precondi-
tioners are designed to modify the path to a steady state, they were originally not appropriate for time dependent calculations. It
was later found that, within the context of dual time steps, one can apply these techniques for unsteady flows while maintaining
temporal accuracy [7,13,28,31]. Preconditioning was originally used to improve the convergence to a steady state for low speed
flows. In this case the ratio of the largest to the smallest eigenvalue is very large and preconditioning can reduce this disparity.
Subsequently, it was shown [18] that an appropriate preconditioning can also improve the accuracy of the steady state for low
speed flows. In particular, it was proven [18] that a necessary condition for the convergence, as a reference Mach number goes
to zero, of a discretization of the compressible equations to that of the incompressible equations is a condition on the scaling
of the artificial viscosity and upwinding terms. This can be accomplished by multiplying the pressure gradients in the artificial
dissipation by a term proportional toM2. Most classical finite difference/volume/element methods do not satisfy this condition
and, hence, behave poorly for low Mach flows. Including a preconditioning in the artificial viscosity changes the upwinding
to satisfy this condition. Numerous computations verify that the preconditioning not only improves the convergence rate to a
steady state for low speed flows but also dramatically improves the accuracy of the resultant steady state [15,21,29]. We shall
investigate which of these properties are also true for dual time-stepping schemes. We shall refer to this preconditioner as the
low speed preconditioner.

Consider the hyperbolic system of the unsteady Euler equations appended with pseudo-time derivatives. Lett denote the
physical time, whileτ denotes the pseudo-time used to drive each physical time step to a pseudo-steady state. In quasilinear
form we have

∂w

∂τ
+ ξ

∂w

∂t
+A

∂w

∂x
+B

∂w

∂y
+ C

∂w

∂z
= 0 (1)

wherew refers to a vector of dependent variables. The flux Jacobian matricesA,B,C are symmetric (or simultaneously
symmetrizable). We are interested inτ → ∞. For physically steady state problemsξ= 0, while for time dependent problems
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ξ=1. We discretize the physical time derivative with a backward difference formula (BDF)

∂w

∂t
∼ ctw

n+1 − E(wn, wn−1, ...)
∆t

(2)

wherect is a constant that depends on the order of the temporal scheme. We precondition the system by replacing (1) by

P−1 ∂w

∂τ
+ ξ

∂w

∂t
+A

∂w

∂x
+B

∂w

∂y
+ C

∂w

∂z
= 0 (3)

The equations are advanced in pseudo-time by a multistage Runge-Kutta (RK) scheme. Let superscript0 denote the last
artificial time andk be the most recent stage of RK. Letn be the last physical time step calculated andn+ 1 the next physical
time step.Rk denotes the spatial derivative terms of the residual at the last stage,k. A typical stage of the RK scheme takes the
form

wk+1 = w0 − αk∆τP(Rk +
ctw

n+1 − E(wn, ...)
∆t

)

whereαk are the coefficients of the RK scheme. We use a simplified RK scheme where each stage depends on the original
w0 and the residual at the previous stage. The order of accuracy in physical time is only determined by the BDF scheme. In
practice, only the inviscid portion ofRk is updated at each stage. The viscous portion is updated, for a five stage scheme, only
on the odd stages. The difficulty is thatwn+1 is not known. So we replacen + 1 by k + 1 (i.e., current stage of RK). We
reformulate this as

wk+1 = w0 − αk∆τP(Rk +
ctw

k − E(wn, ...)
∆t

)− αkct∆τP(
wk+1 − wk

∆t
) (4)

The termwk+1−wk
∆t was first suggested by Melson and Sanetrik [10] to make the scheme implicit in the Runge-Kutta algorithm.

(R∗)k = Rk +
ctw

k − E(wn, ...)
∆t

(5)

denotes the total pseudo-residual that we drive to zero within each physical time step. Thus, within each subiteration we
march the pseudo-timeτ to infinity until R∗ is zero. We call this solution at the end of a physical time step the pseudo-steady
state. In practice, we take only a finite number of subiterations within each physical time step so that the pseudo-residual is
sufficiently small. In the present study we choose a fixed number of subiterations. However, the goal is to automate the number
of subiterations required for achieving consistently small global errors. We then rewrite (4) as

wk+1 = w0 − αk∆τP(R∗)k − αkct∆τP(
wk+1 − wk

∆t
)

The last term in this equation is included to increase the the point implicitness of the scheme. This term vanishes in the steady
state. Collecting terms, we have

(I + αkct
∆τ
∆t

P)wk+1 = w0 − αk∆τP(R∗)k + αkct
∆τ
∆t

Pwk (6)

The spatial discretization is a central difference formula plus a matrix valued artificial dissipation using second and fourth
differences [5, 14, 17]. We describe the second difference formulation for the artificial viscosity. The fourth differences are
treated similarly. We express the dissipation in terms of derivatives rather than differences for presentation only. Consider

∂w

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= artificial viscosity terms

As an example, on the numerical level, the residual in thex direction would be

R =
∂F

∂x
−∆x

∂

∂x
(ε2P−1|PA|∂w

∂x
) (7)

ε2 is a scaling factor in the artificial viscosity.A is the Jacobian ofF with respect tow. The absolute value of a matrix is found
by diagonalizing the matrix and taking absolute values of the eigenvalues (with cutoffs).
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We Fourier transform (3) in space and replacewt by (2). Defineζ= ξct

∆t and

G(ω1, ω2, ω3) = P [−ζI + i(Aω1 +Bω2 + Cω3)] (8)

with ω2
1 + ω2

2 + ω2
3 =1. The condition number is defined as

cond# = max
ωi

∣∣∣∣λmax(G)
λmin(G)

∣∣∣∣ . (9)

whereλ denotes an eigenvalue of the matrix. Note that the eigenvalues ofi(Aω1 + Bω2 + Cω3) are pure imaginary since
the matrices are symmetric. Physically, the condition number (withξ = 0) can be interpreted as the ratio of the fastest speed
to the slowest speed in any direction. If viscous terms are included, then we have additional negative real matrices in (8). We
stress that if∆t is sufficiently small, then the condition number is close to 1. The methods proposed here will not improve the
condition number of such problems and, hence, will not improve the convergence rate to a pseudo-steady state. For the Euler
equations, the condition number is approximately inversely proportional to the Mach number. Hence, for low speed steady
flows, the preconditioner is expected to be very effective for convergence acceleration.

With a local preconditioner we change the discrete equations at individual grid nodes without introducing new coupling
between neighboring nodes. Hence, this technique makes sense only for a system of equations. For a scalar equation, local
preconditioning is simply a rescaling of the time variable and has no effect on the numerical solution. This approach is distinct
from incomplete LU (ILU) decomposition based preconditioning techniques which couple all the nodes together and, therefore,
require more expensive inversion techniques. We choose the matrixP so as to improve the condition number of the equations
at the node point. The assumption is that the better the system is conditioned, the faster the iteration process will approach a
steady state. For well-posedness the matrixP should be symmetric positive definite.

For time dependent problems where the physical time scale is sufficiently small, and soζ is large, preconditioning can harm
the convergence rate. For such problems the preconditioning in the update stage should be turned off and should only affect the
artificial viscosity or the upwinding [11,24]. In this study we consider two different local preconditioners, Jacobi and low speed,
to alleviate stiffness associated with disparate characteristic speeds and from a poor condition number. We then formulate a
composite preconditioner that combines the complementary properties of the Jacobi and low speed preconditioners to achieve
an efficient scheme for solving flows with embedded low speed flows.

1. CHOICE OFVARIABLES

We consider the following sets of variables defined by

wc = (ρ, ρu, ρv, ρw,E)

Q = (p, u, v, w, T ) (10)

w0 = (p, u, v, w, S) , dŵ0 = (
dp

ρc
, du, dv, dw, dS)

We shall refer toQ as the primitive variables,wc as the conservation variables andw0 as the entropy variables. We evaluate
the fluxF and the physical time derivatives in conservation variables so that we obtain the correct shock jumps. One implemen-
tation of (6) is to use the conservation variables throughout the equation. As the Mach number decreases to zero, the density
usually becomes constant and so the conservation variables become less useful. The primitive variables,Q, are frequently used
for incompressible flow and are more useful when solving for slightly compressible flow.
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If we change from conservation variables toQ variables in the artificial viscosity, we replace (7) by

RQ =
∂F

∂x
−∆x

∂

∂x
(ε2Γ−1|PQAQ|

∂Q

∂x
) (11)

(R∗Q)k = RkQ +
ctw

k
c − F (wnc , ...)

∆t

PQ =
∂Q

∂wc
Pc

∂wc
∂Q

Γ−1 =
∂wc
∂Q

P−1
Q , Γ = PQ

∂Q

∂wc
=

∂Q

∂wc
Pc

Multiplying (6) by ∂Q
∂wc

and since∆wc= ∂wc
∂Q ∆Q, we get

(I + αkct
∆τ
∆t

PQ)Qk+1 = Q0 − αk∆τΓ(R∗Q)k + αkct
∆τ
∆t

PQQ
k (12)

After each stage, we calculatewk+1
c using the nonlinear relation betweenwc andQ. Once the artificial time derivative ap-

proaches zero, the resultant equation is in conservation form, including the physical time derivative. If the physical time
derivative were also transformed toQ variables, then we might lose the conservation form and, hence, the correct jump con-
ditions at a shock. The pseudo-residualR∗ should also be cast in conservation form so that we get the correct pseudo-steady
state at convergence. Preconditioning destroys conservation in the midst of the pseudo-time iteration process, but recovers the
conservation form forR∗ when the pseudo-time iteration process converges. BecauseR∗Q depends on bothwQ andwc when

usingQ variables, we do not include the termw
k+1−wk

∆t in the update scheme. In this case we must include the physical time
step,∆t, in the determination of the pseudo-time step∆τ .

A third possibility is to consider a mixture of conservation andQ variables. When evaluating the artificial viscosity we use
Q variables as given by (11). However, when updating the variables, we revert towc variables. We then get

(I + αkct
∆τ
∆t

P)wk+1
c = w0

c − αk∆τP(R∗Q)k + αkct
∆τ
∆t

Pwkc (13)

This is the same as (6), except that the artificial viscosityR in wc variables is replaced byRQ based onQ variables. Hence,
equations (6) and (12) have different numerical pseudo-steady states but equations (12) and (13) have the same numerical
pseudo-steady state.

Computations confirm that the variables used in the artificial viscosity have a much larger effect on the pseudo-steady state
than the choice of variables used to update the solution. We shall demonstrate that we can efficiently solve the preconditioned
equations (6) and (13).

2. LOW SPEEDPRECONDITIONING

2.1. Implementation

For low Mach number flows, the ratio of acoustic to convective speeds is large, which results in an ill-conditioned and
stiff system. Hence, we introduce a preconditioner to alleviate this stiffness. BecauseP based on conservation variables
is a full matrix, we make use of entropy variables, in which the energy equation decouples from the rest of the governing
equations. Furthermore, the Jacobian matrix is sparse in these variables. The simplest preconditioner inw0 variables is given
by (see [15,16,19,21])

P0
−1 =


1
β2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


β is a parameter which should be of the order of the Mach number as to approximately equalize all the eigenvalues ofP0A0.

Let c2 = γp
ρ , q2 =u2 + v2 + w2 andq̂2 = (γ−1)q2

2 . Then the Jacobians that connect these variables are
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∂w0

∂wc
=


q̂2 (1−γ)u (1−γ)v (1−γ)w γ−1
−u
ρ

1
ρ

0 0 0

− v
ρ

0 1
ρ

0 0

−w
ρ

0 0 1
ρ

0

q̂2−c2 (1−γ)u (1−γ)v (1−γ)w γ−1



∂wc
∂w0

=


1
c2

0 0 0 − 1
c2

u
c2

ρ 0 0 − u
c2

v
c2

0 ρ 0 − v
c2

w
c2

0 0 ρ − w
c2

h
c2

ρu ρv ρw −M
2

2


whereh= c2

γ−1 + q2

2 is the specific enthalpy. The preconditionerPc in conservation variables is then given byPc= ∂wc
∂w0

P0
∂w0
∂wc

.
The preconditioner appears in the form of the matrix multiplying a vector. We calculatePc times an arbitrary vector~x =
(x1, x2, x3, x4, x5) in stages. So

Pc~x = ~x+ (β2 − 1)y1~z (14)

P−1
c ~x = ~x+ (

1
β2
− 1)y1~z

wherey1 = γ−1
c2

[
q2

2 x1 − (ux2 + vx3 + wx4) + x5

]
and

~z =


1
u
v
w
h


In (6) we need to evaluate(I + d̂ ·Pc)−1 times a vector wherêd=αkct

∆τ
∆t . This is accomplished by

(I + d̂ ·Pc)−1~x =
~x+ ey1~z

1 + d̂
, e =

(1− β2)d̂

1 + β2d̂

For the primitive variables,Q, we have

PQ =


β2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

(β2−1)T
cpp

0 0 0 1


wherecp = γR

γ−1 . Define

~χ =


1
0
0
0

(γ−1)T
γp


As above in equations (12) or (13), we need to evaluate(I + d̂ ·Pc)−1 times a vector. This is accomplished by

(I + d̂ ·PQ)−1~x =
~x+ ex1~χ

1 + d̂
, e =

d̂(1− β2)

1 + d̂ · β2
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2.2. Choice of Parameters

We need to chooseβ2 and the pseudo-time step. When we ignore the termwk+1−wk
∆t in (4), the RK scheme is explicit for

the physical time derivative; however, it requires that the pseudo-time step also include a physical time step contribution. The
precise form of this term is given in (19). The present analysis is done on the continuous level, except for the source term
that arises from discretization of the physical time derivative by a BDF formula. The amplification matrix for a RK scheme
is a polynomial in a stage amplification matrix. The total scheme is stable when all the eigenvalues of the stage amplification
matrix lie within the stability region of the particular RK scheme. The stage amplification matrix in pseudo-time for the Euler
equations inŵ0 variables, in generalized coordinates, is given by

G(ω1, ω2, ω3) = P0

[
−ctVol

∆t
+ i(ω1A+ ω2B + ω3C)

]
(15)

whereVol is the cell volume andA,B,C are the Jacobian matrices of the inviscid flux vectors in the generalized coordinate
space dimensions. MatricesA,B,C are symmetric indŵ0 variables, and so this is a symmetric hyperbolic system. We denote
the surface area of the cell asSij where the first subscript refers to the direction of the normal and the second is the projection
of that normal in each direction. Define the contravariant velocity components as

U = uSxx + vSxy + wSxz

V = uSyx + vSyy + wSyz (16)

W = uSzx + vSzy + wSzz

Then (15) becomes

G(ω1, ω2, ω3) = −ctP0Vol
∆t

+iω1


β2U β2cSxx β2cSxy β2cSxz
cSxx U 0 0
cSxy 0 U 0
cSxz 0 0 U

+iω2


β2V β2cSyx β2cSyy β2cSyz
cSyx V 0 0
cSyy 0 V 0
cSyz 0 0 V



+iω3


β2W β2cSzx β2cSzy β2cSzz
cSzx W 0 0
cSzy 0 W 0
cSzz 0 0 W


Let

|q| =
√
U2 + V 2 +W 2

and

ω1 =
U

|q|
ω2 =

V

|q|
ω3 =

W

|q|

Therefore,ω2
1 +ω2

2 +ω2
3 =1. Define

Û =
SxxU + SyxV + SzxW

|q|

V̂ =
SxyU + SyyV + SzyW

|q|

Ŵ =
SxzU + SyzV + SzzW

|q|
q̂2 = Û2 + V̂ 2 + Ŵ 2



TITLE WILL BE SET BY THE PUBLISHER 7
whereÛ , V̂ , Ŵ depend on the velocity componentsu, v, w and the geometry metrics. This gives

G =


β2D β2cÛ β2cV̂ β2cŴ

cÛ D 0 0
cV̂ 0 D 0
cŴ 0 0 D


where,

D = −ctVol
∆t

+ i|q|

(17)

The eigenvalues areλ0 =D and

λ±=
β2 + 1

2
D±

√(
β2− 1

2

)2

D2+β2c2q̂2 (18)

BecauseD is a complex number, so isλ±. We defineλinv = max(|λ+|, |λ−|). The artificial time step is determined by
demanding thatλ± be within the stability domain of the RK scheme. Sinceλ± is a complex number, this leads to a condition
that depends on the details of the stability curve. Hence, we replace this by a condition on the real and imaginary parts
separately. We use a similar argument to account for viscous terms in the eigenvalues and the artificial time step [23]. The
formula we use for calculating the artificial time step,∆τ ∼ 1

λ , is given by

1
∆τ

=
1

∆τss
+

Kτ

ct∆t
(19)

where∆τss is the steady state (without dual time-stepping) artificial time step which is a sum of inviscid and viscous contri-
butions. For most of the results presented in this paper,Kτ = 1. Using an implicit formula for the physical time derivative
as derived above allowsKτ = 0. However, for robustness, we usually chooseKτ = 1. Even whenKτ = 0, ∆τ depends on
the physical time step,∆t, throughλ which is a function ofβ2. For preconditioning based on primitive variables, we do not
includew

k+1−wk
∆t in (4) and so we choose a higher value forKτ =2.

The major difficulty in determiningβ is thatD is a complex number. Hence, we cannot choose a realβ to (approximately)
equalize the eigenvaluesλ0 andλ±. Ignoringβ2 compared with 1, we would likeD2 to be approximately equal toβ2c2q̂2.
However, one term is real and the other term is complex. Furthermore, the square root of a complex quantity combines the real
and imaginary parts in every term. For inviscid steady state flow, all the terms are “imaginary,” and so we can cancel “i” and
deal only with real quantities.β2

inv is chosen so thatβcq̂= |D|= |q|. For low Mach numbers,β2 is small and soλ± ∼ 1+
√

5
2 D.

We then chooseβinv as a term that depends onD plus a cutoff to preventβ from becoming too small. This cutoff depends on a
global quantityMref. We choose

β2
inv = K1

q2

c2q̂2
+K2M

2
ref

β2
ss = K3(Re∆)β2

inv (20)

For a uniform Cartesian mesh,q
2

c2q̂2 reduces toM2. The formula forβ2 with dual time stepping is then given by

β2 = β2
ss+Kβ

(
ctV ol

c|S|2∆t

)p
(21)

whereK1,K2,K3,Kβ are constants,Re∆ is the cell Reynolds number, and|S|2 is a sum of the squares of all surface metrics
(6 in two dimensions and 9 in three dimensions).M is the local Mach number andMref is a reference Mach number, which is
representative of the free stream Mach number for low speed flows. We recalculateMref after each physical time step. Based
on numerical experimentation,p= 1

2 in (21) yields the most consistent results. Note thatβ2 depends on1
∆t even when using an

implicit method for the time derivative term. We also account for viscous effects in computingβ2 [23] throughK3. Because we
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do not letβ2 exceed unity, the preconditioning is turned off locally in the farfield for external problems, where the cell volumes
are large. Similarly, when∆t is small enough, then preconditioning is turned off globally.

When the contribution of the physical time step is large enough, then the preconditioning does not improve the convergence
of the subiterations, but it is still useful for improving the accuracy of the numerical solution. Hence, we use different values of
β for the preconditioning for the update procedure and for the artificial viscosity. We denote byKavis

β the value ofKβ in (21)

when used within the artificial viscosity. For dual time stepping this will generally be smaller than the value ofKupdate
β used in

the update procedure.

3. RESIDUAL SMOOTHING

Implicit residual smoothing is a technique to smooth the residuals and allow a larger time step [6]. It also changes the
damping characteristics of the scheme. In continuous form, it is given by(

I − ε ∂
2

∂x2

)
Rsmoothed= Roriginal

Roriginal corresponds to(R∗)k in (6). This is done in each coordinate direction and at each stage of the RK update. For a one
dimensional steady state problem,ε is chosen to be

ε =
1
4

[(
λ

λ∗

)2

− 1

]
(22)

whereλ is the CFL number of the smoothed scheme andλ∗ is the CFL number of the unsmoothed scheme. Hence,λ∗ should be
determined by the stability theory of the RK method being used. For the five stage RK method used here,λ∗=3.748. However,
for the various preconditioners, we frequently reduceλ∗ from its theoretical value. In multi-dimensions, we also account for
the ratios of the spectral radius in various directions [9,30].

For dual time steps we need to reanalyze the determination ofε. As before, we denote the physical time byt and the artificial
time by τ . We consider the one dimensional scalar equation,uτ = ux − ct

∆tu. We apply residual smoothing to the change
E=uk − u0 at the k-th RK stage. This yields

Ei − ε(Ei+1 − 2Ei + Ei−1) = ∆τ
(
ui+1 − ui−1

2∆x
− ct

∆t

)
Using Fourier transform, we get

z(θ) =
iλ sin(θ)− ct∆τ

∆t

1 + 2ε(1− cos(θ))
z is the Fourier transform of the variable being updated in the RK scheme. By standard ODE analysis, the scheme is absolutely
stable ifz lies within the stability domain of the RK scheme. We have a difficulty sincez is a complex quantity, and so the
stability is dependent on the details of the shape of the stability domain. Instead, we replace this requirement by the simpler one
that we only look at the imaginary and real parts ofz and demand that they lie within the appropriate intervals on the imaginary
and real axes, respectively. This yields ∣∣∣∣ λ sin(θ)

1 + 2ε(1− cos(θ))

∣∣∣∣ ≤ λ∗I
ct

∆τ
∆t

1 + 2ε(1− cos(θ))
≤ λ∗R

whereλ∗I andλ∗R are the limits of the RK stability region along the imaginary and negative real axis, respectively. Usually we
chooseθ so as to maximize the first term. This yields

cos(θ) =
2ε

1 + 2ε
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and as a consequence we get

ε ≥
( λλ∗I )2 − 1

4
Substituting this into the second requirement we get

(1 + 2ε)ct∆τ
∆t

1 + 4ε
≤ λR

Definer= λR
ct

∆τ
∆t

. Then we require

ε ≤ 1− r
2(2r − 1)

So in addition to the usual condition onε, we have a new restriction that

∆τ ≤ λR∆t
ct

(
1 +

2ε
1 + 2ε

)
(23)

In practice, we have found that instead of restricting∆τ to satisfy (23), we can reduce the value ofλ∗. For non-preconditioned
steady flow computations, we setλ∗=3.748 in (22) for the five stage RK scheme. For a low speed preconditioned steady state
calculation, this is reduced toλ∗=3.25. For dual time steps with Jacobi preconditioning, this is changed toλ∗=2.4. When us-
ing dual time steps with low speed preconditioning, this is further reduced toλ∗=2.0. As shown above, the residual smoothing
parameter should be proportional to1∆t .

4. JACOBI PRECONDITIONING

The Jacobi preconditioning is based on adding a matrix-based artificial viscosity and then choosingP−1 as the terms on the
diagonal (i.e., the coefficient ofwij). The result for a central difference scheme i

P−1
J = ζI + |A|+ |B|+ |C| (24)

This approach has been proposed by Allmaras [2] and Pierce and Giles [12] for steady state flows. The good high frequency
damping characteristics of the Jacobi preconditioner make it an ideal candidate for coupling with a multigrid scheme. Because
this formulation connects the preconditioning with the artificial viscosity (or upwinding), the matrixP is affected by the details
of the discretization. However, equation (24) has also been used with other artificial viscosities such as CUSP (see Caughey
and Jameson [3]). We prefer to view the preconditioner represented by equation (24) as a matrix or characteristic inverse time
step (see [25] for a similar view). A multistage, non-preconditioned RK scheme uses an artificial time step given by

∆τ =
CFL

ζ + ρ(A) + ρ(B) + ρ(C)
(25)

whereρ is the spectral radius andCFL is a number chosen to achieve stability. A matrix time step for the Jacobi preconditioner
replaces this by

∆τ = CFL (ζI + |A|+ |B|+ |C|)−1 (26)

In calculating the absolute value of the matrices, one needs to cutoff the eigenvalues to prevent them from becoming too small.
We do this by not allowing any eigenvalue to be less than a given percentage of the maximum eigenvalue. Within the artificial
viscosity we cutoff the acoustic eigenvalues at 30% and the convective eigenvalue at 10% of the maximum [14]. Within the
Jacobi preconditioning all eigenvalues are cutoff at 30% of the maximum eigenvalue.

The preconditioning techniques described here have been incorporated in the TLNS3D code [26,27]. The standard TLNS3D
code solves the generalized thin layer Reynolds-averaged Navier-Stokes equations, and uses residual smoothing and multigrid
to accelerate the convergence to a steady state. We wish to include all of these acceleration techniques when using the Jacobi
preconditioning. Though some researchers have avoided the use of residual smoothing with the Jacobi preconditioner [12,22],
we have found no difficulty in including both the residual smoothing and the Jacobi preconditioning. In fact, they complement
each other since the Jacobi preconditioning is local while the residual smoothing is global in nature due to the implicit operators



10 TITLE WILL BE SET BY THE PUBLISHER

in each coordinate direction. This is especially important in the presence of high aspect ratio cells, which are essential for
resolving boundary layers in viscous flows.

The Jacobi preconditioning for the k-th stage of a RK algorithm is given as

(ζI + |A|+ |B|+ |C|)∆w = αkCFL · Res (27)

whereαk is the stage coefficient of the RK scheme. For a three dimensional problem, each of the matrices is5×5. As
suggested by Caughey and Jameson [8] and Hosseini and Alonso [4], we transform the equation to entropy variablesw0 =
(dpρc , du, dv, dw, dS). This has the advantage that the flux Jacobian matrices are symmetric and also that the entropy equation
reduces to a scalar equation that decouples from the others. Hence, we need only to operate with a4 × 4 matrix rather than a
5 × 5 system, which results in appreciable savings in computational costs. The formulas for the absolute values are presented
later. One then calculates the LU factors explicitly for a4× 4 matrix. Using a Cholesky decomposition for a symmetric matrix,
fewer elements need to be calculated. However, four square roots are evaluated in this approach (Caughey and Jameson [3]
reduced this to three square roots by clever programming). Computationally, we found that using the nonsymmetric LU form
required about the same computer time for this small matrix, since no square roots are required. The storage is larger for the
nonsymmetric decomposition. Since this matrix is not stored globally, it has an insignificant impact on memory requirements.
The extra work in the Jacobi preconditioning is mainly in defining the elements of the matrix rather than the inversion, and it
typically adds about10% to the total running time for a compressible turbulent flow code.

For viscous problems, Caughey and Jameson [3] replaced the entropy variables by a transformation suggested by Abarbanel
and Gottlieb [1]. This can also be expressed as using a different set of variables [21]. Even though symmetry is preserved, the
resultant absolute values constitute a full5×5 matrix. Since this substantially adds to the computing time, we used the entropy
variables instead and approximate the viscous terms by a diagonal matrix corresponding to the additional term in the time step
calculation of the standard code. Hence, it is just an addition to the diagonal term in (26). For high Reynolds number flows, this
viscous correction is small enough that it does not justify the additional computational time required for inverting a full5×5
matrix at all nodes.

In generalized coordinates we define the contravariant velocityU=uSxx + vSxy +wSxz whereSij are the elements of the
surface area tensor. In entropy variables, the flux Jacobian matrixA is given by

A =


U cSxx cSxy cSxz 0
cSxx U 0 0 0
cSxy 0 U 0 0
cSxz 0 0 U 0

0 0 0 0 U


Let λ1, λ2 be the eigenvalues ofA and define

R1 =
|λ1|+ |λ2|

2

R2 =
|λ1| − |λ2|

2
R3 = R1 − |U |

and|S| =
√
S2
xx + S2

xy + S2
xz. Define the normalized surface metrics

Ŝx =
Sxx
|S|

Ŝy =
Sxy
|S|

Ŝz =
Sxz
|S|
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Then the absolute value is given by (symmetric terms suppressed)

|A| =


R1 ŜxR2 ŜyR2 ŜzR2 0
. |U |+Ŝx

2
R3 ŜxŜyR3 ŜxŜzR3 0

. . |U |+Ŝy
2
R3 ŜyŜzR3 0

. . . |U |+Ŝz
2
R3 0

. . . . |U |

 (28)

To get a better intuition of the matrix|A| we consider the subsonic case with0 ≤ u, v, w ≤ c. In Cartesian coordinates we
haveSxx=1, Sxy=Sxz=0. ThenR1 =c,R2 =u,R3 =c− u and

|A| =


c u 0 0 0
u c 0 0 0
0 0 u 0 0
0 0 0 u 0
0 0 0 0 u


Let d be the number of dimensions (2 for 2-D and 3 for 3-D flows). Then

|A|+ |B|+ |C| =


d · c u v w 0
u v+w+c 0 0 0
v 0 u+w+c 0 0
w 0 0 u+v+c 0
0 0 0 0 u+v+w


Foru, v, w << c

(|A|+ |B|+ |C|)−1 ∼ 1
c

diag

(
1
d
, 1, 1, 1,

c

|u|+ |v|+ |w|

)
The inverse of the Jacobian is a diagonal matrix (up to errors ofO(M)). On the other hand,∆τ ∼ 1

cd . So

(|A|+|B|+|C|)−1

∆τ
∼ diag

(
1, d, d, d,

cd

|u|+ |v|+ |w|

)
Hence, for most of the variables (except for entropy), there is a (maximum) factor ofd ∼ 2, 3 variation in the time step. Thus,
as a matrix time step, Jacobi preconditioning mainly affects the entropy equation. However, the major advantage of the Jacobi
preconditioning is the damping of the high frequencies, which is useful for multigrid convergence [20].

5. PRECONDITIONING SQUARED

Let β be given by (21). We consider the simplest low speed preconditioning given in entropy variables by

P0 = diag(β2, 1, 1, 1, 1) (29)

We combine the low speed preconditioning with Jacobi preconditioning by starting with an artificial viscosity based on the
low speed preconditioning for increased accuracy and then forming the Jacobi preconditioning for better convergence rates [20].
Let P be the low speed preconditioning, and let the physical time derivative be represented by (2). Then the preconditioned
scheme (showing only the second-order dissipation) is given by

P−1
J = P0

−1 (ζP0 + |P0A|+ |P0B|+ |P0C|)

P−1
J ∆w =

ctw
n+1 − E(wn, wn−1, ...)

∆t
+ Fx +Gy +Hz (30)

− ∆x
2
[
(P0
−1|P0A|wx)x + (P0

−1|P0B|wy)y + (P0
−1|P0C|wz)z

]
≡ Res
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We redefine the entropy variables for the preconditioned scheme so as to includeβ. So

dŵ0 = (
dp

ρβc
, u, v, w, T ) (31)

In these variables the matricesP0 and|P0A|+ |P0B|+ |P0C| are symmetric. The eigenvalues of each matrix are given by

λ± =
(β2 + 1)U ±

√
(β2 − 1)2U2 + 4β2c2

2

λmax =
(β2 + 1)|U |+

√
(β2 − 1)2U2 + 4β2c2

2

Define

|Λ+| = max(|λ+|, εnλmax) |Λ−| = max(|λ−|, εnλmax) |Λ0| = max(|U |, εlλmax)

R1 =
(λ+ − U)|Λ+| − (λ− − U)|Λ−|

λ+ − λ−
S1 =

(λ+ − U)|Λ−| − (λ− − U)|Λ+|
λ+ − λ−

R2 = βc
|Λ+| − |Λ−|
λ+ − λ−

R3 = S1 − |Λ0|

whereU is the contravariant velocity in each direction andεn andεl are constants. Typical values areεn=0.3 andεl=0.1 for
the artificial viscosity andεn=εl=0.3 within the Jacobi preconditioning. Then

|P0A| =


R1 ŜxR2 ŜyR2 ŜzR2 0
. |Λ0|+Ŝx

2
R3 ŜxŜyR3 ŜxŜzR3 0

. . |Λ0|+Ŝy
2
R3 ŜyŜzR3 0

. . . |Λ0|+Ŝz
2
R3 0

. . . . |Λ0|

 (32)

The same formulas hold for|P0B| and|P0C| with the appropriate surface metrics. The update scheme, (27), then becomes

∆w =
∂w

∂w0
(ζP0 + |P0A|+ |P0B|+ |P0C|)−1

P0
∂w0

∂w
αk∆τRes (33)

6. RESULTS

The results are computed using TLNSD, a finite volume central difference code augmented by a matrix artificial viscosity.
The equations are advanced in time with a dual time stepping scheme. A five stage RK scheme, accelerated by residual
smoothing and multigrid [5,14,26], is used for advancing the solutions in pseudo-time. Second order BDF formulation is used
for discretizing the physical time derivatives. Without low speed preconditioning, we use a RK scheme with the coefficients
(.25, .16667, .375, .5, 1.0). With low speed preconditioning, the RK coefficients are chosen as (.25, .18, .40, .51, 1.0). The
artificial viscosity is partially updated only on the odd stages of the multistage method using fractions of .56 and .44 on the
third and fifth stages, respectively. There is also a small difference in the dependence ofβ on the viscous terms for the artificial
viscosity [23]. The other parameters are identical with the exception ofλ

λ∗ in (22) as described above. The residual smoothing
coefficients depend on the aspect ratio [9,30]. For all preconditioning cases,β2

min =M2
∞.

6.1. RAE2822 airfoil

We first examine the use of both Jacobi and low speed preconditioners for steady flow. We consider a two-dimensional
RAE2822 airfoil using a320 × 64 C grid. We first consider a transonic case with an inflow Mach number,M∞ = 0.73, and
an angle of attack,α=2.79◦. The Reynolds number is 6.5 million, and the turbulent flow is simulated with a Baldwin-Lomax
turbulence model. We use a FMG multigrid with 50 iterations on each of the three coarse meshes and 300 iterations on the
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finest mesh. The only algorithmic change associated with the Jacobi preconditioner is in the update stage where the residual is
multiplied by the low speed preconditioning matrix,P , followed by either∆τ or else by(|PA|+ |PB|)−1. In Figure 1(a) we
compare the convergence rate for the standard code with that produced with Jacobi preconditioning. The residual shown reflects
the change from n to n+1 inρu for the conservation variable and inu for the primitive variable formulation of preconditioning.
Since the density is almost constant at low Mach numbers, these residuals are comparable in magnitude. For the transonic flow
case, we do not use low speed preconditioning. The Jacobi preconditioning results in an improvement in the convergence rate.
In Figure 1(b) the drag coefficient for the same case also shows improved convergence with Jacobi preconditioning. The Jacobi
preconditioning has no impact on the final value of the drag, as expected.

We next compute a low speed case withM∞ = 0.2. In Figure 2(a) we compare the impact of low speed preconditioning
without Jacobi preconditioning on the convergence of the residuals. The low speed preconditioning improves the convergence
rate significantly. The two preconditioners based on the different set of variables are almost indistinguishable. In Figure 2(b)
we show the results using the Jacobi preconditioner both by itself and combined with low speed preconditioning. The Jacobi
preconditioning improves both the non-preconditioned and the low speed preconditioned cases. The cpu time required for the
low speed preconditioned code is approximately an additional 20% of the total run time compared to the baseline code. This
includes both the contributions to the update and the artificial viscosity. The Jacobi preconditioning requires an additional
10% cpu time. The gains in residual convergence are more significant with Jacobi preconditioning, especially if one wishes
to reduce the residual to very low levels. In Figures 3(a) and 3(b) we show the convergence of the drag. The steady state
drag is the same for the non-preconditioned algorithm and Jacobi preconditioning since we only change the update procedure
but not the residual. However, the low speed preconditioning is included in the artificial dissipation and so the low speed
preconditioning changes the steady state numerical solution. Turkel, Fiterman and van Leer [18] have proven that only the
low speed preconditioned residual gives the correct solution as the Mach number approaches zero. The theory is based on a
linearized system and so it does not distinguish between preconditioning using conservation or primitive variables.

We conclude, in Figures 4(a) and 4(b), with results for an inflow Mach number of 0.05. Since both preconditioners produced
similar results, we include only the one based on primitive variables. We see that the Jacobi preconditioning by itself helps
relatively little for this low Mach number flow. In contrast, using the low speed preconditioning gives a large improvement
in the residual convergence. The combined low speed and Jacobi preconditioning gives a dramatic improvement, yielding 8
orders of magnitude decrease in the residual in 300 multigrid cycles. The pressure residual is reduced by about 11 orders of
magnitude. For a five stage RK formula, this is equivalent to 1500 explicit sweeps through the grid. Such rapid convergence
represents a significant improvement for low-speed, viscous, turbulent flow computations on high aspect ratio grids.
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FIGURE 1. RAE2822 convergence history,M∞=0.73
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FIGURE 2. RAE2822 residual history,M∞=0.20
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FIGURE 4. RAE2822 convergence history,M∞=0.05

6.2. Vortex

We now consider time dependent flow using dual time steps. We begin with an inviscid case for which the exact solution is
known, and so we can assess the effect of the preconditioners on the accuracy. We solve for an inviscid vortex propagating in
thex direction. We first define several quantities in terms ofx0, which represents the center of vortex at time,t=0, andc0 and
c1, which are free parameters.

c2 =
γ − 1

2γ
ρ0

p0
c20c

2
1

arg = 1− (x− x0 − c0t)2 − y2

The exact solution for this problem in the non-dimensional variables of TLNS3D code is as follows:

u(x, y, t) = c0
(
1− c1ye0.5 arg

)
v(x, y, t) = c0c1(x− x0 − c0t)e0.5 arg

ρ(x, y, t) = ρ0 (1− c2earg)
1

γ−1

p(x, y, t) = p0 (1− c2earg)
γ
γ−1

With the constants

c0 =
√
γM c1 =

1
2π

x0 = 10

ρ0 = 1 p0 = 1 So c2 =
γ − 1

2
c21M

2

This vortex also satisfies the incompressibility conditionux+vy=0. We defineCFLphys = c0∆t
∆x . The computational domain

is 5 ≤ x ≤ 35,−5 ≤ y ≤ 5 with a uniformly spaced Cartesian grid with 97x33 nodes yielding∆x=∆y= .3125. We discretize
the Euler equations using a fourth order difference. We chooseM = 0.05. SoCFL = 1 corresponds to∆t= 6.25√

1.4
∼ 5.28. We

perform 50 subiterations at each physical time step.
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In Table 1(a) we present theL2 errors inu for a fixed physical time of 60 (i.e. 60 physical time steps atCFL = 1). So,
analytically the center of the vortex moves horizontally fromx=10 tox=28.75. This enables us to see the growth of the errors
for a larger time. In Table 1(b) we present the error after 10 physical time steps. Hence, differentCFL correspond to different
physical times. We compare the non-preconditioned and preconditioned algorithms where the preconditioned algorithm is
based on conservation variables. Use of primitive variables did not change the results very much.

Note that forM = 0.05 flow at a physical time step corresponding to CFL=1,M2 ∼ 2.5 × 10−3 while
(

ctV ol
c|S|2∆t

) 1
2 ∼

3.8×10−1. Thus, the physical time term dominates other contributions in the calculation ofβ, (21), by two orders of magnitude.
On the other hand for the same time step we have1

∆τss
∼ .53, while Kτ

ct∆t
∼ .13 and so the contribution of the physical time

step to the artificial time step in (19) is small. AlthoughKτ =0 is stable, we chooseKτ =1 in (19) for improved robustness.
As described above, we consider the use of two separate values forβ, for the convergence acceleration and the artificial

dissipation. The only difference in (20) is the constantKβ . To distinguish them, we denote asKavis
β the constant which affects

the magnitude of the artificial viscosity. Normally, we chooseKavis
β as small as possible without destroying convergence so

as to gain accuracy. The constantKupdate
β used in the update stage does not affect accuracy and is chosen only to improve the

convergence rate. We chooseKupdate
β =0.3 for all the cases. The standard value chosen forKavis

β =0.015, which is more than an

order of magnitude smaller thanKupdate
β and, therefore, it minimizes the magnitude of the artificial viscosity. IncreasingKavis

β

for these larger physical time steps reduces the error for the preconditioned case to be similar to the non-preconditioned scheme.
Hence, the formula (21) gives the minimumβ in the artificial viscosity for stability but not necessarily the optimal value. For
CFL ≤ 1 the optimalKavis

β is the smallest for which the subiterations are stable. However, for a larger physical time step,
we get better accuracy with a larger coefficient in the artificial viscosity than the minimum required. Hence, preconditioning
improves the accuracy forCFLphys≤ 1 but the accuracy deteriorates for larger physical time steps.

CFLphys no precondition precondition
.25 4.547 10−4 2.048 10−4

.50 4.235 10−4 1.972 10−4

1.0 4.480 10−4 3.808 10−4

2.0 6.854 10−4 1.038 10−3

3.0 9.062 10−4 1.238 10−3

4.0 1.006 10−3 1.265 10−3

5.0 1.011 10−3 1.173 10−3

(a) Error in u at T=60

CFLphys no precondition precondition
.25 7.101 10−5 3.442 10−5

.50 1.000 10−4 3.958 10−5

1.0 1.581 10−4 5.285 10−5

2.0 3.402 10−4 3.858 10−4

3.0 6.666 10−4 7.976 10−4

4.0 8.865 10−4 1.045 10−3

5.0 1.011 10−3 1.173 10−3

(b) Error at 10 physical time steps

TABLE 1. Vortex Motion: M=0.05

6.3. Time Dependent NACA0012

We next consider turbulent flow around a NACA0012 airfoil. The grid is an O mesh with141 × 61 nodes. The angle
of attack isα = 30◦, and the inflow Mach number isM∞ = 0.05. The high angle of attack causes the flow to be unsteady
especially in the wake region. We use the Spalart-Allmaras one equation turbulence model. The solution is calculated for 600
physical time cycles. We compute 50 cycles (each a 5 stage RK with multigrid and residual smoothing) within each physical
time cycle. In Figure 5(a) we show the lift as a function of the physical time. We see that for smaller times, the solutions
are essentially the same. However, for longer times, the preconditioning results differ from that of the non-preconditioned
code. We stress that the use of preconditioning affects the accuracy of the solution and so changes the values of the lift and
drag. There is no analytic solution for this problem and, hence, no easy way to determine the correct solution. The proof of
Turkel, Fiterman and van Leer [18], that preconditioning improves the accuracy for low Mach number flows, applies to steady
state flows. Nevertheless, the analysis applies to time dependent flows based on similar scaling arguments. This lends some
credence to the results obtained with the preconditioned code. There are also smaller differences between the preconditioned
codes based on primitive or conservation variables. In Figure 5(b) we display the same case where only 10 subiterations are
done for each physical time step. As time progresses we see that in all cases, the lift begins to differ. However, the differences
are much smaller with the preconditioned algorithm, implying that the preconditioned algorithm is more robust with respect to
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lowering the number of subiterations. This is important when the number of iterations is computed based on some error criteria
rather than being fixed in advance. The differences in lift are caused by the different level of artificial viscosity between the
non-preconditioned and preconditioned schemes. To see this even more clearly, we vary the value ofβ2 used in the artificial
viscosity of the preconditioned scheme. The coefficient inβ2 in (20) used in the update procedure is fixed atKupdate

β = 0.3.
In Figure 6 we vary betweenKavis

β = 0.015 (standard) toKavis
β = 0.1 toKavis

β = 1.0. We compare the preconditioning scheme,
based on primitive variables, with the various values ofKβ and the non-preconditioned code. We see that at the highest level,
Kavis
β = 1.0, the preconditioned and non-preconditioned values forcL basically coincide. As with the vortex, the dominant

term in (21) is the physical time dependent term
(

ctV ol
c|S|2∆t

) 1
2

which varies between 0.2 and 1.3 in the computational domain.

Hence, whenKavis
β = 0.015, the preconditioning is changing the artificial viscosity. However, whenKavis

β = 1.0, thenβ2

becomes greater than 1 over large portions of the domain and is capped atβ2 = 1. This means there is no preconditioning in
the artificial viscosity over much of the domain. The contribution of the physical time step, including the volume of the cell,
towards the artificial time step (19) also varies over the grid. At other grid points it is comparable or smaller than the steady state
contributions. As a consequence we choseKτ = 1 for preconditioning with conservation variables even though an implicit
formula was used. For the primitive variables, we do not use the implicit termwk+1−wk

∆t in (4) and so choseKτ = 2. Even
though this decreases the artificial time step, nevertheless, we still achieve a better convergence rate within the subiterations.

In Figure 7 we display the lift for the case with 50 subiterations per physical time step. We see that the preconditioning
changes the calculated value of lift. All the methods converge the lift to within graphical accuracy. However, the precondition-
ing is still converging faster. In Figure 8(a) we display the residual for the case with 50 subiterations per physical time step (u
residual for preconditioning based on primitive variables andρu residual for all other cases). The residuals are normalized so
that they start at 1.0. The time frame period is about half way through the 600 physical time cycles. Low speed preconditioning
improves the convergence. There is a negligible difference between the two preconditioners based on either conservation or
primitive variables. Furthermore, we see that displaying the residuals ofu or ρu makes no difference. We next add Jacobi pre-
conditioning to the previous computations, with and without low speed preconditioning. To avoid too many graphs, we display
only the low speed preconditioning based on primitive variables. In Figure 8(b) we see that adding the Jacobi preconditioning
improves the convergence rate of both the non-preconditioned and low speed preconditioned algorithms.

In conclusion for this time dependent case the low speed preconditioning improves the convergence rate of the residual.
Jacobi preconditioning further improves the convergence rate. No difference between various sets of variables was found.
However, both the preconditioning and the set of variables did affect the value of the lift and drag.
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FIGURE 8. Residual history, within subiterations, for NACA0012

7. CONCLUDING REMARKS

Jacobi and low speed preconditioning techniques have been developed for a central difference algorithm to treat both steady
state and time dependent problems. Jacobi preconditioning is shown to improve the efficiency of the baseline TLNS3D code for
steady flow over a RAE 2822 airfoil at transonic Mach numbers. The efficiency gain is obtained on top of the efficiency gained
by the residual smoothing and multigrid acceleration techniques which are integral parts of the TLNS3D code. For lower speed
flows, the low speed preconditioning improves the convergence rate while the Jacobi preconditioner by itself does not improve
the convergence rate. The convergence rate is significantly improved by combining the Jacobi and low speed preconditionings.
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In addition, for low Mach number flows, the low speed preconditioning improves the accuracy of the steady state solution while
the Jacobi preconditioning does not affect the steady state.

If the physical time step, within dual time stepping, is sufficiently small, then the preconditioning does not improve the
convergence rate. In this case, we chooseβ = 1, thereby turning off the preconditioning in the update stage. However,
for typical parameters, as used in a NACA 0012 test case, the low speed preconditioner did improve the convergence of the
subiterations towards the pseudo-steady state. The Jacobi preconditioner further improved the convergence rate within each
physical time step. In all cases the low speed preconditioning affects the artificial viscosity. To minimize the magnitude of the
artificial viscosity, we use different values ofβ in the update stage and the artificial viscosity.
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