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We consider the use of low speed preconditioning for time dependent problems. These are solved using
a dual time step approach. We consider the effect of this dual time step on the parameter of the low speed
preconditioning. In addition, we compare the use of two sets of variables, conservation and primitive variables,
to solve the system. We show the effect of these choices on both the convergence to a steady state and the
accuracy of the numerical solutions for low Mach number steady state and time dependent flows.

Introduction
Methods for preconditioning the low speed Euler and

Navier-Stokes equations have been available for about
twenty years. In spite of these years of development and
analysis there still exists difficulties with the robustness
of these techniques. This manifests itself in that some of
the parameters of the preconditioning matrix are problem
dependent. Because of the stagnation points it is neces-
sary to prevent the parameters from becoming too small.
Unfortunately, the cutoff is frequently large and problem
dependent. In addition the theory of preconditioning is
mainly based on properties of the inviscid Euler equa-
tions with artificial viscosity even though most of the
applications are for viscous flows.

The preconditioning changes the time dependent be-
havior of the system and so is only directly useful for
steady state calculations. To overcome this difficulty a
dual time step method has been used by many inves-
tigators.3–6,20 In this approach the solution at the next
physical time step is determined as a steady state prob-
lem to which preconditioning is applicable. We shall
analyze time dependent effects on the preconditioning
parameters. We consider

P−1 ∂w

∂τ
+

∂w

∂t
+ R = 0 (1)

wheret is the physical time,τ is an artificial time, R
denotes the residual for the steady Navier-Stokes equa-
tions,w refers to a general set of unknowns andP refers
to the preconditioning matrix. In the next section we
will discuss in more details the options for choosingw.
Equation (1) is advanced in artificial time by a Runge-
Kutta (RK) method until a steady state inτ is reached.
We replace the physical time derivative by a backward
difference formula (BDF). The general formula for BDF
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schemes can be presented as

∂w

∂t
∼ ctw

n+1 − F (wn, wn−1, ...)
∆t

wherect is constant which depends on the choice of BDF
scheme. Let superscript0 denote the last artificial time
step,k the most recent stage of RK,n the last physical
time step andn+1 the next physical time step. A typical
stage of the RK is

wk+1 = w0 − αk∆τP
{

Rk +
ctw

n+1 − F (wn, ...)
∆t

}
whereαk are the stage coefficients of the RK scheme.
In practice, only the inviscid portion ofRk is updated at
each stage. The viscous portion is updated, for a 5 stage
scheme, only on the odd stages. Becausewn+1 is not
known, we replace it bywk+1, i.e. current stage of RK.
We reformulate this as

wk+1 = w0 − αk∆τP
{

Rk +
ctw

k − F (wn, ...)
∆t

}
− αkct∆τP(

wk+1 − wk

∆t
)

We apply residual smoothing to the term inside the curly
brackets. This is done so that the residual smoothing op-
erates on a difference that vanishes in the steady state.
Collecting terms we have

(I + αkct
∆τ

∆t
P)wk+1 = w0

− αk∆τP
{

Rk +
ctw

k − F (wn, ...)
∆t

}
(2)

+ αkct
∆τ

∆t
Pwk

The space discretization consists of a central differ-
ence formula plus a matrix valued artificial dissipation
using second and fourth differences. We now describe
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the artificial viscosity due to the second order differenc-
ing. We express the dissipation in terms of derivatives
rather than differences for presentation only. We con-
sider the equation

∂w

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= visc terms

whereF , G, andH represent the fluxes along x, y, and z
directions. In the x direction, we supplement the residual
by the artificial viscosity as follows:

R =
∂F

∂x
− hx

∂

∂x
(ε2P−1|PA|∂w

∂x
) (3)

whereA is the Jacobian ofF with respect tow, hx is the
mesh spacing, andε2 is a constant. The absolute value of
the matrix is found by diagonalizing the matrix, taking
absolute values of the eigenvalues, with appropriate cut-
offs to avoid singularities. A similar procedure is used
for the y and z directions.

Choice of Variables
We consider the sets of variables defined by

wc = (ρ, ρu, ρv, ρw, E)
Q = (p, u, v, w, T ) (4)

w0 = (p, u, v, w, S) , dŵ0 = (
dp

ρc
, du, dv, dw, dS)

We shall refer toQ as the primitive variables andwc as
the conservation variables. The fluxF and the physical
time derivatives are evaluated in conservation variables
so that the correct shock jumps are obtained. One im-
plementation of (2) is to use the conservation variables
throughout the equation. As the Mach number decreases
to zero, the density usually becomes constant and so the
conservation variables become less accurate. For almost
incompressible flow the primitive variables are more ap-
propriate.

If we change from conservation variables toQ vari-
ables we replace (3) by

RQ =
∂F

∂x
− hx

∂

∂x
(ε2Γ−1|PQAQ|

∂Q

∂x
)

PQ =
∂Q

∂wc
Pc

∂wc

∂Q
(5)

Γ−1 =
∂wc

∂Q
P−1

Q Γ = PQ
∂Q

∂wc
=

∂Q

∂wc
Pc

Multiplying (2) by ∂Q
∂wc

and substituting∆wc =

∂wc

∂Q ∆Q, we get

(I + αkct
∆τ

∆t
PQ)Qk+1 = Q0

− αk∆τΓ
{

Rk
Q +

ctw
k
c − F (wn

c , ...)
∆t

}
(6)

+ αkct
∆τ

∆t
PQQk

After each stagewk+1
c is calculated using the nonlinear

relation betweenwc andQ. Note thatQ only appears in
the artificial time terms and the artificial viscosity. After
the artificial time derivative approaches zero the resultant
equation is in conservation form including the physical
time derivative. If the physical time derivative would
also be transformed toQ variables then we might lose
the conservation form and hence the correct jump condi-
tions at a shock. Preconditioning destroys conservation
in the midst of the pseudo-time iteration process. How-
ever, when the pseudo-time derivative approaches zero,
the algorithm should recover the conservation form.

Another possibility is to consider a mixture of conser-
vation andQ variables. When evaluating the artificial
viscosity we useQ variables as given by (5). However,
when updating the variables we revert towc variables.
This would be equivalent to (6) if the relation between
wc andQ variables were linear. We then get

(I + αkct
∆τ

∆t
P)wk+1

c = w0
c

− αk∆τP
{

Rk
Q +

ctw
k
c − F (wn, ...)

∆t

}
(7)

+ αkct
∆τ

∆t
Pwk

c

This is the same as (2) except that the artificial viscosity
in wc variables is replaced byRQ based onQ variables.
Hence, the two steady states (within the time dependent
problem) are different while (6) and (7) have the same
numerical steady state.

Computations demonstrate that the variables used in
the artificial viscosity have a much larger effect than the
choice of variables used to update the solution. Hence,
we shall concentrate on comparing (2) with (6) and less
on the mixed formulation (7). We shall further see that
we can efficiently solve these linear systems.

Low Speed Preconditioning
In the above descriptionP is a preconditioning oper-

ator based on the conservation variables, which is a full
matrix and is difficult to analyze. Instead, we consider
the entropy variablesw0. Now, the entropy equation
decouples from the other variables. Furthermore, the Ja-
cobian matrix is sparse. The simplest preconditioner in
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w0 variables is given by, see.9,10,12,14

P0
−1 =


1

β2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


β is a parameter which should be of the order of the Mach
number as to approximately equalize all the eigenvalues
of P0A0.

Let c2 = γp
ρ , q2 = u2 + v2 + w2 and q̂2 = (γ−1)q2

2 .
Then the Jacobians that connect these variables are

∂w0

∂wc
=


q̂2 (1−γ)u (1−γ)v (1−γ)w γ−1
−u

ρ
1
ρ

0 0 0

− v
ρ

0 1
ρ

0 0

−w
ρ

0 0 1
ρ

0

q̂2−c2 (1−γ)u (1−γ)v (1−γ)w γ−1



∂wc

∂w0
=


1
c2

0 0 0 − 1
c2

u
c2

ρ 0 0 − u
c2

v
c2

0 ρ 0 − v
c2

w
c2

0 0 ρ − w
c2

h
c2

ρu ρv ρw −M2

2


whereh = c2

γ−1 + q2

2 . The preconditionerPc in conser-

vation variables is then given byPc = ∂wc

∂w0
P0

∂w0
∂wc

. To
calculatePc times a vector~x we do it in stages.

y1 = γ−1
c2

[
q2

2 x1 − (ux2 + vx3 + wx4) + x5

]
and

~z =


1
u
v
w
h


Then

Pc~x = ~x + (β2 − 1)y1~z (8)

P−1
c ~x = ~x + (

1
β2

− 1)y1~z

In (7) we need to evaluate(I + d ·Pc)−1 times a vector
whered = αkct

∆τ
∆t . Then

(I + d ·Pc)−1~x =
~x + ey1~z

1 + d
e =

(1− β2)d
1 + β2d

For the primitive variables,Q, we have

PQ =


β2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

(β2−1)T
cpp 0 0 0 1



wherecp = γR
γ−1 . Let

~ζ =


1
0
0
0

(γ−1)T
γp


then for (6)

(I + d ·PQ)−1~x =
~x + ex1

~ζ

1 + d
e =

d(1− β2)
1 + d · β2

Note,Γ∂wc

∂Q = PQ.

We need to chooseβ2 and the pseudo-time step. When
we ignore the correction term and use an explicit formula
it requires that the pseudo-time step also include a phys-
ical time step contribution. The amplification matrix in
pseudo-time forŵ0 variables, for the two dimensional
Euler equation in generalized coordinates is given by

G(θ) = P0

(
ω0

ctVol
∆t

+ ω1A + ω2B

)
(9)

whereVol is the volume of the cell andA,B are the Ja-
cobian matrices of the inviscid flux vectors in the two
generalized coordinate space dimensions.A andB are
symmetric inŵ0 variables and so this is a symmetric hy-
perbolic system where the physicalt derivative is treated
as another space derivative relative to the marching di-
rectionτ . We denote the surface area of the cell asSij

where the first subscript refers to the direction of the nor-
mal and the second is the projection of that normal in
each direction. Define the contravariant velocity compo-
nents as

U = uSxx + vSxy + wSxz

V = uSyx + vSyy + wSyz (10)

W = uSzx + vSzy + wSzz

In two space dimensions

G(θ) = ω0
ctP0∆t

Vol
+ ω1

β2U β2cSxx β2cSxy

cSxx U 0
cSxy 0 U


+ ω2

β2V β2cSyx β2cSyy

cSyx V 0
cSyy 0 V


In three dimensions let

D=

√(
ctVol
∆t

)2

+U2+V 2+W 2.
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Then choose

ω0 =
ctV ol

∆tD
ω1 =

U

D
ω2 =

V

D
ω3 =

W

D

and soω2
0 +ω2

1 +ω2
2 +ω2

3 = 1. This makesG(θ) in (9) a
convex combination of the Jacobian matrices. Define

Û =
SxxU + SyxV + SzxW

D ·V ol2

V̂ =
SxyU + SyyV + SzyW

D ·V ol2

Ŵ =
SxzU + SyzV + SzzW

D · Vol2

q̂2 = Û2 + V̂ 2 + Ŵ 2

ThusÛ , V̂ , Ŵ are combinations of the velocity compo-
nentsu, v, w that depend on the geometry metrics. This
combination comes from the analysis and does not nec-
essarily have any physical interpretation. This gives

G =


β2D β2cÛ β2cV̂ β2cŴ

cÛ D 0 0
cV̂ 0 D 0
cŴ 0 0 D


We can easily symmetrizeG but this is not necessary in
our case. The eigenvalues areλ0 =D and

λ±=
β2 + 1

2
D±

√(
β2− 1

2

)2

D2+β2c2q̂2 (11)

The analysis so far is based on inviscid equations: there-
fore β should be designated asβinv, which is chosen
such thatβcq̂ = λ0 = D. For low Mach numbersβ2

is small and soλ± ∼ 1+
√

5
2 D. We then chooseβinv as a

term that depends onD plus a cutoff to preventβ from
becoming too small. This cutoff depends on a global
quantityMref . We choose

β2
inv = K1

D2

c2q̂2
+ K2M

2
ref (12)

We stress thatβ2 depends onctVol
∆t even when using an

implicit method for the time derivative term.K1 and
K2 are user defined constants. In most casesK2 can
be chosen as zero since the physical time derivative term
preventsβ from becoming too small. This is in contrast
to steady state problems where this term is crucial.

We also account for the viscous effects inβ2 but this
is only used to reduce the time step rather than directly
changing theβ used in the preconditioning or the arti-
ficial viscosity.15 For exterior problems we find that in
the farfield where there are large volumes, the precon-
ditioning is turned off locally due to the time derivative.

Similarly, when∆tphys is small enough then precondi-
tioning is turned off globally.

From (11) we defineλinv = λ+. We scaleλvis by
the volume so it also has dimensions1time. We choose the
total time step by

∆τ =
1

λinv + aλvis + bct

∆t

(13)

wherea andb are constants. Typical values area = 4−5
andb = 9−25. These are determined semi-empirically
based on numerical experiments. Straightforward linear
analysis shows that using a simple implicit formula in
each stage of the Runge-Kutta formula does not allow
the use of a larger time step. Hence, even in this case we
chooseb = 25. In order to reduce this value ofb one
would need an explicit-implicit type formula as derived
in1 . Note that even whenb = 0, ∆τ depends on∆tphys

throughλinv which is a function ofβ2. However, for the
explicit treatment of the time derivative we need to add
a term to the time step that depends onct

∆t even when
preconditioning is not used (i.e.β = 1). Our choice
for β and ∆τ is different than that of Venkateswaran
and Merkle.18 In addition the parameters of the resid-
ual smoothing should now depend on the physical time
derivative term.

Results
The governing equations are solved using a finite vol-

ume central difference code augmented by a matrix arti-
ficial viscosity.2,8 The equations are advanced in pseudo-
time by a five stage Runge-Kutta scheme accelerated by
residual smoothing and multigrid.2,16 The parameters for
all the cases are identical with the exception that without
preconditioning the explicit CFL in the residual smooth-
ing is 3.75, while with preconditioning CFL-explicit is
3.25. For all preconditioning casesβ2

min = M2
∞. The

dual time-stepping uses a second order BDF formula
stabilized with the algorithm of Melson and Sanetrik.6

Early work on dual stepping and preconditioning is pre-
sented in.7,20 Turkel et al.13 compared results from two
different preconditioning schemes for steady state prob-
lems.

NACA4412

We first consider a steady state case, turbulent flow
around a NACA4412 airfoil. A mesh with257 × 81
grid points, constructed using Wigton’s19 grid genera-
tion procedure and displayed in Fig. 1, is used for these
computations. The inflow conditions areα = 13.87◦

andM∞ = 0.2, 0.05 and 0.01. The Reynolds number is
1.52× 106 and the Baldwin-Lomax turbulence model is
used.
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Fig. 1 Partial view of grid for NACA4412

We compare the convergence rate without precon-
ditioning versus preconditioning based on conservation
variables and primitive(p, u, v, w, T ) variables. For all
preconditioned cases we useK2 = 1.0. We show a por-
tion of the grid in figure 1. Every second grid line is
shown to increase the clarity. There are 50 iterations on
two coarser grids and 500 five stage RK iterations on the
finest grid. In figures 2 and 3 we compare the residual as
well as the drag history forM∞ = 0.2. We stress that the
only difference between the two preconditioned results
is the artificial viscosity, (Eqns. 2 and 7). In one case
it is evaluated directly on the conservation variables. In
the other case we take differences of the primitive vari-
ables, multiply byΓ−1|PA| in primitive variables and
transform back to conservation variables. We see in the
following figures that in the beginning of the computa-
tion both approaches give the same rate of convergence
and accuracy. However, for small residuals an artifi-
cial viscosity based on the conservation variables stalls.
When the artificial viscosity is based on the primitive
variables convergence continues to decrease further. Our
explanation for this phenomena is that for the conserva-
tion variables the density is fairly constant. Hence, at low
residual values the contribution from density derivatives
is negligible. For the first few iterations the precondition-
ing slows the convergence rate of the residual. However,
the drag converges faster even at the beginning using
preconditioning. Overall convergence is improved sig-
nificantly when preconditioning is used.

0 200 400 600
CYCLES

10−7

10−5

10−3

10−1

101

LO
G

(R
E

S
ID

U
A

L)

No prec.
Prec: cons. vars.
Prec: p,u,v,T vars.

Fig. 2 NACA4412 -M∞ = 0.2, residual history

0 200 400 600
CYCLES

−0.1

0

0.1

0.2

C
d

No prec.
Prec: cons. vars.
Prec: p,u,v,T vars.

Fig. 3 NACA4412 -M∞ = 0.2, drag history

We next consider the same case but with an inflow
Mach number 0.05. The results are given in figures 4
- 6. The improved convergence for the precondition-
ing is more evident for this case. The convergence for
the conservation variables is reasonable until it bottoms
out. The convergence with the primitive variables con-
tinues in a straight line. Note the difference in the fi-
nal lift coefficient between the preconditioned and non-
preconditioned schemes. This is a reflection of the de-
crease in accuracy without preconditioning for low Mach
numbers.11,14
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No prec.
Prec: cons. vars.
Prec: p,u,v,T vars.

Fig. 4 NACA4412 -M∞ = 0.05, residual history

0 200 400 600
CYCLES

−0.1
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Prec: cons. vars.
Prec: p,u,v,T vars.

Fig. 5 NACA4412 -M∞ = 0.05, drag history

0 200 400 600
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1.6

1.7

1.8

1.9

2

C
l

No prec.
Prec: cons. vars.
Prec: p,u,v,T vars.

Fig. 6 NACA4412 -M∞ = 0.05, lift history

We finally show the results in figures 7 through 9 for
the same case but an inflow Mach number 0.01. The dif-
ference in lift and drag between the preconditioned and
non-preconditioned algorithms is now quite noticeable.
The pattern of the convergence history is similar to the
previous cases but is more dramatic. We now clearly see
that using conservation variables in the artificial viscosity
limits the convergence of the residual even with precon-
ditioning.

0 200 400 600 800 1000
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10−11
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No prec.
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Prec: p,u,v,T vars.

Fig. 7 NACA4412 -M∞ = 0.01, residual history
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Prec: p,u,v,T vars.

Fig. 8 NACA4412 -M∞ = 0.01, drag history
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Fig. 9 NACA4412 -M∞ = 0.01, lift history

NACA0012- high angle of attack

We next consider turbulent flow around a NACA0012
airfoil. An O mesh containing141×61 points (Fig. 10) is
used for this configuration. An exploded view of the grid
near the trailing edge is shown in Fig. 11. The inflow
conditions areM∞ = 0.1, an angle of attack of12◦ and
Re = 3 × 106. A Spalart-Allmaras turbulence model is
used. At this angle of attack the flow is still steady. We
also consider an angle of attack of30◦ where the flow is
no longer steady.

Fig. 10 Partial view of grid for NACA0012

Fig. 11 Grid near trailing edge of NACA0012

We begin with the steady state calculation forα =
12◦. The convergence of the residual and drag coefficient
are shown in Figs. 12 and 13. We see that without pre-
conditioning the convergence stalls, as expected, with an
inflow Mach numberM∞ = 0.1. Basing the precondi-
tioning on the conservation variables (Eqn. 2) improves
the convergence rate. However, using primitive variables
in the artificial viscosity (Eqn. 6) yields a better asymp-
totic rate. Although not shown here, we observed that
the variable used for the update ( Eqn. 6 versus Eqn.
7) has no effect on the convergence rate. When using
wc variables the residual is based on the density while
when usingQ variables the residual is based on the pres-
sure. We see that the preconditioning yields significantly
better convergence than the non-preconditioned scheme.
Furthermore, the steady state is different when precondi-
tioning is used. Based on earlier work of Turkel et al.,11

we expect the preconditioned results to be more accurate.
We next examine the convergence and accuracy for the

time dependent case. We consider an angle of attack with
α = 30◦ and inflow Mach number ofM∞ = 0.1. Since
the flow is now time dependent we are only interested in
the convergence rate within a physical time cycle. We
use 30 cycles (5 stage Runge-Kutta with multigrid and
residual smoothing) of pseudo-time stepping within each
physical time cycle. In Fig. 14 we display the residual
(density forwc variables and pressure forQ variables)
while in Fig. 15 we display the lift. In both cases we see
that initially the convergence is best without any precon-
ditioning. The residual stalls after a few cycles but the
lift has already reached its new level to within graphical
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accuracy. The overall convergence rate for the residual
is improved with preconditioning on conservative and
primitive variables. The convergence of lift with precon-
ditioning with an artificial viscosity based on conserva-
tion,wc variables is slightly worse but is also reasonable.
When the preconditioning uses primitive variables in the
artificial viscosity then the initial convergence is slowed
and one requires about 15-20 subiteration cycles for the
lift to converge to graphical accuracy. In all cases the
variables used to advance the solution to the next cycle
had little effect (figure not shown here) on either the con-
vergence rate of the subiterations or the on the accuracy.
The major influence is due to the variables used in the
artificial viscosity.

We stress that the use of preconditioning affects the
accuracy of the solution and so changes the values of the
lift and drag. In Fig. 16 we plot the time dependent his-
tory of the lift. We clearly see that for short times the two
preconditioned results, with the artificial viscosity based
on conservation or primitive variables, agree with each
other but give a different lift than the non-preconditioned
algorithm. Based on the results from low speed steady
flows that demonstrated improved accuracy with precon-
ditioning,11 it is reasonable to assume that the unsteady
solutions obtained here with preconditioning are more
accurate compared to the un-preconditioned solutions.
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No Preconditioning
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Fig. 12 Residual for steady state NACA0012
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Fig. 13 Cd for steady state NACA0012
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Fig. 14 Residual within subiterations forα = 30◦
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Fig. 15 cL within subiterations for α = 30◦
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Fig. 16 Time dependentcL for α = 30◦

Concluding Remarks and Future Directions
A general preconditioning formulation for treating low

speed flows with compressible flow equations is pre-
sented. Several alternative forms of preconditioning vari-
ables have been examined. The choice of the variables
used to advance the solution in time had very little effect
on convergence or accuracy. The convergence for low
speed steady state problems is improved significantly
when preconditioning is used. The primitive variables
based preconditioner appears to be most effective for
steady state flows. However, for time-dependent prob-
lems, preliminary results about the choice of precondi-
tioners are somewhat inconclusive, and requires further
testing.
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