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Edge-Forming Methods for Color Image Zooming
Youngjoon Cha and Seongjai Kim

Abstract—This paper introduces edge-forming schemes for
image zooming of color images by general magnification factors.
In order to remove/reduce artifacts arising in image interpolation,
such as image blur and the checkerboard effect, an edge-forming
method is suggested to be applied as a postprocess of standard
interpolation methods. The method is based on nonconvex non-
linear partial differential equations. The equations are carefully
discretized, incorporating numerical schemes of anisotropic
diffusion, to be able to form reliable edges satisfactorily. The
alternating direction implicit (ADI) method is employed for an
efficient simulation of the model. It has been numerically verified
that the resulting algorithm can form clear edges in 2 to 3 ADI
iterations. Various results are given to show th eeffectiveness and
reliability of the algorithm.

Index Terms—Anisotropic diffusion, checkerboard effect, edge
forming, image zooming, interpolation.

I. INTRODUCTION

IMAGE interpolation is the first of two basic resampling steps
and turns a discrete image into a continuous function, which

is necessary for various geometric transform of discrete images.
There are two kinds of interpolation methods: linear and non-
linear ones. For linear methods, diverse interpolation kernels of
finite size have been introduced, in the literature, as approxima-
tions of the ideal interpolation kernel (the sinc function) which
is spatially unlimited; see [11], [17], and [28]. Two of the sim-
plest approximations are related to the nearest-neighbor interpo-
lation and the bilinear interpolation. Higher order interpolation
methods involving larger number of pixel values have shown su-
perior properties for some classes of images. However, most of
the linear interpolation methods have been introduced without
considering specific (local) information of edges. Thus, they
bring up the smoothing effect in resulting images. Furthermore,
when the image is zoomed by a large factor, the zoomed image
looks blocky; such a phenomenon is called the checkerboard ef-
fect. Recently, some nonlinear interpolation methods have been
suggested to reduce the artifacts of linear methods [3], [13],
[18]. The major step in the nonlinear methods is to either fit the
edges with some templates or predict edge information for the
high resolution image from the low resolution one.

A color image is usually represented as a three-dimensional
vector such that each components represents intensity of RGB
(red, green, and blue) three colors. For color image denoising,
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we first observe the work of Sapiro and Ringach [24] and Blom-
gren and Chan [1], [2]. Recently, the variational method has
been generalized to nonflat features [5], [6], [16], [22], [25],
[26], [27].

In this paper, we are interested in the development of edge-
forming methods to be applied as a postprocess of standard
image zooming methods for color images, with the hope of re-
moving the checkerboard effect. As the model, we consider a
system of nonlinear partial differential equations (PDEs) in the
angle domain, which can be viewed as a variant of the model
in Vese and Osher [29]. Then, separable anisotropic numerical
schemes are incorporated for the model to form reliable edges.
The alternating direction implicit (ADI) method is adopted to
compute the resulting algebraic system efficiently.

For a closely related method, see a total variation (TV)-based
interpolation method suggested by Guichard and Malgouyres
[12]. See also [19], where some linear and nonlinear interpola-
tion methods are analyzed mathematically and experimentally,
including the TV-based interpolation.

An outline of the paper is as follows. In the next section,
we briefly review the anisotropic edge-forming method for
grayscale images, which has been suggested by the authors [4].
Section III contains an extension of the edge-forming method
for color images. For a choice of edge-forming model, we have
modified the model of Vese and Osher [29], which was first in-
troduced for -harmonic flows and its application to denoising.
The ADI method is employed, as an iterative procedure for the
integration in the direction of artificial time. In Section IV, a
new constraint parameter is considered in order for the new
algorithm to be able to form edges for image zooming by
general (noninteger) magnification factors. Section V shows
numerical experiments; our new algorithm turns out to be able
to form clear edges for various color images, satisfactorily in 2
to 3 ADI iterations. The last section concludes our development
and experiments.

II. PRELIMINARIES

In this section, we briefly review an effective edge-forming
technique, suggested by the authors [4], as a postprocess of stan-
dard interpolation methods for grayscale images.

A. Nonlinear Semi-Discrete Model

Let be a given image which is zoomed by one of linear
interpolation methods. Then, we can write

where is the desired image (hopefully, having sharp and re-
liable edges) and denotes the noise involved during the in-
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terpolation and resampling. Consider the following nonlinear
semi-discrete model of the form

(1)

where denotes a constraint parameter and is a
diffusion matrix, i.e., for

The diffusion must be anisotropic and carefully designed in
order to preserve and construct reliable edges.

Note that the recovered image becomes closer to as
grows. When images are to be magnified by an integer factor

, one can manage the interpolation algorithm such that
the values at each th pixel can be assigned directly
from the original image without approximation. It is then de-
sirable that we try not to alter those original values during the
postprocessing of edge forming. Thus, we may set in (1) large
at the pixels of original values and let elsewhere. In this
paper, such is said to be two-valued.

For an efficient simulation of (1), we will select separable,
i.e.,

where and are submatrices that represent connections
of pixel values in the horizontal and vertical directions, respec-
tively. In Section II-B, we will show an explicit construction
of the diffusion matrix that shows an ability to form edges. We
first consider an efficient (linearized) time-stepping procedure
for (1).

Denote the timestep size by . Set and
for . Then, the problem can be linearized by eval-

uating the matrix from the previous time level. Consider
the linearized method for (1) of the form

(2)

where . Note that the method turns out to
be the explicit, the implicit, and the Crank–Nicolson methods,
respectively, for , and . Let

Then, the ADI method [7]–[10], [21] is a perturbation of (2),
with a splitting error of

(3)

where is an intermediate solution. Note that when the ma-
trices are composed with a three-point stencil, each sweep
in (3) can be carried out by inverting a series of tri-diagonal
matrices.

B. Anisotropic Edge-Forming Schemes

We will consider an effective edge-forming scheme for
for anisotropic diffusion (AD); it is straightforward to apply the
same scheme for .

Let be the th pixel in the image and .
We construct the row of corresponding to the pixel

, which consists of three consecutive nonzero
elements which represent the connection of to and

(4)

where

(5)

We wish to determine and in such a way that
the algorithm (2) can form edges. Let

(6)

where the regularization parameter has been introduced
to prevent the denominator in (4) from approaching zero and

is to be defined as finite difference approximations
of evaluated at , the midpoint of and

(7)

The numerical realization of the model (1), the method (2)
incorporating the schemes (4)–(7), has shown an excellent per-
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formance for edge forming for two-dimensional images when
(a heuristic finding). It has been also observed

from various numerical experiments that the resulting algorithm
does not exhibit apparent differences depending on angles of
image features (“rotational invariance”), although the diffusion
matrix is separable. The authors [4] analyzed stability for the

method, as in the following two theorems.
Theorem 2.1: [4]: Suppose that the image is to be magnified

by a factor of , where and are positive integers.
Let the method (2), , incorporate the edge-forming
schemes (4)–(7) and satisfy the following condition:

(8)

Suppose the solution of (2) , have a local maximum or min-
imum at a point where . Then, it is constant, for
all , on the block of pixels that contains the
point .

Theorem 2.2: [4]: Let the method (2) , incor-
porate the edge-forming schemes (4)–(7) and satisfy

(9)

Then

(10)

For instance, if it is desired for to be not larger
than 1% the given image at the pixels where , one
should choose (for the numerical results in Section V,
we set for the two-valued ).

III. EDGE-FORMING METHODS FOR COLOR IMAGES

A. Interpretation for the Semi-Discrete Model

We begin with a numerical interpretation for the semi-discrete
model (1) and the edge-forming schemes (4)–(7), from which
we will try to obtain motivation for an effective model for color
image zooming. The schemes can be obtained from a numerical
approximation of a diffusion operator of the term

where . Indeed, the scheme can be
obtained with the following differences:

(11)

Thus, the discrete model (1) incorporating the anisotropic edge-
forming schemes (4)–(7) can be viewed as a linearized spatial
discretization of the following nonlinear PDE

(12)

which is a variant of the denoising PDE model suggested
by either Rudin et al. [23] (the TV model) or Marquina and
Osher [20].

B. Edge-Forming Model for Color Images

For edge-forming schemes for color images, we have been
motivated from the observation in Section III-A. In this section,
we will first consider a denoising model for color images and
then it will be modified and approximated to be able to form
edges.

In the RGB representation, a color image is a mapping

which can be decomposed into brightness and chromaticity

(13)

where is the least-squares norm. Thus, the brightness
represents the length of the RGB color vector, and the chro-

maticity denotes the normalized color component, which lies
on the unit sphere . In [5] and [6], it has been verified that
in denoising, the use of the chromaticity-brightness (CB) de-
composition results in better restored images than conventional
approaches such as the channel-by-channel model and the HSV
system.

The brightness can be treated as the same way as for grayscale
images, applying the edge-forming model (1). On the other
hand, we need to develop an appropriate mathematical model
to handle the chromaticity effectively in the angle domain.

Based on the elegant mathematical work by Vese and Osher
[29], Kim [15] has experimented an angle domain algorithm to
denoise color images efficiently and reliably. Let

and

(it should be noted that and, therefore,
; there is no difficulty for the issue of “ -modulo”). Asso-

ciated with the minimization problem

(14)



2318 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 8, AUGUST 2006

the Euler–Lagrange equations in the angle domain read
[15], [29]

(15)

where

Here, we have introduced the regularization term to pre-
vent the denominators in (15) from approaching zero.

To get an edge-forming model for the chromaticity compo-
nents, we 1) multiply both sides of the equations in (15) by

, 2) introduce an artificial time for the parameter-
ization of the energy descent direction, and 3) impose a con-
straint term. It should be noted [20] that the scaling will not
make the stationary solution of the resulting model differ from
that of (15) by a significant amount.

Then, the complete set of edge-forming model, including the
equation for the brightness, can be formulated as follows: Find

by solving

(16)

where , and denotes an initializa-
tion of .

C. Anisotropic Edge-Forming Schemes for Color Images

For the discretization of the diffusion terms in the
chromaticity equations in (16), we adopt the idea of the
edge-forming schemes for grayscale images presented in
Sections II-B and III-A. We first define and

, as the counterparts of and in
(6)

(17)

where is defined as in (7) and

Then, for the chromaticity components, the counterparts of
and in (5) can be defined as

for

for

(18)

Equation (18), as well as (5), complete the construction of
as in (4), where denotes , or . One can

construct similarly.
Thus, for each component, one can compute the solution in

the new level by employing the ADI (3) as follows:

(19)

where , and

Here, denotes a finite difference approximation of (in this
paper, we adopt the second-order central scheme for it). We will
call (19) the -ADI.

A) Remark: When the image is magnified by a large factor,
e.g., 8 8, one may try to enlarge the image by three recursive
applications of 2 2 magnification and edge-forming rather
than once 8 8 magnification followed by edge forming. For
the interpolation alone, a recursive application introduces no
observable improvement/difference from the image of one-time
application, for most cases. On the other hand, the edge-forming
algorithm turns out to be able to develop reliable edges in 2 to 3

-ADI iterations for image zooming by magnification factors of
2 to 3, while it requires a relatively larger number of iterations
for image zooming by factors . Thus, one can speed up
the simulation by a recursive application of smaller factors,
because the earlier recursions are applied to smaller images
and, therefore, much more efficient in computation. It also
has been verified for recursive applications of edge forming to
improve the quality of resulting images (see [4]).

IV. NEW CHOICE OF

When the image is magnified by a factor of , where
and are positive integers, one can manage the interpola-

tion algorithm such that the values at each th pixel can
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Fig. 1. Grayscale Lena images: (a) the original image in 64� 64 pixels and
(b) the magnified image by the bilinear interpolation by a factor of 4� 4.

be assigned directly from the original image without approxi-
mation. Then, we must set in (1) large at the pixels of orig-
inal values not to alter them (see Theorem 2.2). At other pixels,
one may set small or simply zero, which allows the values
alter easily. However, such a strategy might not be applicable
for image zooming by general (noninteger) factors, because it is
rare for the values in the original image to be directly assigned
to the zoomed image without approximation. In this section, we
will introduce an effective strategy to overcome the difficulty.

We begin with an observation on the checkerboard effect.
For simplicity, consider a grayscale image which is magnified
by the bilinear interpolation by an integer factor, as in Fig. 1.
The checkerboard effect appeared in the interpolated image
[Fig. 1(b)] is originated from the image blocks on each of which
the image is bilinear. Consider the quantity , where
denotes the Laplacian and is the interpolated image. Then, it
is not difficult to verify that for each image blocks, the quantity
must be zero at interior pixels and its local maximum appears
at one of the four corner points. The more dramatic changes the
image has, the larger the Laplacian is at the corners (and the
sides) of the image blocks.

The above observation has motivated an effective strategy for
the choice of , given as follows:

(20)

where and are positive parameters to be determined and
is , or . The parameter is introduced for a global scaling
of , while must put an emphasis of on the corner pixels
when . Unfortunately, we do not know of any rigorous
analysis for the choice of and . Here is a guideline for their
choices from various numerical experiments: Set
and choose such that the maximum of is about 1000 (for
the numerical results presented in Section V, we set and
select the scaling factor such that for each
of the three color components).

Note that the strategy in (20) does not require information
on the pixels whether the image values are original or not; it

works along with information integrated from the image Lapla-
cian only. With the strategy, every bilinear image block is a
candidate for modification to form reliable edges, based on the
minimization principle in (14). Thus, there is no guarantee to
set sufficiently large to tightly keep the original image values
during the edge forming. However, since is relatively large
at pixels where the image content varies rapidly, and since the
edge-forming schemes in Section III-C can form reliable edges
fast, the strategy is applicable for various situations, in par-
ticular, for image zooming by general (noninteger) magnifica-
tion factors. In this paper, we call the parameter in (20) the
image-Laplacian constraint (ILC) parameter.

When the image is magnified by a bicubic interpolation, the
Laplacian now may not be zero at the interior pixels of image
blocks. Thus, one may consider the quantity for
the place of , which guarantees to become zero at the
interior pixels of image blocks. However, the Laplacian is still a
favorable choice for ; it has been experimentally verified that
the ILC parameter is better than the one from the fourth-order
differential operator for most real images we have tested.

V. NUMERICAL EXPERIMENTS

This section presents numerical experiments carried out with
the -ADI (19), the edge-forming schemes discussed in Sec-
tion III-C, and the parameter choice in Section IV. We select

in (17) and and for the -ADI. The
choice of is heuristic; it turns out to be insensitive enough for
a predetermined value to be utilized for various images. It has
been analyzed that the quantity is not only a timestep but
also a parameter for the algorithm to be able to reduce more ef-
fectively a certain range of frequency components in the image
(see [14] for details).

In Fig. 2, we test performances of the new edge-forming al-
gorithm performing for a synthetic color image. Fig. 2(a) is the
original image containing 60 60 pixels and it is magnified by
8 8 by a bicubic interpolation as in Fig. 2(b). Fig. 2(c) and
(d) depict enlarged images obtained by three recursive applica-
tions of the 2 2 bicubic interpolation and edge forming with
the two-valued and the ILC parameter in (20), respectively.
For each recursion, three -ADI iterations are applied. As one
can see from the figure, the cubic interpolation has revealed a
severe checkerboard effect and the edge-forming algorithm can
form reliable edges in just three -ADI iterations, with the ILC
parameter performing better than the two-valued .

Fig. 3 presents an example which shows how the edge-
forming algorithm affects other features, i.e., features that are
not edges. The smooth image incorporates three features: a
sphere (yellow), a swollen-up square (purple), and a magni-
tude-change with a gradually increasing curvature from top
right to bottom left (in grayscale). As one can see from Fig. 3(d),
the change made by the edge-forming algorithm is negligible,
except for the region of large curvatures (the bottom left of
the magnitude-change). There, the algorithm has tried to form
an edge, which one can also see from a comparison between
Fig. 3(b) and (c). It has been observed from this example and
others that the edge-forming algorithm forms edges in the
regions where the curvature is large, while it may alter smooth
regions by a negligible amount.
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Fig. 2. Synthetic color disk: (a) the original image in 60� 60 pixels, (b) a bicubicly interpolated image by a factor of 8� 8, (c) the edge-formed image with the
two-valued �, and (d) the edge-formed image with the ILC parameter. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 3. Synthetic color image: (a) the original image in 80� 80 pixels, (b) a bicubicly interpolated image by a factor of 5� 5, (c) the edge-formed image with the
ILC parameter, and (d) an amplified difference between images in (b) and (c): 3 � f; (b)� (c)g+128. (Color version available online at http://ieeexplore.ieee.org.)

In Fig. 4, we continue investigating the performance of the
edge-forming algorithm for a real image, Cherry, in 85 85
pixels. We have carried out the same experiment as in Fig. 2,
except setting the magnification factor 4 4. Consequently, two
recursive applications of 2 2 magnification are applied for
image zooming and edge forming. For real images, we have
reached at the same conclusion for the performance of the edge-
forming algorithm, as in Fig. 2. It is efficient and its results are
reliable; the ILC parameter in (20) performs satisfactorily and
better than the two-valued parameter.

For numerical results in the remainder of the section, we uti-
lize the ILC (20) for the constraint parameter.

In Fig. 5, we present an example for the performance of the
anisotropic edge-forming algorithm for general magnification
factors. The original Lena Face is in 100 100 pixels and it is
magnified by by the bicubic interpolation as de-

picted in Fig. 5(b) (the enlarged image is in 374 374 pixels).
The interpolated image is utilized to get an edge-formed image
[Fig. 5(c)]. As one can see from the figure, the edge-forming
algorithm has eliminated the checkerboard effect in the interpo-
lated image and formed reliable edges. For this example, each of
pixel values in Fig. 5(b) and (c) is approximated; none of them
are directly assigned from the original image.

Fig. 6 contains images of Cat Face. The original image is in
60 65 pixels and it is magnified by , by the bicubic in-
terpolation [Fig. 6(b)] and by two recursive applications (
followed by 2 2) of zooming and edge forming [Fig. 6(c)].
As expected, the edge-formed image shows clear and reliable
edges, although some texture information for hair has been
missed during the anisotropic diffusion of edge forming.

For the above example, one may apply the recursive appli-
cation in the opposite order: magnification by a factor of 2 2
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Fig. 4. Cherry: (a) the original image in 85� 85 pixels, (b) a bicubicly interpolated image by a factor of 4� 4, (c) the edge-formed image with the two-valued �,
and (d) the edge-formed image with the ILC parameter. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 5. Lena: (a) the original image in 100� 100 pixels, (b) a bicubicly interpolated image by a factor of
p
14 �

p
14, and (c) the edge-formed image. (Color

version available online at http://ieeexplore.ieee.org.)

followed by . The resulting images show no significant
differences.

For a more systematic analysis for the edge-forming algo-
rithm, we shrink a selected set of images (see Fig. 7) by 2 2 or
4 4, magnify by the same factors, and then measure the peak
signal-to-noise ratio (PSNR) defined as

dB

where is the original image and denotes the recovered
image. As shown in Table I, the edge-forming algorithm im-
proves the PSNR for all cases. The improvement is greatest for

the grayscale synthetic image in Fig. 7(a), while the improve-
ment for the real image in Fig. 7(c) is negligible. We believe
that it is due to a denoising feature of the algorithm. The image
is denoised during the edge-forming operations. However, the
edge-formed images have shown clear edges as in previous ex-
amples; the anisotropic edge-forming algorithm improves the
image quality significantly, in practice.

Finally, we compare the angle domain model (16) with the
classical channel-by-channel model where each of three chan-
nels is treated as a grayscale image. In Fig. 8, we present the re-
sult of zooming (by a factor of ) and edge forming,
for Lena in Fig. 5(a), carried out with the channel-by-channel
model. As one can see from Fig. 8 and from Fig. 5(b) and (c),
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Fig. 6. Cat face: (a) Orginal image in 60� 65 pixels, (b) a bicubicly interpolated image by a factor of 2� � 2�, and (c) the edge-formed image. (Color version
available online at http://ieeexplore.ieee.org.)

Fig. 7. Images utilized for the PSNR analysis, each in 256� 256 pixels. The image in (a) is the grayscale version of (b). (Color version available online at
http://ieeexplore.ieee.org.)

TABLE I
PSNR ANALYSIS

the channel-by-channel model introduces altered colors into the
resulting image. This example is consistent with the claim in [5]
and [6]: The use of the chromaticity-brightness decomposition
results in better restored images than the channel-by-channel
model.

VI. CONCLUSION

In image zooming, the image is first interpolated and then re-
sampled for higher resolution images. This paper has introduced

Fig. 8 Zoomingand edge forming for Lena in Fig. 5(a) by the classical
channel-by-channel model. (Color version available online at http://ieeex-
plore.ieee.org.)
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a new edge-forming algorithm to remove/reduce artifacts (such
as image blur and the checkerboard effect) arising in image in-
terpolation for color images. The method is based on nonlinear
PDEs which result from the minimization of a nonconvex func-
tional of the image gradient. Anisotropic diffusion has been in-
corporated through the numerical discretization of the model.
For an efficient simulation of the model, we have employed the
alternating direction implicit (ADI) method which is known to
be very efficient in solving diffusion equations defined on rect-
angular domains. A new choice has been considered for the con-
straint parameter to be able to form edges for image zooming
by general (possibly, noninteger) magnification factors. The re-
sulting algorithm has been tested for various synthetic and real
images; it can form reliable edges satisfactorily in 2 to 3 ADI
iterations for image zooming by integer and noninteger factors,
for both grayscale and color images.
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