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Abstract

Preconditioners for hyperbolic systems are numerical artifices intended to accelerate the convergence path to a steady state.
In addition, in some cases, the preconditioner can also be included in the artificial viscosity/upwinding terms in order to improve
the accuracy of the steady state solution. For time dependent problems we use a dual time stepping approach; and therefore
the preconditioner affects the convergence rate and accuracy of the subiterations at each physical time step. We consider two
types of local preconditioners that couple the governing equations at a node point: Jacobi and low-speed preconditioning. We
consider their effectiveness for both steady state and time dependent problems with regard to the convergence rate and the
numerical accuracy. We also consider the effect of the far field boundary conditions on both steady state and time dependent
problems.

1 Introduction
Preconditioning methods for low-speed, steady flows have been available for almost twenty years [16]. Because such precon-
ditioners are generally designed to modify the path to steady state, special attention is required for adapting these methods for
unsteady flows to maintain temporal accuracy. Fortunately, such preconditioning techniques are easily extendable to unsteady
flow applications in conjunction with dual time stepping algorithms.

We consider the hyperbolic system of unsteady Euler equations appended with pseudo time derivatives

wτ + ξwt + Awx + Bwy + Cwz = 0 (1)

where the flux Jacobian matricesA, B, C are symmetric (or simultaneously symmetrizable). We are interested inτ → ∞,
whereτ is viewed as an artificial (pseudo) time. For physically steady state problemsξ = 0, while for time dependent
problemsξ is set equal to 1. We discretize the physical time derivative with a backward difference formula (BDF)

∂w

∂t
' ct

∆t
wn+1 +

Q(wn, wn−1, ...)

∆t
(2)

where,ct is a constant that depends on the order of the BDF scheme. Defineζ = ξct
∆t

. We Fourier transform Eq. (1) in space
and replacewt by Eq. (2). Define the amplification matrix

G(ω1, ω2, ω3) = −ζI + i(Aω1 + Bω2 + Cω3) (3)

The condition number of this system is defined as

cond# = max
ωi

∣∣∣∣λmax(G)

λmin(G)

∣∣∣∣ . (4)

whereλ denotes an eigenvalue of the matrix whileωi are real numbers withω2
1 + ω2

2 + ω2
3 = 1. Note that the eigenvalues of

i(Aω1 + Bω2 + Cω3) are pure imaginary since the matrices are symmetric. Physically the condition number (withξ = 0) can
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be interpreted as the ratio of the fastest speed to the slowest speed in any direction. If viscous terms are included then we have
additional negative real matrices in Eq. (3). We stress that if∆t is sufficiently small, then the condition number is close to 1,
and the methods proposed here will neither be effective, nor are they needed for convergence acceleration. On the other hand,
for steady flows, the condition number is approximately equal to the reciprocal of the Mach number; and hence, the proposed
preconditioners are expected to be very effective for convergence acceleration.

With a local preconditioner we change the discrete equations at a single grid node without introducing new coupling between
the neighboring nodes. This can be expressed on the continuous level as replacing Eq. (1) by

P−1wτ + ξwt + Awx + Bwy + Cwz = 0. (5)

For well-posedness the matrixP should be symmetric positive definite. We choose the matrixP so as to improve the condition
number of the equations at the node point. Hence, this technique makes sense only for a system of equations. For a scalar
equation local preconditioning is simply a rescaling of the time variable and has no effect on the numerical solution. This
approach is distinct from incomplete-LU (ILU) decomposition based preconditioning techniques which couple all the nodes
together and therefore require more expensive inversion techniques. The assumption is that the better the system is conditioned,
the faster the iteration process will approach a steady state. The amplification matrix of the preconditioned system is given by
GP = PG. The condition number in Eq. (4) is replaced by

cond# = max
ωi

∣∣∣∣λmax(GP )

λmin(GP )

∣∣∣∣ (6)

Note thatG contains both Hermitian and anti-Hermitian parts. However, since the real part is proportional to the identity
matrix, the two parts commute, and soG is a normal matrix. By contrastGP is not a normal matrix because the symmetric
portion P does not commute withPA. RatherGP is P times a normal matrix which might adversely affect the stability
properties of the Runge-Kutta scheme [10].

For time dependent problems where the physical time scale is sufficiently small, and soζ is large, preconditioning can harm
the convergence rate by reducing the effective artificial time step. For such problems the preconditioning in the update stage
should be turned off and should only affect the artificial viscosity or the upwinding [12, 23, 29]. In this study we consider two
different local preconditioners, Jacobi and low-speed, to alleviate stiffness associated with disparate characteristic speeds and
from a poor condition number. We then formulate a composite preconditioner that combines the complementary properties of
the Jacobi and low-speed preconditioners in order to achieve an efficient scheme for solving viscous flows with embedded low
speed flows.

2 Jacobi Preconditioning
The Jacobi preconditioning is based on adding a matrix-based artificial viscosity to a central difference scheme and then choos-
ing P−1 as the terms on the diagonal (i.e. the coefficient ofwij). The result for a central difference scheme is

P−1
J = ζI + |A|+ |B|+ |C| (7)

This approach has been proposed by Allmaras [2] and Pierce and Giles [13] for steady state flows. The good high frequency
damping characteristics of the Jacobi preconditioner make it an ideal candidate for coupling with a multigrid scheme. Because
this formulation connects the preconditioning with the artificial viscosity (or upwinding), the matrixP is affected by the details
of the discretization. However, Eq. (7) has also been used with other artificial viscosities such as CUSP (see Caughey and
Jameson, [3]). Hence, we prefer to view Eq. (7) as a matrix or characteristic inverse time step (see [24] for a similar view). A
multistage, non-preconditioned Runge-Kutta scheme in artificial time uses a time step given by

∆τ =
CFL

ζ + ρ(A) + ρ(B) + ρ(C)
(8)

whereρ is the spectral radius andCFL is a number chosen to achieve stability. A matrix time step for the Jacobi preconditioner
replaces this by

∆τ = CFL(ζI + |A|+ |B|+ |C|)−1 (9)

In calculating the absolute value of the matrices one needs to cutoff the eigenvalues to prevent them from becoming too small.
We do this by not allowing any eigenvalue to be less than a given percentage of the maximum eigenvalue. Within the artificial
viscosity we cutoff the acoustic eigenvalues at 30% and the convective eigenvalue at 10% of the maximum [15]. Within the
Jacobi preconditioning all eigenvalues are cutoff at 30% of the spectral radius.

The preconditioning techniques described here have been incorporated in the TLNS3D code [25, 26] for assessment.
The standard TLNS3D code solves the generalized thin-layer Reynolds-averaged Navier-Stokes equations, and uses residual
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smoothing and multigrid to accelerate the convergence to a steady state. We wish to include all of these acceleration techniques
when using the Jacobi preconditioning. Though some researchers have avoided the use of residual smoothing with the Jacobi
preconditioner [13], we have found no difficulty in including both the residual smoothing and the Jacobi preconditioning. In
fact, they complement each other since the Jacobi preconditioning is local while the residual smoothing is global in nature due
to the implicit operators in each coordinate direction. This is especially important in the presence of high aspect ratio cells
which are essential for resolving boundary layers in viscous flows.

The Jacobi preconditioning for the k-th stage of a Runge-Kutta algorithm is given as

(ζI + |A|+ |B|+ |C|)∆w = αkCFL · Residual (10)

whereαk is the stage coefficient of the Runge-Kutta scheme. For a three dimensional problem each of the matrices is5×5.
As suggested by Caughey and Jameson [9] and Hosseini and Alonso [5], we transform the equation to entropy variables
Q = ( dp

ρc
, du, dv, dw, dS). This has the advantage that the flux Jacobian matrices are symmetric and also that the entropy

equation reduces to a scalar equation that decouples from the others. Hence, we need only to operate with a4 × 4 matrix
rather than a5× 5 system which results in appreciable savings in computational costs. The formulas for the absolute values are
presented later. One then calculates the LU factors explicitly for a4×4 matrix. Using a Cholesky decomposition for a symmetric
matrix, fewer elements need to be calculated. However, four square roots are evaluated in this approach (Caughey and Jameson
[3] reduced this to three square roots by clever programming). Computationally, we found that using the nonsymmetric LU form
required about the same computer time for this small matrix, since no square roots are required. The storage is larger for the
nonsymmetric decomposition. Since this matrix is not stored globally, it has an insignificant impact on memory requirements.
The extra work in the Jacobi preconditioning is mainly in defining the elements of the matrix rather than the inversion, and it
typically adds about10% to the total running time for a compressible turbulent flow code.

For viscous problems, Caughey and Jameson [3] replaced the entropy variables by a transformation suggested by Abarbanel
and Gottlieb [1]. An alternate approach to include viscous effects was devised by Turkel, where he suggested using a different
set of physical of variables [16, 21]. Even though symmetry is preserved, the resultant absolute values constitute a full5×5
matrix. Since this substantially adds to the computing time, we used the entropy variables instead and approximate the viscous
terms by a diagonal matrix corresponding to the additional term in the time step calculation of the standard code. Hence, it is
just an addition to the diagonal term in Eq. (9). For high Reynolds number flows this viscous correction is small enough that it
does not justify the additional computational time required for inverting a full5×5 matrix at all nodes.

In generalized coordinates we define the contravariant velocityU = uSxx + vSxy + wSxz whereSij are the elements of
the surface area tensor. In entropy variables the flux Jacobian matrixA, is given by

A =


U cSxx cSxy cSxz 0

cSxx U 0 0 0
cSxy 0 U 0 0
cSxz 0 0 U 0

0 0 0 0 U


Let

R1 =
|λ1|+ |λ2|

2

R2 =
|λ1| − |λ2|

2

R3 = R1 − |U |

and|S| =
√

S2
xx + S2

xy + S2
xz. Define the normalized surface metrics

Ŝx =
Sxx

|S| Ŝy =
Sxy

|S| Ŝz =
Sxz

|S|

Then the absolute value is given by (symmetric terms suppressed)

|A| =


R1 ŜxR2 ŜyR2 ŜzR2 0

. |U |+Ŝx
2
R3 ŜxŜyR3 ŜxŜzR3 0

. . |U |+Ŝy
2
R3 ŜyŜzR3 0

. . . |U |+Ŝz
2
R3 0

. . . . |U |

 (11)
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To get a better intuition of the matrix|A| we consider the subsonic case with0 ≤ u, v, w ≤ c. In Cartesian coordinates we
haveSxx =1, Sxy =Sxz =0. ThenR1 =c, R2 =u, R3 =c− u and

|A| =


c u 0 0 0
u c 0 0 0
0 0 u 0 0
0 0 0 u 0
0 0 0 0 u


Let d be the number of dimensions (2 for 2-D and 3 for 3-D flows). Then

|A|+ |B|+ |C| =


d · c u v w 0
u v+w+c 0 0 0
v 0 u+w+c 0 0
w 0 0 u+v+c 0
0 0 0 0 u+v+w

 .

Foru, v, w << c

(|A|+ |B|+ |C|)−1 ∼ diag
1

c

(
1

d
, 1, 1, 1,

c

|u|+ |v|+ |w|

)
The inverse of the Jacobian is a diagonal matrix (up to errors ofO(M)). On the other hand∆τ ∼ 1

cd
. So

(|A|+|B|+|C|)−1

∆τ
∼ diag

(
1, d, d, d,

cd

|u|+ |v|+ |w|

)
Hence, for most of the variables (except for entropy) there is a (maximum) factor ofd ∼ 2, 3 variation in the time step.

3 Low-Speed Preconditioning
We consider the simplest low-speed preconditioning given in entropy variables by

PQ = diag(β2, 1, 1, 1, 1) (12)

whereβ2 ∼ M2 with a cutoff to preventβ from becoming too small [17, 21]. This cutoff is proportional toM2
ref . The

parameterβ can be increased to account for viscous and time dependent terms [22, 23], but it is never allowed to become larger
than unity. Hence, when the viscous terms become large enough or∆t is sufficiently small, then the low-speed preconditioning
is turned off in the update scheme.

The low-speed preconditioning is designed to accelerate the convergence to a steady state by improving the condition
number when the Mach number is small. In addition, the artificial viscosity or upwinding is adjusted to include the precondi-
tioning. This changes the scales and improves the behavior of the artificial viscosity as the flow becomes more incompressible
[16, 17, 18, 21]. When the contribution of the physical time step is large enough, then the preconditioning does not improve
the convergence of the subiterations, but it is still useful for improving the accuracy of the numerical solution [18, 21]. Hence,
we use different values ofβ for the preconditioning on the left hand side and for the artificial viscosity. In particular the effect
of the physical time step is larger in the update portion than in the artificial viscosity. Similarly, the minimum cutoff differs
between the preconditioner for convergence acceleration and the artificial viscosity. One can evaluate the artificial viscosity in
either conservation variables or primitive variables(p, u, v, w, T ), which are more appropriate for near incompressible flows
(see [23] for more details).

We also combine the low-speed preconditioning with Jacobi preconditioning by starting with an artificial viscosity based
on the low-speed preconditioning for increased accuracy and then forming the Jacobi preconditioning for better convergence
rates [20]. LetP be the low-speed preconditioning, and let the physical time derivative be represented by Eq. (2). Then the
preconditioned scheme (showing only the second-order dissipation) is given by

P−1
J = PQ

−1 (ζPQ + |PQA|+ |PQB|+ |PQC|)

P−1
J ∆w =

ctw
n+1 + Q(wn, wn−1, ...)

∆t
+ fx + gy + hz (13)

+
h

2

[
PQ

−1(|PQA|wx)x + PQ
−1(|PQB|wy)y + PQ

−1(|PQC|wz)z

]
≡ Res
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We redefine the entropy variables for the preconditioned scheme so as to includeβ. Then

Q = (
dp

ρβc
, u, v, w, T ) (14)

In theseQ variables the matricesPQ and|PQA|+ |PQB|+ |PQC| are symmetric. Define

λ+ =
(β2 + 1)U +

√
(β2 − 1)2U2 + 4β2c2

2

λ− =
(β2 + 1)U −

√
(β2 − 1)2U2 + 4β2c2

2

λmax =
(β2 + 1)|U |+

√
(β2 − 1)2U2 + 4β2c2

2

|Λ+| = max(|λ+|, εnλmax)

|Λ−| = max(|λ−|, εnλmax)

|Λ0| = max(|U |, εlλmax)

R1 =
(λ+ − U)|Λ+| − (λ− − U)|Λ−|

λ+ − λ−

S1 =
(λ+ − U)|Λ−| − (λ− − U)|Λ+|

λ+ − λ−

R2 = βc
|Λ+| − |Λ−|

λ+ − λ−

R3 = S1 − |Λ0|

whereU is the contravariant velocity, andεn andεl are constants. Typical values areεn = 0.3 andεl = 0.1 for the artificial
viscosity andεn =εl =0.3 within the Jacobi preconditioning. Then

|PQA| =


R1 ŜxR2 ŜyR2 ŜzR2 0

. |Λ0|+Ŝx
2
R3 ŜxŜyR3 ŜxŜzR3 0

. . |Λ0|+Ŝy
2
R3 ŜyŜzR3 0

. . . |Λ0|+Ŝz
2
R3 0

. . . . |Λ0|

 (15)

Similar expressions can be derived for|PQB| and|PQC|. The update scheme, Eq. (13), can be written in generalized entropy
variables,Q, as

∆w =
∂w

∂Q
(ζPQ + |PQA|+ |PQB|+ |PQC|)−1 PQ

∂Q

∂w
Res (16)

4 Far Field Boundary Conditions
In the far field an artificial boundary is constructed to limit the domain to a finite size. For well-posedness it necessary to impose
boundary conditions on this artificial surface. Standard theory for hyperbolic partial differential equations dictates that at an
inflow boundary in two- (three-) dimensions that 3 (4) conditions need to be specified and one boundary condition should be
determined from the inside. At an outflow boundary, the situation is reversed.

For the standard non-preconditioned code these boundary conditions are based on one dimensional Riemann invariants
[7, 14]. One drawback with the above technique is that the Riemann invariants depend on the speed of soundc. Hence, as the
Mach number goes to zero, this approach becomes less valid. Computations confirm that this type of boundary treatment does
not yield convergent results for the preconditioned code at sufficiently low Mach numbers. In particular, for incompressible
flow this is not a valid technique. Hence, we have used a different approach for the preconditioned code [19].
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At inflow, we specify the velocity components and temperature and extrapolate the pressure.

u = u0, v = v0, w = w0, T =
p0

ρ0
, p = pe (17)

At outflow, we instead extrapolate the velocity components and temperature and specify the pressure.

u = ue, v = ve, w = we, T =
pe

ρe
, p = p0 (18)

We can then calculate the density, momentum and energy variables. This procedure is now valid for incompressible flow and is
well-posed for low speed compressible flow. It will be shown in the results section that while this boundary condition treatment
works nicely for the steady state calculation, it gives poor accuracy for the dual time stepping algorithm.

5 Results

5.1 RAE2822 airfoil
We consider steady state flow about a two-dimensional RAE2822 airfoil. We first consider a transonic case with an inflow Mach
number ofM∞=0.73 and an angle of attackα=2.79◦. The Reynolds number is 6.5 million. The turbulent flow is simulated
with a Baldwin-Lomax turbulence model using a320 × 64 C grid. We use a FMG multigrid with 50 iterations on 3 coarse
meshes and 300 iterations on the finest mesh. Without low-speed preconditioning we use a five stage Runge-Kutta scheme
with the standard coefficients (.25, .16667, .375, .5, 1.0). With low-speed preconditioning the Runge-Kutta coefficients are
chosen as (.25, .18, .40, .51, 1.0). The artificial viscosity is partially updated only on the odd stages of the multistage method
using fractions of .56 and .44 on the third and fifth stages, respectively. There is also a small difference in the dependence
of β on the viscous terms for the artificial viscosity [22]. All the runs are made with the same variable residual smoothing
coefficients that depend on the aspect ratio [11, 30]. The low-speed preconditioner affects the artificial viscosity. Besides the
artificial viscosity, the only difference caused by the preconditioners is in the update stage where the residual is multiplied by
the low-speed preconditioning matrix,P , followed by either∆τ or else by(|PA| + |PB|)−1. In figure 1 we compare the
convergence rate for the standard code with that produced with the Jacobi preconditioning. For this transonic flow the Jacobi
preconditioning results in a significant improvement in the convergence rate. In figure 2 the drag coefficient for the same case
also shows improved convergence with Jacobi preconditioning. The steady state drag calculated is independent of the Jacobi
preconditioning.

We next consider a low speed case withM∞ = 0.2. In figure 3 we compare the impact of low-speed preconditioning
without the Jacobi preconditioning on the convergence of residuals. The low-speed preconditioning improves the convergence
rate significantly, with preconditioning based on primitive variables,(p, u, v, T ), being the better of the two. We note that when
the preconditioner is based on primitive variables, then the residual displayed is the pressure residual while for conservation
variables we display the density residual. However, we have never found a fundamental change when choosing other residuals
to display. In figure 4 we show the results using Jacobi preconditioner either by itself or else combined with low-speed pre-
conditioning. The Jacobi preconditioning improves both the non-preconditioned and the low-speed preconditioned cases. The
cpu time required to obtain 4 orders of magnitude reduction in residual with the preconditioned code is approximately 30% of
the total run time compared to the baseline code. The gains are more significant, especially with Jacobi preconditioning, if one
wishes to reduce the residual to much lower levels.

In figures 5 and 6 we show the convergence of the drag for this case. We note that the steady state drag is the same for
the non-preconditioned algorithm and Jacobi preconditioning since we only change the update procedure but not the residual.
However, the low-speed preconditioning is included in the artificial dissipation and so the low-speed preconditioning changes
the steady state numerical solution. In [18] we show that only the low-speed preconditioned residual gives the correct solution
as the Mach number approaches zero.

We conclude with results for an inflow Mach number of 0.05 presented in figures 7 and 8. We see that for this low Mach
number flow that the Jacobi preconditioning by itself helps relatively little. In contrast, using only the low-speed preconditioning
gives a large improvement in the residual convergence. The combined low-speed and Jacobi preconditioning gives a dramatic
improvement, yielding 12 orders of magnitude decrease in the residual in 300 multigrid cycles (1500 explicit sweeps through
the grid). Such rapid convergence represents a significant improvement for viscous, turbulent flow computations on high aspect
ratio grids.
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Figure 1: Residual history, RAE2822 airfoil,
M∞=0.73
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Figure 2: Drag history, RAE2822 airfoil, M∞ =
0.73
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Figure 3: Residual history RAE2822 airfoil (without
Jacobi preconditioner),M∞=0.2
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Figure 4: Residual history RAE2822 airfoil (with Ja-
cobi preconditioner),M∞=0.2
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Figure 5: Drag history RAE2822 airfoil (without Ja-
cobi preconditioner), M∞=0.2
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Figure 6: Drag history RAE2822 airfoil (with Jacobi
preconditioner), M∞=0.2

0 100 200 300 400 500
Cycles

10−12

10−10

10−8

10−6

10−4

10−2

100

R
es

id
ua

l

No prec.
Jacobi prec.
Lowspeed prec.
Lowspeed & Jacobi prec.

Figure 7: Residual history, RAE2822 airfoil,M∞=
0.05
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Figure 8: Drag history, RAE2822 airfoil, M∞ =
0.05
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5.2 Vortex
To apply these concepts to a time dependent case we consider an inviscid vortex propagating in thex direction. To present the
exact solution we first define several quantities wherec0 andc1 are free parameters, andx0 is the center of vortex at t=0.

c2 =
γ − 1

2γ

ρ0

p0
c2
0c

2
1

arg = 1− (x− x0 − c0t)
2 − y2

The solution is given in [4] (with a different normalization) by

u(x, y, t) = c0

(
1− c1ye0.5 arg)

v(x, y, t) = c0c1(x− x0 − c0t)e
0.5 arg

ρ(x, y, t) = ρ0 (1− c2e
arg)

1
γ−1

p(x, y, t) = p0 (1− c2e
arg)

γ
γ−1

Based on the nondimensionalization in TLNS3D we choose

c0 = M c1 =
1

2π
x0 = 10

ρ0 = 1 p0 = 1 So c2 =
γ − 1

2
c2
1M

2

We note that this vortex is both divergence free and also satisfies the compressible Euler equations. We define CFLphys =
c0∆tphys

∆x
. We chooseM =10−3. A uniformly spaced Cartesian grid consisting of 97x33 nodes is used for these computations.

Each physical time step is solved with 50 subiterations of the dual time-stepping. In table 1 we present the errors for the nonpre-
conditioned and preconditioned algorithms. The preconditioned algorithm is based on primitive variables. The preconditioned
algorithm based on conservative variables gives similar accuracy but appears to be more stable for the dual time-stepping. In
[23] we showed that for steady state problems the preconditionings were equally stable and the one based on primitive variables
was slightly more accurate but that does not seem to be true for the dual time-stepping problem. All runs are for 16 physical
time steps. Hence, as we change∆tphys we change the physical time of the output. However, we are mainly concerned with
comparing the errors of the non-preconditioned and preconditioned codes which are measured at the same physical time for a
given∆tphys.

∆tphys CFL no precon precon Kτ Kβ

31.25 .5 .105 10−4 .236 10−5 1 2
62.5 1 .126 10−4 .296 10−5 1 5
125 2 .142 10−4 .375 10−5 1 10
250 4 .159 10−4 .653 10−5 15 12

312.5 5 .168 10−4 .923 10−5 18 15

Table 1: Vortex motion, M=.001, error in u component

The formula we use for calculating the artificial time step∆τ is given by

1

∆τ
=

1

∆τss
+

1

ctKτ∆t phys

where∆τss is the steady state, artificial time step which is a sum of inviscid and viscous contributions. For a CFL number above
1, the preconditioned code required increasing theKτ in the above formula and also increasingβ as a function of the physical
time step. The coefficientKτ continually increases as the CFL number increases, indicating that the relationship between1

∆τ

and 1
∆t

is not linear for the preconditioned algorithm. We note that∆τ is much larger for the preconditioned scheme, therefore
the ratio of∆τ to ∆t is quite different between the non-preconditioned and preconditioned cases.

The formula forβ is given by

β2 ∼ M2 + Kβ

(
ctVol

cq̂∆tphy

)2

+ M2
ref
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where q̂ is a combination of velocities and face metrics [23],M is the local Mach number andMref is a reference Mach
number, which is representative of free stream Mach number for low speed flows. Further time dependent applications are
considered in [27].

5.3 Sensitivity to far-field boundary conditions
As described in Sec. 4, the far field boundary conditions differ between non-preconditioned and preconditioned algorithms.
We first checked the importance of the change of boundary condition procedures by re-computing the RAE 2822 airfoil case
described in sec. 5.1, using the preconditioned algorithm with the far field boundary conditions based on the Riemann invariants.
This worked quite nicely forM =0.73 andM =0.2 and converged slightly faster. However, forM =0.05 the code diverged
without even reaching the finest grid in the full multigrid (FMG) sequence. However, when the boundary conditions given by
Eqs. (17,18) are used, the preconditioned code converged nicely for this case.

We then tried these boundary conditions for the time dependent vortex flow. For the non-preconditioned algorithm the
boundary conditions based on Riemann invariants worked as expected. For the preconditioned algorithm the boundary condi-
tions of Eqs. (17,18) gave very poor accuracy, while the Riemann invariants gave the good accuracy, as shown in table 1. It
is not clear why Eqs. (17,18) work well for the preconditioned scheme for steady state problems but give poor accuracy for
unsteady flows. This needs to be investigated further.

6 Concluding Remarks
Jacobi and low-speed preconditioning techniques have been developed for a central difference algorithm to treat both steady
state and time dependent problems. Jacobi preconditioning is shown to improve the efficiency of the baseline TLNS3D code for
steady flow over a RAE 2822 airfoil at transonic Mach numbers. The efficiency gain is obtained on top of the efficiency gained
by the residual smoothing and multigrid acceleration techniques which are integral parts of the TLNS3D code. For lower speed
flows the convergence rate is significantly improved by combining the Jacobi and low-speed preconditionings. In addition for
low Mach number flows, the low-speed preconditionings improves the accuracy of the steady state solution while the Jacobi
preconditioning does not affect the steady state.

When time dependent problems are solved with a dual time step algorithm and a small physical time step, the precondi-
tioning does not improve the convergence rate. Hence, the parameterβ in the preconditioning is reduced toβ = 1, i.e., the
preconditioning is turned off in the update stage for sufficiently small physical time steps. However, the preconditioning does
affect the artificial viscosity and does improve the accuracy for time dependent flows. Hence, we use different values ofβ in
the update stage and in the artificial viscosity. The far field boundary condition needs to be altered for the preconditioning to
work for steady state flows at low Mach numbers. However, for time dependent flows the non-preconditioned far field boundary
condition seems to be more robust.
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